1
|
Coppolino F, Berbiglia A, Lentini G, Famà A, Pietrocola G, Teti G, Beninati C, De Gaetano GV. Role of the SaeRS Two-Component Regulatory System in Group B Streptococcus Biofilm Formation on Human Fibrinogen. Microorganisms 2024; 12:2096. [PMID: 39458405 PMCID: PMC11510217 DOI: 10.3390/microorganisms12102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus or GBS, is a commensal colonizer of human vaginal and gastrointestinal tracts that can also be a deadly pathogen for newborns, pregnant women, and the elderly. The SaeRS two-component regulatory system (TCS) positively regulates the expression of two GBS adhesins genes, but its role in the formation of biofilm, an important step in pathogenesis, has not been investigated. In the present study, we set up a novel model of GBS biofilm formation using surfaces coated with human fibrinogen (hFg). Biofilm mass and structure were analyzed by crystal violet staining and three-dimensional fluorescence microscopy, respectively. GBS growth on hFg resulted in the formation of a mature and abundant biofilm composed of bacterial cells and an extracellular matrix containing polysaccharides, proteins, and extracellular DNA (eDNA). Enzymatic and genetic analysis showed that GBS biofilm formation on hFg is dependent on proteins and eDNA in the extracellular matrix and on the presence of covalently linked cell wall proteins on the bacterial surface but not on the type-specific capsular polysaccharide. In the absence of the SaeR regulator of the SaeRS TCS, there was a significant reduction in biomass formation, with reduced numbers of bacterial cells, reduced eDNA content, and disruption of the biofilm architecture. Overall, our data suggest that GBS binding to hFg contributes to biofilm formation and that the SaeRS TCS plays an important role in this process.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Alessia Berbiglia
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Germana Lentini
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Agata Famà
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
- Scylla Biotech S.r.l., 98168 Messina, Italy
| | - Giuseppe Valerio De Gaetano
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| |
Collapse
|
2
|
Coppolino F, De Gaetano GV, Claverie C, Sismeiro O, Varet H, Legendre R, Pellegrini A, Berbiglia A, Tavella L, Lentini G, Famà A, Barbieri G, Pietrocola G, Teti G, Firon A, Beninati C. The SaeRS two-component system regulates virulence gene expression in group B Streptococcus during invasive infection. mBio 2024; 15:e0197524. [PMID: 39158291 PMCID: PMC11389388 DOI: 10.1128/mbio.01975-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Group B Streptococcus (GBS) is a pathobiont responsible for invasive infections in neonates and the elderly. The transition from a commensal to an invasive pathogen relies on the timely regulation of virulence factors. In this study, we characterized the role of the SaeRS two-component system in GBS pathogenesis. Loss-of-function mutations in the SaeR response regulator decrease virulence in mouse models of invasive infection by hindering the ability of bacteria to persist at the inoculation site and to spread to distant organs. Transcriptome and in vivo analysis reveal a specialized regulatory system specifically activated during infection to control the expression of only two virulence factors: the PbsP adhesin and the BvaP secreted protein. The in vivo surge in SaeRS-regulated genes is complemented by fine-tuning mediated by the repressor of virulence CovRS system to establish a coordinated response. Constitutive activation of the SaeRS regulatory pathway increases PbsP-dependent adhesion and invasion of epithelial and endothelial barriers, though at the cost of reduced virulence. In conclusion, SaeRS is a dynamic, highly specialized regulatory system enabling GBS to express a restricted set of virulence factors that promote invasion of host barriers and allow these bacteria to persist inside the host during lethal infection. IMPORTANCE Group B Streptococcus (or GBS) is a normal inhabitant of the human gastrointestinal and genital tracts that can also cause deadly infections in newborns and elderly people. The transition from a harmless commensal to a dangerous pathogen relies on the timely expression of bacterial molecules necessary for causing disease. In this study, we characterize the two-component system SaeRS as a key regulator of such virulence factors. Our analysis reveals a specialized regulatory system that is activated only during infection to dynamically adjust the production of two virulence factors involved in interactions with host cells. Overall, our findings highlight the critical role of SaeRS in GBS infections and suggest that targeting this system may be useful for developing new antibacterial drugs.
Collapse
Affiliation(s)
| | | | - Cosme Claverie
- Department of Microbiology, Biology of Gram-Positive Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Odile Sismeiro
- Department of Microbiology, Biology of Gram-Positive Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | | | - Alessia Berbiglia
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Luca Tavella
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | | | | | - Arnaud Firon
- Department of Microbiology, Biology of Gram-Positive Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Pellegrini A, Pietrocola G. Recruitment of Vitronectin by Bacterial Pathogens: A Comprehensive Overview. Microorganisms 2024; 12:1385. [PMID: 39065153 PMCID: PMC11278874 DOI: 10.3390/microorganisms12071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms. Vn binding by bacterial receptors confers protection from lysis resulting from MAC deposition. Furthermore, through its Arg-Gly-Asp (RGD) motif, Vn can bind several host cell integrins. Therefore, Vn recruited to the bacterial cell functions as a molecular bridge between bacteria and host surfaces, where it triggers several host signaling events that could promote bacterial internalization. Each bacterium uses different receptors that recognize specific Vn domains. In this review, we update the current knowledge of Vn receptors of major bacterial pathogens, emphasizing the role they may play in the host upon Vn binding. Focusing on the structural properties of bacterial proteins, we provide details on the residues involved in their interaction with Vn. Furthermore, we discuss the possible involvement of Vn adsorption on biomaterials in promoting bacterial adhesion on abiotic surfaces and infection.
Collapse
Affiliation(s)
| | - Giampiero Pietrocola
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy;
| |
Collapse
|
4
|
De Gaetano GV, Lentini G, Coppolino F, Famà A, Pietrocola G, Beninati C. Engagement of α 3β 1 and α 2β 1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Front Microbiol 2024; 15:1367898. [PMID: 38511003 PMCID: PMC10951081 DOI: 10.3389/fmicb.2024.1367898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
The gut represents an important site of colonization of the commensal bacterium Streptococcus agalactiae (group B Streptococcus or GBS), which can also behave as a deadly pathogen in neonates and adults. Invasion of the intestinal epithelial barrier is likely a crucial step in the pathogenesis of neonatal infections caused by GBS belonging to clonal complex 17 (CC17). We have previously shown that the prototypical CC17 BM110 strain invades polarized enterocyte-like cells through their lateral surfaces using an endocytic pathway. By analyzing the cellular distribution of putative GBS receptors in human enterocyte-like Caco-2 cells, we find here that the alpha 3 (α3) and alpha 2 (α2) integrin subunits are selectively expressed on lateral enterocyte surfaces at equatorial and parabasal levels along the vertical axis of polarized cells, in an area corresponding to GBS entry sites. The α3β1 and α2β1 integrins were not readily accessible in fully differentiated Caco-2 monolayers but could be exposed to specific antibodies after weakening of intercellular junctions in calcium-free media. Under these conditions, anti-α3β1 and anti-α2β1 antibodies significantly reduced GBS adhesion to and invasion of enterocytes. After endocytosis, α3β1 and α2β1 integrins localized to areas of actin remodeling around GBS containing vacuoles. Taken together, these data indicate that GBS can invade enterocytes by binding to α3β1 and α2β1 integrins on the lateral membrane of polarized enterocytes, resulting in cytoskeletal remodeling and bacterial internalization. Blocking integrins might represent a viable strategy to prevent GBS invasion of gut epithelial tissues.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
5
|
Manzer HS, Brunetti T, Doran KS. Identification of a DNA-cytosine methyltransferase that impacts global transcription to promote group B streptococcal vaginal colonization. mBio 2023; 14:e0230623. [PMID: 37905908 PMCID: PMC10746215 DOI: 10.1128/mbio.02306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) in one-third of women, and carriage leads to numerous adverse pregnancy outcomes including the preterm premature rupture of membranes, chorioamnionitis, and stillbirth. The presence of GBS in the FRT during pregnancy is also the largest predisposing factor for the transmission of GBS and invasive neonatal diseases, including pneumonia, sepsis, and meningitis. The factors contributing to GBS colonization are still being elucidated. Here, we show for the first time that GBS transcription is regulated by an orphan DNA cytosine methyltransferase (Dcm). Many GBS factors are regulated by Dcm, especially those involved in carbohydrate transport and metabolism. We show that GBS persistence in the FRT is dependent on the catabolism of sugars found on the vaginal mucin MUC5B. Collectively, this work highlights the regulatory importance of a DNA methyltransferase and identifies both host and bacterial factors required for GBS colonization.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Guo Z, Ma Y, Jia Z, Wang L, Lu X, Chen Y, Wang Y, Hao H, Yu S, Wang Z. Crosstalk between integrin/FAK and Crk/Vps25 governs invasion of bovine mammary epithelial cells by S. agalactiae. iScience 2023; 26:107884. [PMID: 37766995 PMCID: PMC10520442 DOI: 10.1016/j.isci.2023.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin β2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.
Collapse
Affiliation(s)
- Zhixin Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
- School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Shuixing Yu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
7
|
Satala D, Karkowska-Kuleta J, Bras G, Rapala-Kozik M, Kozik A. Candida parapsilosis cell wall proteins-CPAR2_404800 and CPAR2_404780-Are adhesins that bind to human epithelial and endothelial cells and extracellular matrix proteins. Yeast 2023; 40:377-389. [PMID: 36851809 DOI: 10.1002/yea.3847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
One of the initial steps necessary for the development of Candida infections is the adherence to the host tissues and cells. Recent transcriptomic studies suggest that, in Candida parapsilosis-a fungal infectious agent that causes systemic candidiasis in immunosuppressed individuals-the adhesion is mediated by pathogen cell-exposed proteins belonging to the agglutinin-like sequence (Als) family. However, to date, the actual interactions of individual members of this family with human cells and extracellular matrix (ECM) have not been characterized in detail. In the current study, we focused attention on two of these C. parapsilosis Als proteins-CPAR2_404800 and CPAR2_404780-that were proteomically identified in the fungal cell wall of yeasts grown in the media suitable for culturing human epithelial and endothelial cells. Both proteins were extracted from the cell wall and purified, and using a microplate binding assay and a fluorescence microscopic analysis were shown to adhere to human cells of A431 (epithelial) and HMEC-1 (endothelial) lines. The human extracellular matrix components that are also plasma proteins-fibronectin and vitronectin-enhanced these interactions, and also could directly bind to CPAR2_404800 and CPAR2_404780 proteins, with a high affinity (KD in a range of 10-7 to 10-8 M) as determined by surface plasmon resonance measurements. Our findings highlight the role of proteins CPAR2_404800 and CPAR2_404780 in adhesion to host cells and proteins, contributing to the knowledge of the mechanisms of host-pathogen interactions during C. parapsilosis-caused infections.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
8
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
9
|
Yan H, Zhou T, Wang Y, Liu Z, Ali I, Sheng L, Jiang Q, Li T, Xiang M, Li P, Zhang W, Teng Y, Li H, Liu Y, Cai Y. CDK5RAP3, a key defender of udder, modulates NLRP3 inflammasome activation by regulating autophagolysosome degradation in S. agalactiae-infected mastitis. Int J Biol Macromol 2023; 234:123714. [PMID: 36806767 DOI: 10.1016/j.ijbiomac.2023.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Streptococcus agalactiae, as one of the main pathogens of clinical and subclinical mastitis, affects animal welfare and leads to huge economic losses to farms due to the sharp decline in milk yield. However, both the real pathogenic mechanisms of S. agalactiae-induced mastitis and the regulator which controls the inflammation and autophagy are largely unknown. Served as a substrate of ubiquitin-like proteins of E3 ligase, CDK5RAP3 is widely involved in the regulation of multiple signaling pathways. Our findings revealed that CDK5RAP3 was significantly down-regulated in mastitis infected by S. agalactiae. Surprisingly, inflammasome activation was triggered by CDK5RAP3 knockdown: up-regulated NLRP3, IL1β and IL6, and cleaved caspase1 promoting by NF-κB, thereby resulting in pyroptosis. Additionally, the accumulation of autophagy markers (LC3B and p62) after CDK5RAP3 knockdown suggested that the autophagolysosome degradation pathway was inhibited, thereby activating the NF-κB pathway and NLRP3 inflammasome. Hence, our findings suggest that downregulation or ablation of CDK5RAP3 inhibits autophagolysosome degradation, causes inflammation by activating the NF-κB /NLRP3 inflammasome, and triggers cell death. In conclusion, CDK5RAP3 holds the key to understanding the interaction between autophagy and immune responses, its anti-inflammatory role in this study will throw new light on the clinical drug discovery to cure S. agalactiae mastitis.
Collapse
Affiliation(s)
- Hongchen Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianci Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical school of Nanjing University, Nanjing 210008, China
| | - Zhengcheng Liu
- Department of Cardiovascular and Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghui Xiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
In Vivo Role of Two-Component Regulatory Systems in Models of Urinary Tract Infections. Pathogens 2023; 12:pathogens12010119. [PMID: 36678467 PMCID: PMC9861413 DOI: 10.3390/pathogens12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Two-component signaling systems (TCSs) are finely regulated mechanisms by which bacteria adapt to environmental conditions by modifying the expression of target genes. In bacterial pathogenesis, TCSs play important roles in modulating adhesion to mucosal surfaces, resistance to antibiotics, and metabolic adaptation. In the context of urinary tract infections (UTI), one of the most common types infections causing significant health problems worldwide, uropathogens use TCSs for adaptation, survival, and establishment of pathogenicity. For example, uropathogens can exploit TCSs to survive inside bladder epithelial cells, sense osmolar variations in urine, promote their ascension along the urinary tract or even produce lytic enzymes resulting in exfoliation of the urothelium. Despite the usefulness of studying the function of TCSs in in vitro experimental models, it is of primary necessity to study bacterial gene regulation also in the context of host niches, each displaying its own biological, chemical, and physical features. In light of this, the aim of this review is to provide a concise description of several bacterial TCSs, whose activity has been described in mouse models of UTI.
Collapse
|
11
|
Comparative genome analysis of Streptococcus strains to identify virulent genes causing neonatal meningitis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105398. [PMID: 36572056 DOI: 10.1016/j.meegid.2022.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
AIM To determine Streptococcus agalactiae genes responsible for causing neonatal meningitis. BACKGROUND Streptococcus agalactiae strain 2603 V/R is causative agent of neonatal meningitis, maternal infection and sepsis in young children. World health organisation reported high burden of new born death caused by this bacterium. Streptococcus agalactiae colonizing epithelial cells of vagina and endothelial cells have high resistance to available antibiotic drugs which makes it essential to determine new drug targets. OBJECTIVES To compare the genome of selected strain with the non-pathogenic strains of streptococcus and identify the virulent and antibiotic resistant genes for adaptation in host environment. METHOD The whole genome of human pathogen Streptococcus agalactiae strain 2603 V/R was analysed and compared with Streptococcus dysgalactiae strains using visualization and annotation tools. Genomic islands, mobile genetic elements, virulent and resistant genes were studied. RESULTS Genetically pathogenic strain is most similar to Streptococcus dysgalactiae subsp. equisimilis strain NCTC 7136. Comparative analysis revealed the importance of capsular polysaccharides and surface proteins responsible for avoiding immune system attachment to host epithelial cells and virulent behaviour. High number of genes coding for antibiotics resistance may provide a competitive advantage for survival of pathogenic Streptococcus agalactiae strain 2603 V/R in its niche. CONCLUSIONS The comparative analysis of pathogenic strain Streptococcus agalactiae with non-pathogenic strains of Streptococcus dysgalactiae provided new insights in pathogenicity that could aid in recognization for new regions and genes for development of new drug development strategies considering presence of high number of resistance genes.
Collapse
|
12
|
A Novel Conserved Protein in Streptococcus agalactiae, BvaP, Is Important for Vaginal Colonization and Biofilm Formation. mSphere 2022; 7:e0042122. [PMID: 36218343 PMCID: PMC9769775 DOI: 10.1128/msphere.00421-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) infections in neonates are often fatal and strongly associated with maternal GBS vaginal colonization. Here, we investigated the role of an uncharacterized protein, BvaP, in GBS vaginal colonization. bvaP was previously identified as the most highly upregulated gene in the GBS A909 transcriptome when comparing vaginal colonization to growth in liquid culture. We found that the absence of BvaP affects the ability of GBS to adhere to extracellular matrix components and human vaginal epithelial cells, and the ability of a ΔbvaP mutant to colonize the murine vaginal tract was significantly decreased. Cellular morphological alterations such as changes in cell shape, chain length, and clumping were also observed in a knockout mutant strain. Given its high expression level in vivo, high degree of conservation among GBS strains, and role in vaginal colonization, BvaP may be an eligible target for GBS vaccination and/or drug therapy. IMPORTANCE Neonatal GBS disease is a major cause of morbidity and mortality, and maternal vaginal colonization is the leading risk factor for the disease. Colonization prevention would greatly impact the rates of disease transmission, but vaccine development has stalled as capsular polysaccharide vaccines have low immunogenicity in vivo. While these vaccines are still in development, the addition of a protein conjugate may prove fruitful in increasing immunogenicity and strain coverage across GBS serotypes. Previous research identified sak_1753 as a highly upregulated gene during murine vaginal colonization. This study reveals that Sak_1753 is required to maintain proper GBS cellular morphology and colonization phenotypes and is required for full in vivo vaginal colonization in a murine model. We have renamed Sak_1753 group B streptococcus vaginal adherence protein (BvaP). The findings of this study indicate that BvaP is important for GBS colonization of the vaginal tract and, given its high expression level in vivo and strain conservation, may be a candidate for vaccine development.
Collapse
|
13
|
Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022; 10:microorganisms10122483. [PMID: 36557736 PMCID: PMC9784991 DOI: 10.3390/microorganisms10122483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, meningitis, and pneumonia. Moreover, through continuous evolution, GBS can use its original structure and unique factors to greatly improve its survival rate in the human body. This review discusses the key virulence factors that facilitate GBS invasion and colonization and their action mechanisms. A comprehensive understanding of the role of virulence factors in GBS infection is crucial to develop better treatment options and screen potential candidate molecules for the development of the vaccine.
Collapse
|
14
|
Keogh RA, Haeberle AL, Langouët-Astrié CJ, Kavanaugh JS, Schmidt EP, Moore GD, Horswill AR, Doran KS. Group B Streptococcus adaptation promotes survival in a hyperinflammatory diabetic wound environment. SCIENCE ADVANCES 2022; 8:eadd3221. [PMID: 36367946 PMCID: PMC9651866 DOI: 10.1126/sciadv.add3221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Diabetic wounds have poor healing outcomes due to the presence of numerous pathogens and a dysregulated immune response. Group B Streptococcus (GBS) is commonly isolated from diabetic wound infections, but the mechanisms of GBS virulence during these infections have not been investigated. Here, we develop a murine model of GBS diabetic wound infection and, using dual RNA sequencing, demonstrate that GBS infection triggers an inflammatory response. GBS adapts to this hyperinflammatory environment by up-regulating virulence factors including those known to be regulated by the two-component system covRS, such as the surface protein pbsP, and the cyl operon, which is responsible for hemolysin/pigmentation production. We recover hyperpigmented/hemolytic GBS colonies from the murine diabetic wound, which we determined encode mutations in covR. We further demonstrate that GBS mutants in cylE and pbsP are attenuated in the diabetic wound. This foundational study provides insight into the pathogenesis of GBS diabetic wound infections.
Collapse
Affiliation(s)
- Rebecca A. Keogh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Amanda L. Haeberle
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | | | - Jeffrey S. Kavanaugh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Eric P. Schmidt
- Department of Medicine–Pulmonary Sciences and Critical Care, University of Colorado Anschutz, Aurora, CO, USA
| | - Garrett D. Moore
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
- Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
15
|
De Gaetano GV, Coppolino F, Lentini G, Famà A, Cullotta C, Raffaele I, Motta C, Teti G, Speziale P, Pietrocola G, Beninati C. Streptococcus pneumoniae
binds collagens and C1q
via
the SSURE repeats of the PfbB adhesin. Mol Microbiol 2022; 117:1479-1492. [PMID: 35570359 PMCID: PMC9328315 DOI: 10.1111/mmi.14920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The binding of Streptococcus pneumoniae to collagen is likely an important step in the pathogenesis of pneumococcal infections, but little is known of the underlying molecular mechanisms. Streptococcal surface repeats (SSURE) are highly conserved protein domains present in cell wall adhesins from different Streptococcus species. We find here that SSURE repeats of the pneumococcal adhesin plasminogen and fibronectin binding protein B (PfbB) bind to various types of collagen. Moreover, deletion of the pfbB gene resulted in a significant impairment of the ability of encapsulated or unencapsulated pneumococci to bind collagen. Notably, a PfbB SSURE domain is also bound to the complement component C1q that bears a collagen‐like domain and promotes adherence of pneumococci to host cells by acting as a bridge between bacteria and epithelial cells. Accordingly, deletion of PfbB or pre‐treatment with anti‐SSURE antibodies markedly decreased pneumococcal binding to C1q as well as C1q‐dependent adherence to epithelial and endothelial cells. Further data indicated that C1q promotes pneumococcal adherence by binding to integrin α2β1. In conclusion, our results indicate that the SSURE domains of the PfbB protein promote interactions of pneumococci with various types of collagen and with C1q. These repeats may be useful targets in strategies to control S. pneumoniae infections.
Collapse
Affiliation(s)
| | - Francesco Coppolino
- Department of BiomedicalDental and Imaging SciencesUniversity of MessinaMessinaItaly
| | - Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Cullotta
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Ivana Raffaele
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Motta
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Pietro Speziale
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly
- Scylla Biotech SrlMessinaItaly
| |
Collapse
|
16
|
Qi M, Geng H, Geng N, Cui Y, Qi C, Cheng G, Song K, Hu L, Liu Y, Liu J, Han B. Streptococcus agalactiae-induced autophagy of bovine mammary epithelial cell via PI3K/AKT/mTOR pathway. J DAIRY RES 2022; 89:1-7. [PMID: 35388773 DOI: 10.1017/s0022029922000243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Streptococcus agalactiae (S. agalactiae) infection is a significant cause of mastitis, resulting in loss of cellular homeostasis and tissue damage. Autophagy plays an essential function in cell survival, defense, and the preservation of cellular homeostasis, and is often part of the response to pathogenic challenge. However, the effect of autophagy induced by S. agalactiae in bovine mammary epithelial cells (bMECs) is mainly unknown. So in this study, an intracellular S. agalactiae infection model was established. Through evaluating the autophagy-related indicators, we observed that after S. agalactiae infection, a significant quantity of LC3-I was converted to LC3-II, p62 was degraded, and levels of Beclin1 and Bcl2 increased significantly in bMECs, indicating that S. agalactiae induced autophagy. The increase in levels of LAMP2 and LysoTracker Deep Red fluorescent spots indicated that lysosomes had participated in the degradation of autophagic contents. After autophagy was activated by rapamycin (Rapa), the amount of p-Akt and p-mTOR decreased significantly, whilst the amount of intracellular S. agalactiae increased significantly. Whereas the autophagy was inhibited by 3-methyladenine (3MA), the number of intracellular pathogens decreased. In conclusion, the results demonstrated that S. agalactiae could induce autophagy through PI3K/Akt/mTOR pathway and utilize autophagy to survive in bMECs.
Collapse
Affiliation(s)
- Mengzhu Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Hao Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Yukun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Liping Hu
- Shandong Provincial Center for Animal Disease Control and Prevention, Jinan, Shandong251000, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong271018, China
| | - Bo Han
- College of Veterinary Medicine, China Agricultural University, Beijing100193, China
| |
Collapse
|
17
|
Coppolino F, Romeo L, Pietrocola G, Lentini G, De Gaetano GV, Teti G, Galbo R, Beninati C. Lysine Residues in the MK-Rich Region Are Not Required for Binding of the PbsP Protein From Group B Streptococci to Plasminogen. Front Cell Infect Microbiol 2021; 11:679792. [PMID: 34568085 PMCID: PMC8455988 DOI: 10.3389/fcimb.2021.679792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Binding to plasminogen (Plg) enables bacteria to associate with and invade host tissues. The cell wall protein PbsP significantly contributes to the ability of group B streptococci, a frequent cause of invasive infection, to bind Plg. Here we sought to identify the molecular regions involved in the interactions between Plg and PbsP. The K4 Kringle domain of the Plg molecule was required for binding of Plg to whole PbsP and to a PbsP fragment encompassing a region rich in methionine and lysine (MK-rich domain). These interactions were inhibited by free L-lysine, indicating the involvement of lysine binding sites in the Plg molecule. However, mutation to alanine of all lysine residues in the MK-rich domain did not decrease its ability to bind Plg. Collectively, our data identify a novel bacterial sequence that can interact with lysine binding sites in the Plg molecule. Notably, such binding did not require the presence of lysine or other positively charged amino acids in the bacterial receptor. These data may be useful for developing alternative therapeutic strategies aimed at blocking interactions between group B streptococci and Plg.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Letizia Romeo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | | | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
18
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
19
|
De Gaetano GV, Lentini G, Galbo R, Coppolino F, Famà A, Teti G, Beninati C. Invasion and trafficking of hypervirulent group B streptococci in polarized enterocytes. PLoS One 2021; 16:e0253242. [PMID: 34129624 PMCID: PMC8205152 DOI: 10.1371/journal.pone.0253242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus or GBS) is a commensal bacterium that can frequently behave as a pathogen, particularly in the neonatal period and in the elderly. The gut is a primary site of GBS colonization and a potential port of entry during neonatal infections caused by hypervirulent clonal complex 17 (CC17) strains. Here we studied the interactions between the prototypical CC17 BM110 strain and polarized enterocytes using the Caco-2 cell line. GBS could adhere to and invade these cells through their apical or basolateral surfaces. Basolateral invasion was considerably more efficient than apical invasion and predominated under conditions resulting in weakening of cell-to-cell junctions. Bacterial internalization occurred by a mechanism involving caveolae- and lipid raft-dependent endocytosis and actin re-organization, but not clathrin-dependent endocytosis. In the first steps of Caco-2 invasion, GBS colocalized with the early endocytic marker EEA-1, to later reside in acidic vacuoles. Taken together, these data suggest that CC17 GBS selectively adheres to the lateral surface of enterocytes from which it enters through caveolar lipid rafts using a classical, actin-dependent endocytic pathway. These data may be useful to develop alternative preventive strategies aimed at blocking GBS invasion of the intestinal barrier.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
- * E-mail:
| |
Collapse
|
20
|
Wang J, Li Y, Pan L, Li J, Yu Y, Liu B, Zubair M, Wei Y, Pillay B, Olaniran AO, Chiliza TE, Shao G, Feng Z, Xiong Q. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) moonlights as an adhesin in Mycoplasma hyorhinis adhesion to epithelial cells as well as a plasminogen receptor mediating extracellular matrix degradation. Vet Res 2021; 52:80. [PMID: 34082810 PMCID: PMC8173509 DOI: 10.1186/s13567-021-00952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma hyorhinis infects pigs causing polyserositis and polyarthritis, and has also been reported in a variety of human tumor tissues. The occurrence of disease is often linked with the systemic invasion of the pathogen. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), one of the key enzymes of glycolysis, was reported as a surface multifunctional molecule in several bacteria. Here, we investigated whether GAPDH could manifest binary functions; as an adhesin to promote colonization as well as a plasminogen receptor functioning in extracellular matrix (ECM) degradation to promote systemic invasion. The surface localization of GAPDH was observed in M. hyorhinis with flow cytometry and colony blot analysis. Recombinant GAPDH (rGAPDH) was found to be able to bind porcine-derived PK-15 and human-derived NCI-H292 cells. The incubation with anti-GAPDH antibody significantly decreased the adherence of M. hyorhinis to both cell lines. To investigate its function in recruiting plasminogen, firstly, the interaction between rGAPDH and plasminogen was demonstrated by ELISA and Far-Western blot assay. The activation of the rGAPDH-bound plasminogen into plasmin was proved by using a chromogenic substrate, and furtherly confirmed to degrade extracellular matrix by using a reconstituted ECM. Finally, the ability of rGAPDH to bind different ECM components was demonstrated, including fibronectin, laminin, collagen type IV and vitronectin. Collectively, our data imply GAPDH as an important adhesion factor of M. hyrohinis and a receptor for hijacking host plasminogen to degrade ECM. The multifunction of GAPDH to bind both plasminogen and ECM components is believed to increase the targeting of proteolysis and facilitate the dissemination of M. hyorhinis.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Yao Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Longji Pan
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfei Yu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Beibei Liu
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Muhammad Zubair
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanna Wei
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bala Pillay
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | | | - Thamsanqa E Chiliza
- College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa
| | - Guoqing Shao
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhixin Feng
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Institute of Veterinary Medicine, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China. .,College of Agriculture, Engineering & Science, University of KwaZulu-Natal, Durban, South Africa. .,School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
21
|
Microbiome of the Aerodigestive Tract in Health and Esophageal Disease. Dig Dis Sci 2021; 66:12-18. [PMID: 33236315 PMCID: PMC8006547 DOI: 10.1007/s10620-020-06720-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
The diverse human gut microbiome is comprised of approximately 40 trillion microorganisms representing up to 1000 different bacterial species. The human microbiome plays a critical role in gut epithelial health and disease susceptibility. While the interaction between gut microbiome and gastrointestinal pathology is increasingly understood, less is known about the interaction between the microbiome and the aerodigestive tract. This review of the microbiome of the aerodigestive tract in health, and alterations in microbiome across esophageal pathologies highlights important findings and areas for future research. First, microbiome profiles are distinct along the aerodigestive tract, spanning the oral cavity to the stomach. In patients with reflux-related disease such as gastro-esophageal reflux disease, Barrett's esophagus, and esophageal adenocarcinoma, investigators have observed an overall increase in gram negative bacteria in the esophageal microbiome compared to healthy individuals. However, whether differences in microbiome promote disease development, or if these shifts are a consequence of disease remains unknown. Interestingly, use of proton pump inhibitor therapy is also associated with shifts in the microbiome, with distinct shifts and patterns along the aerodigestive tract. The relationship between the human gut microbiome and esophageal pathology is a ripe area for investigation, and further understanding of these pathways may promote development of novel targets in prevention and therapy for esophageal diseases.
Collapse
|
22
|
Two-Component Signal Transduction Systems in the Human Pathogen Streptococcus agalactiae. Infect Immun 2020; 88:IAI.00931-19. [PMID: 31988177 DOI: 10.1128/iai.00931-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is an important cause of invasive infection in newborns, maternal women, and older individuals with underlying chronic illnesses. GBS has many mechanisms to adapt and survive in its host, and these mechanisms are often controlled via two-component signal transduction systems. In GBS, more than 20 distinct two-component systems (TCSs) have been classified to date, consisting of canonical TCSs as well as orphan and atypical sensors and regulators. These signal transducing systems are necessary for metabolic regulation, resistance to antibiotics and antimicrobials, pathogenesis, and adhesion to the mucosal surfaces to colonize the host. This minireview discusses the structures of these TCSs in GBS as well as how selected systems regulate essential cellular processes such as survival and colonization. GBS contains almost double the number of TCSs compared to the closely related Streptococcus pyogenes and Streptococcus pneumoniae, and while research on GBS TCSs has been increasing in recent years, no comprehensive reviews of these TCSs exist, making this review especially relevant.
Collapse
|
23
|
Jiang L, Zhang L, Rui C, Liu X, Mao Z, Yan L, Luan T, Wang X, Wu Y, Li P, Zeng X. The role of the miR1976/CD105/integrin αvβ6 axis in vaginitis induced by Escherichia coli infection in mice. Sci Rep 2019; 9:14456. [PMID: 31594987 PMCID: PMC6783613 DOI: 10.1038/s41598-019-50902-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/19/2019] [Indexed: 01/10/2023] Open
Abstract
Vaginitis is very common among women, especially women of childbearing age, and is associated with significantly increased risk of preterm birth and pelvic inflammatory diseases. An imbalance in the vaginal flora, the primary cause of vaginitis, promotes the initiation and progression of vaginal infections. However, the responsible mechanisms are still poorly understood. Using a murine vaginitis model of Escherichia coli infection, we demonstrated that decreased expression of microRNA1976 and increased expression of CD105 and integrin αvβ6 were closely associated with the progression of vaginal infection. Importantly, we demonstrated for the first time that the microRNA1976/CD105/integrin αvβ6 axis regulates E. coli-mediated vaginal infection in mice, as evidenced by the finding that E. coli-induced vaginal infection was reversed by microRNA1976 overexpression and exacerbated by CD105 overexpression. The regulation of CD105 and integrin αvβ6 by microRNA1976 was further confirmed in a murine model of vaginitis with adenoviral vector treatment. Taken together, our data suggested that microRNA1976 negatively regulates E. coli-induced vaginal infection in mice at least in part by suppressing CD105 and integrin αvβ6 expression. These findings may provide new insight into the mechanisms of E. coli-induced vaginitis, identify a novel diagnostic biomarker and a potential therapeutic target for flora imbalance-associated vaginitis.
Collapse
Affiliation(s)
- Lisha Jiang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.,Department of Obstetrics and Gynecology, The Second Hospital of Anhui Medical University, Anhui, 230601, China
| | - Lingling Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Can Rui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, China
| | - Zhiyuan Mao
- Department of Anatomy, Histology, and Embryology, Nanjing Medical University, Nanjing, 210004, China
| | - Lina Yan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Ting Luan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Ying Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Ping Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| |
Collapse
|
24
|
Pekmezovic M, Mogavero S, Naglik JR, Hube B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol 2019; 27:982-996. [PMID: 31451347 DOI: 10.1016/j.tim.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022]
Abstract
Dysbiosis in the female genital tract (FGT) is characterized by the overgrowth of pathogenic bacterial, fungal, or protozoan members of the microbiota, leading to symptomatic or asymptomatic infections. In this review, we discuss recent advances in studies dealing with molecular mechanisms of pathogenicity factors of Gardnerella vaginalis, Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Streptococcus agalactiae, Chlamydia trachomatis, Trichomonas vaginalis, and Candida spp., as well as their interactions with the host and microbiota in the various niches of the FGT. Taking a holistic approach to identifying fundamental commonalities and differences during these infections could help us to better understand reproductive tract health and improve current prevention and treatment strategies.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral, and Craniofacial Sciences, King's College London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany. @leibniz-hki.de
| |
Collapse
|
25
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|