1
|
Mudgal S, Goyal N, Kasi M, Saginela R, Singhal A, Nandi S, Mahmud AKMF, Muniyappa K, Sinha KM. Cyclic di-AMP regulates genome stability and drug resistance in Mycobacterium through RecA-dependent and RecA-independent recombination. PNAS NEXUS 2024; 3:pgae555. [PMID: 39697181 PMCID: PMC11653572 DOI: 10.1093/pnasnexus/pgae555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
In Escherichia coli, RecA plays a central role in the rescue of stalled replication forks, double-strand break (DSB) repair, homologous recombination (HR), and induction of the SOS response. While the RecA-dependent pathway is dominant, alternative HR pathways that function independently of RecA do exist, but relatively little is known about the underlying mechanism. Several studies have documented that a variety of proteins act as either positive or negative regulators of RecA to ensure high-fidelity HR and genomic stability. Along these lines, we previously demonstrated that the second messenger cyclic di-AMP (c-di-AMP) binds to mycobacterial RecA proteins, but not to E. coli RecA, and inhibits its DNA strand exchange activity in vitro via the disassembly of RecA nucleoprotein filaments. Herein, we demonstrate that Mycobacterium smegmatis ΔdisA cells, which lack c-di-AMP, exhibit increased DNA recombination, higher frequency of mutation, and gene duplications during RecA-dependent and RecA-independent DSB repair. We also found that c-di-AMP regulates SOS response by inhibiting RecA-mediated self-cleavage of LexA repressor and its absence enhances drug resistance in M. smegmatis ΔdisA cells. Together, our results uncover a role of c-di-AMP in the maintenance of genomic stability through modulation of DSB repair in M. smegmatis.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Nisha Goyal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Manikandan Kasi
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Rahul Saginela
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Anusha Singhal
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| | - Soumyadeep Nandi
- Department of Plant Physiology, Umeå Plant Science Centre, Umea University, Umeå 901 87, Sweden
| | - A K M Firoj Mahmud
- CLINTEC, Karolinska Institutet, Alfred Nobels alle 8, 141 52 Huddinge, Stockholm, Sweden
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishna Murari Sinha
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, Haryana 122413, India
| |
Collapse
|
2
|
Foster AJ, van den Noort M, Poolman B. Bacterial cell volume regulation and the importance of cyclic di-AMP. Microbiol Mol Biol Rev 2024; 88:e0018123. [PMID: 38856222 PMCID: PMC11332354 DOI: 10.1128/mmbr.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYNucleotide-derived second messengers are present in all domains of life. In prokaryotes, most of their functionality is associated with general lifestyle and metabolic adaptations, often in response to environmental fluctuations of physical parameters. In the last two decades, cyclic di-AMP has emerged as an important signaling nucleotide in many prokaryotic lineages, including Firmicutes, Actinobacteria, and Cyanobacteria. Its importance is highlighted by the fact that both the lack and overproduction of cyclic di-AMP affect viability of prokaryotes that utilize cyclic di-AMP, and that it generates a strong innate immune response in eukaryotes. In bacteria that produce the second messenger, most molecular targets of cyclic di-AMP are associated with cell volume control. Besides, other evidence links the second messenger to cell wall remodeling, DNA damage repair, sporulation, central metabolism, and the regulation of glycogen turnover. In this review, we take a biochemical, quantitative approach to address the main cellular processes that are directly regulated by cyclic di-AMP and show that these processes are very connected and require regulation of a similar set of proteins to which cyclic di-AMP binds. Altogether, we argue that cyclic di-AMP is a master regulator of cell volume and that other cellular processes can be connected with cyclic di-AMP through this core function. We further highlight important directions in which the cyclic di-AMP field has to develop to gain a full understanding of the cyclic di-AMP signaling network and why some processes are regulated, while others are not.
Collapse
Affiliation(s)
- Alexander J. Foster
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Nautiyal A, Thakur M. Prokaryotic DNA Crossroads: Holliday Junction Formation and Resolution. ACS OMEGA 2024; 9:12515-12538. [PMID: 38524412 PMCID: PMC10956419 DOI: 10.1021/acsomega.3c09866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 03/26/2024]
Abstract
Cells are continually exposed to a multitude of internal and external stressors, which give rise to various types of DNA damage. To protect the integrity of their genetic material, cells are equipped with a repertoire of repair proteins that engage in various repair mechanisms, facilitated by intricate networks of protein-protein and protein-DNA interactions. Among these networks is the homologous recombination (HR) system, a molecular repair mechanism conserved in all three domains of life. On one hand, HR ensures high-fidelity, template-dependent DNA repair, while on the other hand, it results in the generation of combinatorial genetic variations through allelic exchange. Despite substantial progress in understanding this pathway in bacteria, yeast, and humans, several critical questions remain unanswered, including the molecular processes leading to the exchange of DNA segments, the coordination of protein binding, conformational switching during branch migration, and the resolution of Holliday Junctions (HJs). This Review delves into our current understanding of the HR pathway in bacteria, shedding light on the roles played by various proteins or their complexes at different stages of HR. In the first part of this Review, we provide a brief overview of the end resection processes and the strand-exchange reaction, offering a concise depiction of the mechanisms that culminate in the formation of HJs. In the latter half, we expound upon the alternative methods of branch migration and HJ resolution more comprehensively and holistically, considering the historical research timelines. Finally, when we consolidate our knowledge about HR within the broader context of genome replication and the emergence of resistant species, it becomes evident that the HR pathway is indispensable for the survival of bacteria in diverse ecological niches.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manoj Thakur
- Sri
Venkateswara College, Benito Juarez Road, University of Delhi, New Delhi 110021, India
| |
Collapse
|
4
|
Burra VLSP, Sahoo PS, Dhankhar A, Jhajj J, Kasamuthu PS, K SSVK, Macha SKR. Understanding the structural basis of the binding specificity of c-di-AMP to M. smegmatis RecA using computational biology approach. J Biomol Struct Dyn 2024; 42:2043-2057. [PMID: 38093709 DOI: 10.1080/07391102.2023.2227709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/09/2023] [Indexed: 02/21/2024]
Abstract
Mycobacterium tuberculosis RecA (MtRecA), a protein involved in DNA repair, homologous recombination and SOS pathway, contributes to the development of multidrug resistance. ATP binding-site in RecA has been a drug target to disable RecA dependent DNA repair. For the first time, experiments have shown the existence and binding of c-di-AMP to a novel allosteric site in the C-terminal-Domain (CTD) of Mycobacterium smegmatis RecA (MsRecA), a close homolog of MtRecA. In addition, it was observed that the c-di-AMP was not binding to Escherichia coli RecA (EcRecA). This article analyses the possible interactions of the three RecA homologs with the various c-di-AMP conformations to gain insights into the structural basis of the natural preference of c-di-AMP to MsRecA and not to EcRecA, using the structural biology tools. The comparative analysis, based on amino acid composition, homology, motifs, residue types, docking, molecular dynamics simulations and binding free energy calculations, indeed, conclusively indicates strong binding of c-di-AMP to MsRecA. Having very similar results as MsRecA, it is highly plausible for c-di-AMP to strongly bind MtRecA as well. These insights from the in-silico studies adds a new therapeutic approach against TB through design and development of novel allosteric inhibitors for the first time against MtRecA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V L S Prasad Burra
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Partha Sarathi Sahoo
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Amit Dhankhar
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Jatinder Jhajj
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Prasanna Sudharson Kasamuthu
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - S S V Kiran K
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| | - Samuel Krupa Rakshan Macha
- Centre for Advanced Research and Innovation in Structural Biology of Diseases, K L E F (Deemed to be) University, Vaddeswaram, Andhra Pradesh, India
| |
Collapse
|
5
|
Pal AK, Ghorai D, Ge X, Sarkar B, Sahu AK, Chaudhary V, Jhawar R, Sanyal S, Singh M, Ghosh A. Second messenger c-di-AMP regulates multiple antibiotic sensitivity pathways in Mycobacterium smegmatis by discrete mechanisms. FEMS Microbiol Lett 2024; 371:fnae084. [PMID: 39390679 DOI: 10.1093/femsle/fnae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
One of the debilitating causes of high mortality in the case of tuberculosis and other bacterial infections is the resistance development against standard drugs. There are limited studies so far to describe how a bacterial second messenger molecule can directly participate in distinctive antibiotic tolerance characteristics of a cell in a mechanism-dependent manner. Here we show that intracellular cyclic di-AMP (c-di-AMP) concentration can modulate drug sensitivity of Mycobacterium smegmatis by interacting with an effector protein or interfering with the 5'-UTR regions in mRNA of the genes and thus causing transcriptional downregulation of important genes in the pathways. We studied four antibiotics with different mechanisms of action: rifampicin, ciprofloxacin, erythromycin, and tobramycin and subsequently found that the level of drug sensitivity of the bacteria is directly proportional to the c-di-AMP concentration inside the cell. Further, we unraveled the underlying molecular mechanisms to delineate the specific genes and pathways regulated by c-di-AMP and hence result in differential drug sensitivity in M. smegmatis.
Collapse
Affiliation(s)
- Aditya Kumar Pal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Ghorai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-75124, Sweden
| | - Biplab Sarkar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Amit Kumar Sahu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Vikas Chaudhary
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Ruchi Jhawar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-75124, Sweden
| | - Mahavir Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Römling U. Cyclic di-GMP signaling-Where did you come from and where will you go? Mol Microbiol 2023; 120:564-574. [PMID: 37427497 DOI: 10.1111/mmi.15119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Microbes including bacteria are required to respond to their often continuously changing ecological niches in order to survive. While many signaling molecules are produced as seemingly circumstantial byproducts of common biochemical reactions, there are a few second messenger signaling systems such as the ubiquitous cyclic di-GMP second messenger system that arise through the synthesis of dedicated multidomain enzymes triggered by multiple diverse external and internal signals. Being one of the most numerous and widespread signaling system in bacteria, cyclic di-GMP signaling contributes to adjust physiological and metabolic responses in all available ecological niches. Those niches range from deep-sea and hydrothermal springs to the intracellular environment in human immune cells such as macrophages. This outmost adaptability is possible by the modularity of the cyclic di-GMP turnover proteins which enables coupling of enzymatic activity to the diversity of sensory domains and the flexibility in cyclic di-GMP binding sites. Nevertheless, commonly regulated fundamental microbial behavior include biofilm formation, motility, and acute and chronic virulence. The dedicated domains carrying out the enzymatic activity indicate an early evolutionary origin and diversification of "bona fide" second messengers such as cyclic di-GMP which is estimated to have been present in the last universal common ancestor of archaea and bacteria and maintained in the bacterial kingdom until today. This perspective article addresses aspects of our current view on the cyclic di-GMP signaling system and points to knowledge gaps that still await answers.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Römling U, Cao LY, Bai FW. Evolution of cyclic di-GMP signalling on a short and long term time scale. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001354. [PMID: 37384391 PMCID: PMC10333796 DOI: 10.1099/mic.0.001354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
Diversifying radiation of domain families within specific lineages of life indicates the importance of their functionality for the organisms. The foundation for the diversifying radiation of the cyclic di-GMP signalling network that occurred within the bacterial kingdom is most likely based in the outmost adaptability, flexibility and plasticity of the system. Integrative sensing of multiple diverse extra- and intracellular signals is made possible by the N-terminal sensory domains of the modular cyclic di-GMP turnover proteins, mutations in the protein scaffolds and subsequent signal reception by diverse receptors, which eventually rewires opposite host-associated as well as environmental life styles including parallel regulated target outputs. Natural, laboratory and microcosm derived microbial variants often with an altered multicellular biofilm behaviour as reading output demonstrated single amino acid substitutions to substantially alter catalytic activity including substrate specificity. Truncations and domain swapping of cyclic di-GMP signalling genes and horizontal gene transfer suggest rewiring of the network. Presence of cyclic di-GMP signalling genes on horizontally transferable elements in particular observed in extreme acidophilic bacteria indicates that cyclic di-GMP signalling and biofilm components are under selective pressure in these types of environments. On a short and long term evolutionary scale, within a species and in families within bacterial orders, respectively, the cyclic di-GMP signalling network can also rapidly disappear. To investigate variability of the cyclic di-GMP signalling system on various levels will give clues about evolutionary forces and discover novel physiological and metabolic pathways affected by this intriguing second messenger signalling system.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
8
|
Chaudhary V, Pal AK, Singla M, Ghosh A. Elucidating the role of c-di-AMP in Mycobacterium smegmatis: Phenotypic characterization and functional analysis. Heliyon 2023; 9:e15686. [PMID: 37305508 PMCID: PMC10256829 DOI: 10.1016/j.heliyon.2023.e15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Cyclic-di-AMP (c-di-AMP) is an important secondary messenger molecule that plays a critical role in monitoring several important cellular processes, especially in several Gram-positive bacteria. In this study, we seek to unravel the physiological significance of the molecule c-di-AMP in Mycobacterium smegmatis under different conditions, using strains with altered c-di-AMP levels: c-di-AMP null mutant (ΔdisA) and a c-di-AMP over-expression mutant (Δpde). Our thorough analysis of the mutants revealed that the intracellular concentration of c-di-AMP could determine many basic phenotypes such as colony architecture, cell shape, cell size, membrane permeability etc. Additionally, it was shown to play a significant role in multiple stress adaptation pathways in the case of different DNA and membrane stresses. Our study also revealed how the biofilm phenotypes of M. smegmatis cells are altered with high intracellular c-di-AMP concentration. Next, we checked how c-di-AMP contributes to antibiotic resistance or susceptibility characteristics of M. smegmatis, which was followed by a detailed transcriptome profile analysis to reveal key genes and pathways such as translation, arginine biosynthesis, cell wall and plasma membrane are regulated by c-di-AMP in mycobacteria.
Collapse
|
9
|
Römling U. Is biofilm formation intrinsic to the origin of life? Environ Microbiol 2023; 25:26-39. [PMID: 36655713 PMCID: PMC10086821 DOI: 10.1111/1462-2920.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 01/21/2023]
Abstract
Biofilms are multicellular, often surface-associated, communities of autonomous cells. Their formation is the natural mode of growth of up to 80% of microorganisms living on this planet. Biofilms refractory towards antimicrobial agents and the actions of the immune system due to their tolerance against multiple environmental stresses. But how did biofilm formation arise? Here, I argue that the biofilm lifestyle has its foundation already in the fundamental, surface-triggered chemical reactions and energy preserving mechanisms that enabled the development of life on earth. Subsequently, prototypical biofilm formation has evolved and diversified concomitantly in composition, cell morphology and regulation with the expansion of prokaryotic organisms and their radiation by occupation of diverse ecological niches. This ancient origin of biofilm formation thus mirrors the harnessing environmental conditions that have been the rule rather than the exception in microbial life. The subsequent emergence of the association of microbes, including recent human pathogens, with higher organisms can be considered as the entry into a nutritional and largely stress-protecting heaven. Nevertheless, basic mechanisms of biofilm formation have surprisingly been conserved and refunctionalized to promote sustained survival in new environments.
Collapse
Affiliation(s)
- Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Pal AK, Ghosh A. c-di-AMP signaling plays important role in determining antibiotic tolerance phenotypes of Mycobacterium smegmatis. Sci Rep 2022; 12:13127. [PMID: 35907936 PMCID: PMC9338955 DOI: 10.1038/s41598-022-17051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, we probe the role of secondary messenger c-di-AMP in drug tolerance, which includes both persister and resistant mutant characterization of Mycobacterium smegmatis. Specifically, with the use of c-di-AMP null and overproducing mutants, we showed how c-di-AMP plays a significant role in resistance mutagenesis against antibiotics with different mechanisms of action. We elucidated the specific molecular mechanism linking the elevated intracellular c-di-AMP level and high mutant generation and highlighted the significance of non-homology-based DNA repair. Further investigation enabled us to identify the unique mutational landscape of target and non-target mutation categories linked to intracellular c-di-AMP levels. Overall fitness cost of unique target mutations was estimated in different strain backgrounds, and then we showed the critical role of c-di-AMP in driving epistatic interactions between resistance genes, resulting in the evolution of multi-drug tolerance. Finally, we identified the role of c-di-AMP in persister cells regrowth and mutant enrichment upon cessation of antibiotic treatment.
Collapse
Affiliation(s)
- Aditya Kumar Pal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
11
|
Mudgal S, Manikandan K, Mukherjee A, Krishnan A, Sinha KM. Cyclic di-AMP: Small molecule with big roles in bacteria. Microb Pathog 2021; 161:105264. [PMID: 34715302 DOI: 10.1016/j.micpath.2021.105264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023]
Abstract
Cyclic dinucleotides are second messengers that are present in all the three domains of life, bacteria, archaea, and eukaryotes. These dinucleotides have important physiological and pathophysiological roles in bacteria. Cyclic di-AMP (cdA) is one of the recently discovered cyclic dinucleotides present predominantly in gram-positive bacteria. cdA is synthesized through diadenylate cyclase (DAC) activity from ATP in a two-step process and hydrolyzed to linear dinucleotide pApA (and to 5' AMP in certain cases) by specific phosphodiesterases. cdA regulates various physiological processes like K+ transport and osmotic balance, DNA repair, cell wall homeostasis, drug resistance, central metabolism either by binding directly to the target protein or regulating its expression. It also participates in host-pathogen interaction by binding to host immune receptors ERAdP, RECON, and STING.
Collapse
Affiliation(s)
- Sudhanshu Mudgal
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Kasi Manikandan
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Ahana Mukherjee
- Amity Institute of Biotechnology, Amity University Haryana, Haryana, India
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India.
| | | |
Collapse
|
12
|
Rørvik GH, Naemi A, Edvardsen PKT, Simm R. The c-di-AMP signaling system influences stress tolerance and biofilm formation of Streptococcus mitis. Microbiologyopen 2021; 10:e1203. [PMID: 34459556 PMCID: PMC8289670 DOI: 10.1002/mbo3.1203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus mitis is a commensal bacterial species of the oral cavity, with the potential for opportunistic pathogenesis. For successful colonization, S. mitis must be able to adhere to surfaces of the oral cavity and survive and adapt to frequently changing environmental conditions. Cyclic-di-AMP (c-di-AMP) is a nucleotide second messenger, involved in the regulation of stress responses and biofilm formation in several bacterial species. Cyclic-di-AMP is produced by diadenylate cyclases and degraded by phosphodiesterases. We have previously shown that in S. mitis, one diadenylate cyclase (CdaA) and at least two phosphodiesterases (Pde1 and Pde2) regulate the intracellular concentration of c-di-AMP. In this study, we utilized S. mitis deletion mutants of cdaA, pde1, and pde2 to analyze the role of c-di-AMP signaling in various stress responses, biofilm formation, and adhesion to eukaryotic cells. Here, we demonstrate that the Δpde1 mutant displayed a tendency toward increased susceptibility to acetic acid at pH 4.0. Deletion of cdaA increases auto-aggregation of S. mitis but reduces biofilm formation on an abiotic surface. These phenotypes are more pronounced under acidic extracellular conditions. Inactivation of pde1 or pde2 reduced the tolerance to ciprofloxacin, and UV radiation and the Δpde1 mutant was more susceptible to Triton X-100, indicating a role for c-di-AMP signaling in responses to DNA damage and cell membrane perturbation. Finally, the Δpde2 mutant displayed a tendency toward a reduced ability to adhere to oral keratinocytes. Taken together, our results indicate an important role for c-di-AMP signaling in cellular processes important for colonization of the mouth.
Collapse
Affiliation(s)
| | | | - Per Kristian Thorén Edvardsen
- Institute of Oral BiologyUniversity of OsloOsloNorway
- Present address:
Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life SciencesÅsNorway
| | - Roger Simm
- Institute of Oral BiologyUniversity of OsloOsloNorway
| |
Collapse
|
13
|
The Many Roles of the Bacterial Second Messenger Cyclic di-AMP in Adapting to Stress Cues. J Bacteriol 2020; 203:JB.00348-20. [PMID: 32839175 DOI: 10.1128/jb.00348-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria respond to changes in environmental conditions through adaptation to external cues. Frequently, bacteria employ nucleotide signaling molecules to mediate a specific, rapid response. Cyclic di-AMP (c-di-AMP) was recently discovered to be a bacterial second messenger that is essential for viability in many species. In this review, we highlight recent work that has described the roles of c-di-AMP in bacterial responses to various stress conditions. These studies show that depending on the lifestyle and environmental niche of the bacterial species, the c-di-AMP signaling network results in diverse outcomes, such as regulating osmolyte transport, controlling plant attachment, or providing a checkpoint for spore formation. c-di-AMP achieves this signaling specificity through expression of different classes of synthesis and catabolic enzymes as well as receptor proteins and RNAs, which will be summarized.
Collapse
|
14
|
Hans S, Purkait D, Nandan S, Bansal M, Hameed S, Fatima Z. Rec A disruption unveils cross talk between DNA repair and membrane damage, efflux pump activity, biofilm formation in Mycobacterium smegmatis. Microb Pathog 2020; 149:104262. [PMID: 32439563 DOI: 10.1016/j.micpath.2020.104262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) has emerged in recent decades as one of the leading causes of mortality worldwide. The burden of TB is alarmingly high, with one third affected global population as reported by WHO. Short-course treatment with an antibiotic is a powerful weapon to treat infection of susceptible MTB strain, however; MTB has developed resistance to anti-TB drugs, which is an escalating global health crisis. Thus there is urgent need to identify new drug targets. RecA is a 38 kilodalton protein required for the repair and maintenance of DNA and regulation of the SOS response. The objective of this study is to understand the effect of disruption of RecA gene (deletion mutant ΔdisA from previous study) in a surrogate model for MTB, Mycobacterium smegmatis. This study demonstrated that disruption of RecA causes enhanced susceptibility towards rifampicin and generation of ROS leading to lipid peroxidation and impaired membrane homeostasis as depicted by altered cell membrane permeability and efflux pump activity. Mass spectrometry based lipidomic analysis revealed decreased mycolic acid moieties, phosphatidylinositol mannosides (PIM), Phthiocerol dimycocerosate (DIM). Furthermore, biofilm formation was considerably reduced. Additionally, we have validated all the disrupted phenotypes by RT-PCR which showed a good correlation with the biochemical assays. Lastly, RecA mutant displayed reduced infectivity in Caenorhabditis elegans illustrating its vulnerability as antimycobacterial target. Together, present study establishes a link between DNA repair, drug efflux and biofilm formation and validates RecA as an effective drug target. Intricate studies are needed to further understand and exploit this therapeutic opportunity.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Dyuti Purkait
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Shiv Nandan
- Amity Lipidomics Research Facility, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Maghav Bansal
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India.
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram, Manesar, 122413, India.
| |
Collapse
|
15
|
Increased Excess Intracellular Cyclic di-AMP Levels Impair Growth and Virulence of Bacillus anthracis. J Bacteriol 2020; 202:JB.00653-19. [PMID: 32071095 DOI: 10.1128/jb.00653-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) is a recently identified bacterial second messenger that regulates biological processes. In this study, we found that inactivation of two c-di-AMP phosphodiesterases (PDEs), GdpP and PgpH, resulted in accumulation of 3.8-fold higher c-di-AMP levels than in the parental strain Sterne in Bacillus anthracis and inhibited bacterial growth. Moreover, excess c-di-AMP accumulation decreased bacterial toxin expression, increased sensitivity to osmotic stress and detergent, and attenuated virulence in both C57BL/6J and A/J mice. Complementation of the PDE mutant with a plasmid carrying gdpP or pgpH in trans from a Pspac promoter restored bacterial growth, virulence factor expression, and resistance to detergent. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in B. anthracis that is important for host-pathogen interaction.IMPORTANCE Anthrax is an ancient and deadly disease caused by the spore-forming bacterial pathogen Bacillus anthracis Vegetative cells of this species produce anthrax toxin proteins and S-layer components during infection of mammalian hosts. So far, how the expression of these virulence factors is regulated remains largely unknown. Our results suggest that excess elevated c-di-AMP levels inhibit bacterial growth and reduce expression of S-layer components and anthracis toxins as well as reduce virulence in a mouse model of disease. These results indicate that c-di-AMP signaling plays crucial roles in B. anthracis biology and disease.
Collapse
|
16
|
Torres R, Carrasco B, Gándara C, Baidya AK, Ben-Yehuda S, Alonso JC. Bacillus subtilis DisA regulates RecA-mediated DNA strand exchange. Nucleic Acids Res 2019; 47:5141-5154. [PMID: 30916351 PMCID: PMC6547438 DOI: 10.1093/nar/gkz219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023] Open
Abstract
Bacillus subtilis diadenylate cyclase DisA converts two ATPs into c-di-AMP, but this activity is suppressed upon interaction with sites of DNA damage. DisA forms a rapid moving focus that pauses upon induction of DNA damage during spore development. We report that DisA pausing, however, was not observed in the absence of the RecO mediator or of the RecA recombinase, suggesting that DisA binds to recombination intermediates formed by RecA in concert with RecO. DisA, which physically interacts with RecA, was found to reduce its ATPase activity without competing for nucleotides or ssDNA. Furthermore, increasing DisA concentrations inhibit RecA-mediated DNA strand exchange, but this inhibition failed to occur when RecA was added prior to DisA, and was independent of RecA-mediated nucleotide hydrolysis or increasing concentrations of c-di-AMP. We propose that DisA may preserve genome integrity by downregulating RecA activities at several steps of the DNA damage tolerance pathway, allowing time for the repair machineries to restore genome stability. DisA might reduce RecA-mediated template switching by binding to a stalled or reversed fork.
Collapse
Affiliation(s)
- Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain
| | - Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain
| | - Carolina Gándara
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain
| | - Amit K Baidya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120 Jerusalem, Israel
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin St, 28049 Madrid, Spain
| |
Collapse
|
17
|
Increased Intracellular Cyclic di-AMP Levels Sensitize Streptococcus gallolyticus subsp. gallolyticus to Osmotic Stress and Reduce Biofilm Formation and Adherence on Intestinal Cells. J Bacteriol 2019; 201:JB.00597-18. [PMID: 30617242 PMCID: PMC6398277 DOI: 10.1128/jb.00597-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Streptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis. Cyclic di-AMP is a recently identified second messenger exploited by a number of Gram-positive bacteria to regulate important biological processes. Here, we studied the phenotypic alterations induced by the increased intracellular c-di-AMP levels in Streptococcus gallolyticus, an opportunistic pathogen responsible for septicemia and endocarditis in the elderly. We report that an S. gallolyticus c-di-AMP phosphodiesterase gdpP knockout mutant, which displays a 1.5-fold higher intracellular c-di-AMP levels than the parental strain UCN34, is more sensitive to osmotic stress and is morphologically smaller than the parental strain. Unexpectedly, we found that a higher level of c-di-AMP reduced biofilm formation of S. gallolyticus on abiotic surfaces and reduced adherence and cell aggregation on human intestinal cells. A genome-wide transcriptomic analysis indicated that c-di-AMP regulates many biological processes in S. gallolyticus, including the expression of various ABC transporters and disease-associated genes encoding bacteriocin and Pil3 pilus. Complementation of the gdpP in-frame deletion mutant with a plasmid carrying gdpP in trans from its native promoter restored bacterial morphology, tolerance to osmotic stress, biofilm formation, adherence to intestinal cells, bacteriocin production, and Pil3 pilus expression. Our results indicate that c-di-AMP is a pleiotropic signaling molecule in S. gallolyticus that may be important for S. gallolyticus pathogenesis. IMPORTANCEStreptococcus gallolyticus is an opportunistic pathogen responsible for septicemia and endocarditis in the elderly and is also strongly associated with colorectal cancer. S. gallolyticus can form biofilms, express specific pili to colonize the host tissues, and produce a specific bacteriocin allowing killing of commensal bacteria in the murine colon. Nevertheless, how the expression of these colonization factors is regulated remains largely unknown. Here, we show that c-di-AMP plays pleiotropic roles in S. gallolyticus, controlling the tolerance to osmotic stress, cell size, biofilm formation on abiotic surfaces, adherence and cell aggregation on human intestinal cells, expression of Pil3 pilus, and production of bacteriocin. This study indicates that c-di-AMP may constitute a key regulatory molecule for S. gallolyticus host colonization and pathogenesis.
Collapse
|
18
|
Prasad D, Muniyappa K. The Anionic Phospholipids in the Plasma Membrane Play an Important Role in Regulating the Biochemical Properties and Biological Functions of RecA Proteins. Biochemistry 2019; 58:1295-1310. [PMID: 30726069 DOI: 10.1021/acs.biochem.8b01147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli RecA (EcRecA) forms discrete foci that cluster at cell poles during normal growth, which are redistributed along the filamented cell axis upon induction of the SOS response. The plasma membrane is thought to act as a scaffold for EcRecA foci, thereby playing an important role in RecA-dependent homologous recombination. In addition, in vivo and in vitro studies demonstrate that EcRecA binds strongly to the anionic phospholipids. However, there have been almost no data on the association of mycobacterial RecA proteins with the plasma membrane and the effects of membrane components on their function. Here, we show that mycobacterial RecA proteins specifically interact with phosphatidylinositol and cardiolipin among other anionic phospholipids; however, they had no effect on the ability of RecA proteins to bind single-stranded DNA. Interestingly, phosphatidylinositol and cardiolipin impede the DNA-dependent ATPase activity of RecA proteins, although ATP binding is not affected. Furthermore, the ability of RecA proteins to promote DNA strand exchange is not affected by anionic phospholipids. Strikingly, anionic phospholipids suppress the RecA-stimulated autocatalytic cleavage of the LexA repressor. The Mycobacterium smegmatis RecA foci localize to the cell poles during normal growth, and these structures disassemble and reassemble into several foci along the cell after the induction of DNA damage. Taken together, these data support the notion that the interaction of RecA with cardiolipin and phosphatidylinositol, the major anionic phospholipids of the mycobacterial plasma membrane, may be physiologically relevant, as they provide a scaffold for RecA storage and may regulate recombinational DNA repair and the SOS response.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry , Indian Institute of Science , Bengaluru 560012 , India
| | - K Muniyappa
- Department of Biochemistry , Indian Institute of Science , Bengaluru 560012 , India
| |
Collapse
|