1
|
Brenes-Álvarez M, Ropp HR, Papagiannidis D, Potel CM, Stein F, Scholz I, Steglich C, Savitski MM, Vioque A, Muro-Pastor AM, Hess WR. R-DeeP/TripepSVM identifies the RNA-binding OB-fold-like protein PatR as regulator of heterocyst patterning. Nucleic Acids Res 2024:gkae1247. [PMID: 39698830 DOI: 10.1093/nar/gkae1247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far. Here we used quantitative mass spectrometry to analyze the differential fractionation of RNA-protein complexes after RNase treatment in density gradients yielding 333 RNA-associated proteins, while a bioinformatic prediction yielded 311 RBP candidates in Nostoc sp. PCC 7120. We validated in vivo the RNA-binding capacity of six RBP candidates. Some participate in essential physiological aspects, such as photosynthesis (Alr2890), thylakoid biogenesis (Vipp1) or heterocyst differentiation (PrpA, PatU3), but their association with RNA was unknown. Validated RBPs Asl3888 and Alr1700 were not previously characterized. Alr1700 is an RBP with two oligonucleotide/oligosaccharide-binding (OB)-fold-like domains that is differentially expressed in heterocysts and interacts with non-coding regulatory RNAs. Deletion of alr1700 led to complete deregulation of the cell differentiation process, a striking increase in the number of heterocyst-like cells, and was ultimately lethal in the absence of combined nitrogen. These observations characterize this RBP as a master regulator of the heterocyst patterning and differentiation process, leading us to rename Alr1700 to PatR.
Collapse
Affiliation(s)
- Manuel Brenes-Álvarez
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Halie R Ropp
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | | | - Clement M Potel
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Ingeborg Scholz
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Claudia Steglich
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Alicia M Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Quarta N, Bhandari TR, Girard M, Hellmann N, Schneider D. Monomer unfolding of a bacterial ESCRT-III superfamily member is coupled to oligomer disassembly. Protein Sci 2024; 33:e5187. [PMID: 39470325 PMCID: PMC11520248 DOI: 10.1002/pro.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/22/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024]
Abstract
The inner membrane associated protein of 30 kDa (IM30), a member of the endosomal sorting complex required for transport (ESCRT-III) superfamily, is crucially involved in the biogenesis and maintenance of thylakoid membranes in cyanobacteria and chloroplasts. In solution, IM30 assembles into various large oligomeric barrel- or tube-like structures, whereas upon membrane binding it forms large, flat carpet structures. Dynamic localization of the protein in solution, to membranes and changes of the oligomeric states are crucial for its in vivo function. ESCRT-III proteins are known to form oligomeric structures that are dynamically assembled from monomeric/smaller oligomeric proteins, and thus these smaller building blocks must be assembled sequentially in a highly orchestrated manner, a still poorly understood process. The impact of IM30 oligomerization on function remains difficult to study due to its high intrinsic tendency to homo-oligomerize. Here, we used molecular dynamics simulations to investigate the stability of individual helices in IM30 and identified unstable regions that may provide structural flexibility. Urea-mediated disassembly of the IM30 barrel structures was spectroscopically monitored, as well as changes in the protein's tertiary and secondary structure. The experimental data were finally compared to a three-state model that describes oligomer disassembly and monomer unfolding. In this study, we identified a highly stable conserved structural core of ESCRT-III proteins and discuss the advantages of having flexible intermediate structures and their putative relevance for ESCRT-III proteins.
Collapse
Affiliation(s)
- Ndjali Quarta
- Department of Chemistry – BiochemistryJohannes Gutenberg UniversityMainzGermany
| | | | - Martin Girard
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Nadja Hellmann
- Department of Chemistry – BiochemistryJohannes Gutenberg UniversityMainzGermany
| | - Dirk Schneider
- Department of Chemistry – BiochemistryJohannes Gutenberg UniversityMainzGermany
- Institute of Molecular PhysiologyJohannes Gutenberg UniversityMainzGermany
| |
Collapse
|
3
|
Junglas B, Kartte D, Kutzner M, Hellmann N, Ritter I, Schneider D, Sachse C. Structural basis for Vipp1 membrane binding: from loose coats and carpets to ring and rod assemblies. Nat Struct Mol Biol 2024:10.1038/s41594-024-01399-z. [PMID: 39379528 DOI: 10.1038/s41594-024-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
Vesicle-inducing protein in plastids 1 (Vipp1) is critical for thylakoid membrane biogenesis and maintenance. Although Vipp1 has recently been identified as a member of the endosomal sorting complexes required for transport III superfamily, it is still unknown how Vipp1 remodels membranes. Here, we present cryo-electron microscopy structures of Synechocystis Vipp1 interacting with membranes: seven structures of helical and stacked-ring assemblies at 5-7-Å resolution engulfing membranes and three carpet structures covering lipid vesicles at ~20-Å resolution using subtomogram averaging. By analyzing ten structures of N-terminally truncated Vipp1, we show that helix α0 is essential for membrane tubulation and forms the membrane-anchoring domain of Vipp1. Lastly, using a conformation-restrained Vipp1 mutant, we reduced the structural plasticity of Vipp1 and determined two structures of Vipp1 at 3.0-Å resolution, resolving the molecular details of membrane-anchoring and intersubunit contacts of helix α0. Our data reveal membrane curvature-dependent structural transitions from carpets to rings and rods, some of which are capable of inducing and/or stabilizing high local membrane curvature triggering membrane fusion.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - David Kartte
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Mirka Kutzner
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ilona Ritter
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
4
|
Schlösser L, Sachse C, Low HH, Schneider D. Conserved structures of ESCRT-III superfamily members across domains of life. Trends Biochem Sci 2023; 48:993-1004. [PMID: 37718229 DOI: 10.1016/j.tibs.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Structural and evolutionary studies of cyanobacterial phage shock protein A (PspA) and inner membrane-associated protein of 30 kDa (IM30) have revealed that these proteins belong to the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, which is conserved across all three domains of life. PspA and IM30 share secondary and tertiary structures with eukaryotic ESCRT-III proteins, whilst also oligomerizing via conserved interactions. Here, we examine the structures of bacterial ESCRT-III-like proteins and compare the monomeric and oligomerized forms with their eukaryotic counterparts. We discuss conserved interactions used for self-assembly and highlight key hinge regions that mediate oligomer ultrastructure versatility. Finally, we address the differences in nomenclature assigned to equivalent structural motifs in both the bacterial and eukaryotic fields and suggest a common nomenclature applicable across the ESCRT-III superfamily.
Collapse
Affiliation(s)
- Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute for Biological Information Processing/IBI-6 Cellular Structural Biology, Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
5
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
6
|
Junglas B, Axt A, Siebenaller C, Sonel H, Hellmann N, Weber SAL, Schneider D. Membrane destabilization and pore formation induced by the Synechocystis IM30 protein. Biophys J 2022; 121:3411-3421. [PMID: 35986519 PMCID: PMC9515227 DOI: 10.1016/j.bpj.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/21/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The inner membrane-associated protein of 30 kDa (IM30) is essential in chloroplasts and cyanobacteria. The spatio-temporal cellular localization of the protein appears to be highly dynamic and triggered by internal as well as external stimuli, mainly light intensity. The soluble fraction of the protein is localized in the cyanobacterial cytoplasm or the chloroplast stroma, respectively. Additionally, the protein attaches to the thylakoid membrane as well as to the chloroplast inner envelope or the cyanobacterial cytoplasmic membrane, respectively, especially under conditions of membrane stress. IM30 is involved in thylakoid membrane biogenesis and/or maintenance, where it either stabilizes membranes and/or triggers membrane-fusion processes. These apparently contradicting functions have to be tightly controlled and separated spatiotemporally in chloroplasts and cyanobacteria. IM30's fusogenic activity depends on Mg2+ binding to IM30; yet, it still is unclear how Mg2+-loaded IM30 interacts with membranes and promotes membrane fusion. Here, we show that the interaction of Mg2+ with IM30 results in increased binding of IM30 to native, as well as model, membranes. Via atomic force microscopy in liquid, IM30-induced bilayer defects were observed in solid-supported bilayers in the presence of Mg2+. These structures differ dramatically from the membrane-stabilizing carpet structures that were previously observed in the absence of Mg2+. Thus, Mg2+-induced alterations of the IM30 structure switch the IM30 activity from a membrane-stabilizing to a membrane-destabilizing function, a crucial step in membrane fusion.
Collapse
Affiliation(s)
- Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Amelie Axt
- Max Planck-Institute for Polymer Research, Mainz, Germany; Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hilal Sonel
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan A L Weber
- Max Planck-Institute for Polymer Research, Mainz, Germany; Institute of Physics, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
7
|
Junglas B, Huber ST, Heidler T, Schlösser L, Mann D, Hennig R, Clarke M, Hellmann N, Schneider D, Sachse C. PspA adopts an ESCRT-III-like fold and remodels bacterial membranes. Cell 2021; 184:3674-3688.e18. [PMID: 34166616 DOI: 10.1016/j.cell.2021.05.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
PspA is the main effector of the phage shock protein (Psp) system and preserves the bacterial inner membrane integrity and function. Here, we present the 3.6 Å resolution cryoelectron microscopy (cryo-EM) structure of PspA assembled in helical rods. PspA monomers adopt a canonical ESCRT-III fold in an extended open conformation. PspA rods are capable of enclosing lipids and generating positive membrane curvature. Using cryo-EM, we visualized how PspA remodels membrane vesicles into μm-sized structures and how it mediates the formation of internalized vesicular structures. Hotspots of these activities are zones derived from PspA assemblies, serving as lipid transfer platforms and linking previously separated lipid structures. These membrane fusion and fission activities are in line with the described functional properties of bacterial PspA/IM30/LiaH proteins. Our structural and functional analyses reveal that bacterial PspA belongs to the evolutionary ancestry of ESCRT-III proteins involved in membrane remodeling.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefan T Huber
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Thomas Heidler
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Daniel Mann
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Raoul Hennig
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mairi Clarke
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany.
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021; 8:634438. [PMID: 34046426 PMCID: PMC8144471 DOI: 10.3389/fmolb.2021.634438] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DDM, Sharma A, Tsirvouli E, Serif M, Winge P, Finazzi G, Bones AM. Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:113-132. [PMID: 33372269 DOI: 10.1111/tpj.15149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The chloroplast signal recognition particle 54 kDa (CpSRP54) protein is a member of the CpSRP pathway known to target proteins to thylakoid membranes in plants and green algae. Loss of CpSRP54 in the marine diatom Phaeodactylum tricornutum lowers the accumulation of a selection of chloroplast-encoded subunits of photosynthetic complexes, indicating a role in the co-translational part of the CpSRP pathway. In contrast to plants and green algae, absence of CpSRP54 does not have a negative effect on the content of light-harvesting antenna complex proteins and pigments in P. tricornutum, indicating that the diatom CpSRP54 protein has not evolved to function in the post-translational part of the CpSRP pathway. Cpsrp54 KO mutants display altered photophysiological responses, with a stronger induction of photoprotective mechanisms and lower growth rates compared to wild type when exposed to increased light intensities. Nonetheless, their phenotype is relatively mild, thanks to the activation of mechanisms alleviating the loss of CpSRP54, involving upregulation of chaperones. We conclude that plants, green algae, and diatoms have evolved differences in the pathways for co-translational and post-translational insertion of proteins into the thylakoid membranes.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Marthe Caroline Grønbech Hafskjold
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble (IRIG), CEA-Grenoble, Grenoble, 38000, France
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
10
|
Willdigg JR, Helmann JD. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front Mol Biosci 2021. [PMID: 34046426 DOI: 10.3389/fmolb.2021.634438/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Antibiotics and other agents that perturb the synthesis or integrity of the bacterial cell envelope trigger compensatory stress responses. Focusing on Bacillus subtilis as a model system, this mini-review summarizes current views of membrane structure and insights into how cell envelope stress responses remodel and protect the membrane. Altering the composition and properties of the membrane and its associated proteome can protect cells against detergents, antimicrobial peptides, and pore-forming compounds while also, indirectly, contributing to resistance against compounds that affect cell wall synthesis. Many of these regulatory responses are broadly conserved, even where the details of regulation may differ, and can be important in the emergence of antibiotic resistance in clinical settings.
Collapse
Affiliation(s)
- Jessica R Willdigg
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
11
|
Junglas B, Orru R, Axt A, Siebenaller C, Steinchen W, Heidrich J, Hellmich UA, Hellmann N, Wolf E, Weber SAL, Schneider D. IM30 IDPs form a membrane-protective carpet upon super-complex disassembly. Commun Biol 2020; 3:595. [PMID: 33087858 PMCID: PMC7577978 DOI: 10.1038/s42003-020-01314-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Members of the phage shock protein A (PspA) family, including the inner membrane-associated protein of 30 kDa (IM30), are suggested to stabilize stressed cellular membranes. Furthermore, IM30 is essential in thylakoid membrane-containing chloroplasts and cyanobacteria, where it is involved in membrane biogenesis and/or remodeling. While it is well known that PspA and IM30 bind to membranes, the mechanism of membrane stabilization is still enigmatic. Here we report that ring-shaped IM30 super-complexes disassemble on membranes, resulting in formation of a membrane-protecting protein carpet. Upon ring dissociation, the C-terminal domain of IM30 unfolds, and the protomers self-assemble on membranes. IM30 assemblies at membranes have been observed before in vivo and were associated with stress response in cyanobacteria and chloroplasts. These assemblies likely correspond to the here identified carpet structures. Our study defines the thus far enigmatic structural basis for the physiological function of IM30 and related proteins, including PspA, and highlights a hitherto unrecognized concept of membrane stabilization by intrinsically disordered proteins.
Collapse
Affiliation(s)
- Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Roberto Orru
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Amelie Axt
- Max Planck-Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Wieland Steinchen
- Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, 35032, Marburg, Germany
| | - Jennifer Heidrich
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Ute A Hellmich
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Stefan A L Weber
- Max Planck-Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
12
|
Siebenaller C, Junglas B, Lehmann A, Hellmann N, Schneider D. Proton Leakage Is Sensed by IM30 and Activates IM30-Triggered Membrane Fusion. Int J Mol Sci 2020; 21:E4530. [PMID: 32630559 PMCID: PMC7350238 DOI: 10.3390/ijms21124530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
The inner membrane-associated protein of 30 kDa (IM30) is crucial for the development and maintenance of the thylakoid membrane system in chloroplasts and cyanobacteria. While its exact physiological function still is under debate, it has recently been suggested that IM30 has (at least) a dual function, and the protein is involved in stabilization of the thylakoid membrane as well as in Mg2+-dependent membrane fusion. IM30 binds to negatively charged membrane lipids, preferentially at stressed membrane regions where protons potentially leak out from the thylakoid lumen into the chloroplast stroma or the cyanobacterial cytoplasm, respectively. Here we show in vitro that IM30 membrane binding, as well as membrane fusion, is strongly increased in acidic environments. This enhanced activity involves a rearrangement of the protein structure. We suggest that this acid-induced transition is part of a mechanism that allows IM30 to (i) sense sites of proton leakage at the thylakoid membrane, to (ii) preferentially bind there, and to (iii) seal leaky membrane regions via membrane fusion processes.
Collapse
Affiliation(s)
| | | | | | | | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (C.S.); (B.J.); (A.L.); (N.H.)
| |
Collapse
|
13
|
Junglas B, Siebenaller C, Schlösser L, Hellmann N, Schneider D. GTP hydrolysis by Synechocystis IM30 does not decisively affect its membrane remodeling activity. Sci Rep 2020; 10:9793. [PMID: 32555292 PMCID: PMC7299955 DOI: 10.1038/s41598-020-66818-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/26/2020] [Indexed: 01/28/2023] Open
Abstract
The function of IM30 (also known as Vipp1) is linked to protection and/or remodeling of the thylakoid membrane system in chloroplasts and cyanobacteria. Recently, it has been revealed that the Arabidopsis IM30 protein exhibits GTP hydrolyzing activity in vitro, which was unexpected, as IM30 does not show any classical GTPase features. In the present study, we addressed the question, whether an apparent GTPase activity is conserved in IM30 proteins and can also be observed for IM30 of the cyanobacterium Synechocystis sp. PCC 6803. We show that Synechocystis IM30 is indeed able to bind and hydrolyze GTP followed by the release of Pi. Yet, the apparent GTPase activity of Synechocystis IM30 does not depend on Mg2+, which, together with the lack of classical GTPase features, renders IM30 an atypical GTPase. To elucidate the impact of this cryptic GTPase activity on the membrane remodeling activity of IM30, we tested whether GTP hydrolysis influences IM30 membrane binding and/or IM30-mediated membrane fusion. We show that membrane remodeling by Synechocystis IM30 is slightly affected by nucleotides. Yet, despite IM30 clearly catalyzing GTP hydrolysis, this does not seem to be vital for its membrane remodeling function.
Collapse
Affiliation(s)
- Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
14
|
Siebenaller C, Junglas B, Schneider D. Functional Implications of Multiple IM30 Oligomeric States. FRONTIERS IN PLANT SCIENCE 2019; 10:1500. [PMID: 31824532 PMCID: PMC6882379 DOI: 10.3389/fpls.2019.01500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 05/03/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30), also known as the vesicle-inducing protein in plastids 1 (Vipp1), is essential for photo-autotrophic growth of cyanobacteria, algae and higher plants. While its exact function still remains largely elusive, it is commonly accepted that IM30 is crucially involved in thylakoid membrane biogenesis, stabilization and/or maintenance. A characteristic feature of IM30 is its intrinsic propensity to form large homo-oligomeric protein complexes. 15 years ago, it has been reported that these supercomplexes have a ring-shaped structure. However, the in vivo significance of these ring structures is not finally resolved yet and the formation of more complex assemblies has been reported. We here present and discuss research on IM30 conducted within the past 25 years with a special emphasis on the question of why we potentially need IM30 supercomplexes in vivo.
Collapse
Affiliation(s)
| | | | - Dirk Schneider
- Department of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Pannwitt S, Slama K, Depoix F, Helm M, Schneider D. Against Expectations: Unassisted RNA Adsorption onto Negatively Charged Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14704-14711. [PMID: 31626734 DOI: 10.1021/acs.langmuir.9b02830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The composition and physicochemical properties of biological membranes can be altered by diverse membrane integral and peripheral proteins as well as by small molecules, natural and synthetic. Diverse oligonucleotides have been shown to electrostatically interact with cationic and bivalent ion loaded zwitterionic liposomes, leading to the formation of oligonucleotide-liposome aggregates. However, interaction of RNAs with other membrane surfaces remains ill understood. We used the nonnatural RNA10 to investigate RNA binding to anionic and net-uncharged membrane surfaces. RNA10 had initially been selected in a screen for nonnatural RNA motives that bind to phosphatidylcholine liposomes in the presence of Mg2+. Here we show that interaction of defined RNA molecules with membrane surfaces crucially depends on electrostatic surface properties. Furthermore, RNA10 electrostatically binds to anionic lipid bilayers in the absence of Mg2+ or other bivalent cations, and this interaction leads to measurably changed physicochemical properties of the bilayer and the oligonucleotide. Thus, the structure of polyanionic RNA can be modulated via contact with negatively charged membrane surfaces and vice versa.
Collapse
Affiliation(s)
- Stefanie Pannwitt
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg University , Johann-Joachim-Becherweg 30 , 55128 Mainz , Germany
| | - Kaouthar Slama
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg University , Staudinger Weg 5 , 55128 Mainz , Germany
| | - Frank Depoix
- Institute of Molecular Physiology , Johannes Gutenberg University , Johann-Joachim-Becherweg 9-11 , 55128 Mainz , Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg University , Staudinger Weg 5 , 55128 Mainz , Germany
| | - Dirk Schneider
- Institute of Pharmacy and Biochemistry , Johannes Gutenberg University , Johann-Joachim-Becherweg 30 , 55128 Mainz , Germany
| |
Collapse
|
16
|
Rast A, Schaffer M, Albert S, Wan W, Pfeffer S, Beck F, Plitzko JM, Nickelsen J, Engel BD. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. NATURE PLANTS 2019; 5:436-446. [PMID: 30962530 DOI: 10.1038/s41477-019-0399-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/04/2019] [Indexed: 05/20/2023]
Abstract
Little is known about how the photosynthetic machinery is arranged in time and space during the biogenesis of thylakoid membranes. Using in situ cryo-electron tomography to image the three-dimensional architecture of the cyanobacterium Synechocystis, we observed that the tips of multiple thylakoids merge to form a substructure called the 'convergence membrane'. This high-curvature membrane comes into close contact with the plasma membrane at discrete sites. We generated subtomogram averages of 70S ribosomes and array-forming phycobilisomes, then mapped these structures onto the native membrane architecture as markers for protein synthesis and photosynthesis, respectively. This molecular localization identified two distinct biogenic regions in the thylakoid network: thylakoids facing the cytosolic interior of the cell that were associated with both marker complexes, and convergence membranes that were decorated by ribosomes but not phycobilisomes. We propose that the convergence membranes perform a specialized biogenic function, coupling the synthesis of thylakoid proteins with the integration of cofactors from the plasma membrane and the periplasmic space.
Collapse
Affiliation(s)
- Anna Rast
- Department of Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Martinsried, Germany
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sahradha Albert
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - William Wan
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Pfeffer
- Center for Molecular Biology, University of Heidelberg, Heidelberg, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Sciences, Ludwig-Maximilians-University Munich, Martinsried, Germany.
| | - Benjamin D Engel
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
17
|
Mechela A, Schwenkert S, Soll J. A brief history of thylakoid biogenesis. Open Biol 2019; 9:180237. [PMID: 30958119 PMCID: PMC6367138 DOI: 10.1098/rsob.180237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
The thylakoid membrane network inside chloroplasts harbours the protein complexes that are necessary for the light-dependent reactions of photosynthesis. Cellular processes for building and altering this membrane network are therefore essential for life on Earth. Nevertheless, detailed molecular processes concerning the origin and synthesis of the thylakoids remain elusive. Thylakoid biogenesis is strongly coupled to the processes of chloroplast differentiation. Chloroplasts develop from special progenitors called proplastids. As many of the needed building blocks such as lipids and pigments derive from the inner envelope, the question arises how these components are recruited to their target membrane. This review travels back in time to the beginnings of thylakoid membrane research to summarize findings, facts and fictions on thylakoid biogenesis and structure up to the present state, including new insights and future developments in this field.
Collapse
Affiliation(s)
- Annabel Mechela
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Jürgen Soll
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Großhaderner Strasse 2-4, 82152 Planegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
18
|
Thurotte A, Schneider D. The Fusion Activity of IM30 Rings Involves Controlled Unmasking of the Fusogenic Core. FRONTIERS IN PLANT SCIENCE 2019; 10:108. [PMID: 30792728 PMCID: PMC6374351 DOI: 10.3389/fpls.2019.00108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/23/2019] [Indexed: 05/20/2023]
Abstract
The inner membrane-associated protein of 30 kDa (IM30, also known as Vipp1) is required for thylakoid membrane biogenesis and maintenance in cyanobacteria and chloroplasts. The protein forms large rings of ∼2 MDa and triggers membrane fusion in presence of Mg2+. Based on the here presented observations, IM30 rings are built from dimers of dimers, and formation of these tetrameric building blocks is driven by interactions of the central coiled-coil, formed by helices 2 and 3, and stabilized via additional interactions mainly involving helix 1. Furthermore, helix 1 as well as C-terminal regions of IM30 together negatively regulate ring-ring contacts. We propose that IM30 rings represent the inactive form of IM30, and upon binding to negatively charged membrane surfaces, the here identified fusogenic core of IM30 rings eventually interacts with the lipid bilayer, resulting in membrane destabilization and membrane fusion. Unmasking of the IM30 fusogenic core likely is controlled by Mg2+, which triggers rearrangement of the IM30 ring structure.
Collapse
|