1
|
Schulz LM, Konrath A, Rismondo J. Characterisation of the growth behaviour of Listeria monocytogenes in Listeria synthetic media. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:669-683. [PMID: 37864319 PMCID: PMC10667646 DOI: 10.1111/1758-2229.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 10/22/2023]
Abstract
The foodborne pathogen Listeria monocytogenes can grow in a wide range of environmental conditions. For the study of the physiology of this organism, several chemically defined media have been developed over the past decades. Here, we examined the ability of L. monocytogenes wildtype strains EGD-e and 10403S to grow under salt and pH stress in Listeria synthetic medium (LSM). Furthermore, we determined that a wide range of carbon sources could support the growth of both wildtype strains in LSM. However, for hexose phosphate sugars such as glucose-1-phosphate, both L. monocytogenes strains need to be pre-grown under conditions, where the major virulence regulator PrfA is active. In addition, growth of both L. monocytogenes strains was observed when LSM was supplemented with the amino acid sugar N-acetylmannosamine (ManNAc). We were able to show that some of the proteins encoded in the operon lmo2795-nanE, such as the ManNAc-6-phosphate epimerase NanE, are required for growth in the presence of ManNAc. The first gene of the operon, lmo2795, encodes a transcriptional regulator of the RpiR family. Using electrophoretic mobility shift assays and quantitative real-time PCR analysis, we were able to show that Lmo2795 binds to the promoter region of the operon lmo2795-nanE and activates its expression.
Collapse
Affiliation(s)
- Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and GeneticsGZMB, Georg‐August University GöttingenGöttingenGermany
| | - Alicia Konrath
- Department of General Microbiology, Institute of Microbiology and GeneticsGZMB, Georg‐August University GöttingenGöttingenGermany
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and GeneticsGZMB, Georg‐August University GöttingenGöttingenGermany
| |
Collapse
|
2
|
Engelgeh T, Herrmann J, Jansen R, Müller R, Halbedel S. Tartrolon sensing and detoxification by the Listeria monocytogenes timABR resistance operon. Mol Microbiol 2023; 120:629-644. [PMID: 37804169 DOI: 10.1111/mmi.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/09/2023]
Abstract
Listeria monocytogenes is a foodborne bacterium that naturally occurs in the soil. Originating from there, it contaminates crops and infects farm animals and their consumption by humans may lead to listeriosis, a systemic life-threatening infectious disease. The adaptation of L. monocytogenes to such contrastive habitats is reflected by the presence of virulence genes for host infection and other genes for survival under environmental conditions. Among the latter are ABC transporters for excretion of antibiotics produced by environmental competitors; however, most of these transporters have not been characterized. Here, we generated a collection of promoter-lacZ fusions for genes encoding ABC-type drug transporters of L. monocytogenes and screened this reporter strain collection for induction using a library of natural compounds produced by various environmental microorganisms. We found that the timABR locus (lmo1964-lmo1962) was induced by the macrodiolide antibiotic tartrolon B, which is synthesized by the soil myxobacterium Sorangium cellulosum. Tartrolon B resistance of L. monocytogenes was dependent on timAB, encoding the ATPase and the permease component of a novel ABC transporter. Moreover, transplantation of timAB was sufficient to confer tartrolon B resistance to Bacillus subtilis. Expression of the timABR locus was found to be auto-repressed by the TimR repressor, whose repressing activity was lost in the presence of tartrolon B. We also demonstrate that tartrolon sensitivity was suppressed by high external potassium concentrations, suggesting that tartrolon acts as potassium ionophore. Our results help to map the ecological interactions of an important human pathogen with its co-residing species within their joint natural reservoir.
Collapse
Affiliation(s)
- Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Centre for Infection Research, Saarland University, Saarbrücken, Germany
- Department of Pharmaceutical Biotechnology, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Alegbeleye O, Sant'Ana AS. Impact of temperature, soil type and compost amendment on the survival, growth and persistence of Listeria monocytogenes of non-environmental (food-source associated) origin in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157033. [PMID: 35777564 DOI: 10.1016/j.scitotenv.2022.157033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes of varied sources including food-related sources may reach the soil. Associated food safety and environmental health risks of such contamination depend significantly on the capacity of L. monocytogenes to survive in the soil. This study assessed the survival of 13 L. monocytogenes strains isolated from food and food processing environments and a cocktail of three of the strains in two types of soils (loam and sandy) under controlled temperature conditions: 5, 10, 20, 25, 30℃ and 'uncontrolled' ambient temperature conditions in a tropical region. The impact of compost amendment on the survival of L. monocytogenes in the two different types of soils was also assessed. Soil type, temperature and compost amendment significantly (P <0.001) impacted the survival of L. monocytogenes in soil. Temperature variations affected the survival of L. monocytogenes in soil, where some strains such as strain 732, a L. monocytogenes 1/2a strain survived better at lower temperature (5°C), for which counts of up to 10.47 ± 0.005 log CFU/g were recovered in compost-amended sandy soil, 60 days post-inoculation. Some other strains such as strain 441, a L. monocytogenes 1/2a survived best at intermediate temperature (25 and 30 °C), while others such as 2739 (L. monocytogenes 1/2b) thrived at higher temperature (between 30 °C - 37 °C). There were significant correlations between the influence of temperature and soil type, where lower temperature conditions (5°C - 20°C) were generally more suitable for survival in sandy soil compared to higher temperature conditions. For some of the strains that thrived better in sandy soil at lower temperature, Pearson correlation analysis found significant correlations between temperature and soil type. Steady, controlled temperature generally favored the survival of the strains compared to uncontrolled ambient temperature conditions, except for the cocktail. The cocktail persisted until the last day of post-inoculation storage (60th day) in all test soils and under all incubation temperature conditions. Loam soil was more favorable for the survival of L. monocytogenes and compost amendment improved the survival of the strains, especially in compost-amended sandy soil. Listeria monocytogenes may exhibit variable survival capacity in soil, depending on conditions such as soil type, compost amendment and temperature.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Fischer MA, Engelgeh T, Rothe P, Fuchs S, Thürmer A, Halbedel S. Listeria monocytogenes genes supporting growth under standard laboratory cultivation conditions and during macrophage infection. Genome Res 2022; 32:1711-1726. [PMID: 36114002 PMCID: PMC9528990 DOI: 10.1101/gr.276747.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.
Collapse
Affiliation(s)
- Martin A Fischer
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Tim Engelgeh
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Patricia Rothe
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Stephan Fuchs
- MF1 Bioinformatic Support, Robert Koch Institute, 13353 Berlin, Germany
| | - Andrea Thürmer
- MF2 Genome Sequencing, Robert Koch Institute, 13353 Berlin, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, 38855 Wernigerode, Germany
| |
Collapse
|
5
|
Characterization of the DNA Binding Domain of StbA, A Key Protein of A New Type of DNA Segregation System. J Mol Biol 2022; 434:167752. [PMID: 35868361 DOI: 10.1016/j.jmb.2022.167752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/21/2022]
Abstract
Low-copy-number plasmids require sophisticated genetic devices to achieve efficient segregation of plasmid copies during cell division. Plasmid R388 uses a unique segregation mechanism, based on StbA, a small multifunctional protein. StbA is the key protein in a segregation system not involving a plasmid-encoded NTPase partner, it regulates the expression of several plasmid operons, and it is the main regulator of plasmid conjugation. The mechanisms by which StbA, together with the centromere-like sequence stbS, achieves segregation, is largely uncharacterized. To better understand the molecular basis of R388 segregation, we determined the crystal structure of the conserved N-terminal domain of StbA to 1.9 Å resolution. It folds into an HTH DNA-binding domain, structurally related to that of the PadR subfamily II of transcriptional regulators. StbA is organized in two domains. Its N-terminal domain carries the specific stbS DNA binding activity. A truncated version of StbA, deleted of its C-terminal domain, displays only partial activities in vivo, indicating that the non-conserved C-terminal domain is required for efficient segregation and subcellular plasmid positioning. The structure of StbA DNA-binding domain also provides some insight into how StbA monomers cooperate to repress transcription by binding to the stbDR and to form the segregation complex with stbS.
Collapse
|
6
|
Wang M, Wamp S, Gibhardt J, Holland G, Schwedt I, Schmidtke KU, Scheibner K, Halbedel S, Commichau FM. Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. Environ Microbiol 2022; 24:4466-4488. [PMID: 35688634 DOI: 10.1111/1462-2920.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes.
Collapse
Affiliation(s)
- Mengyi Wang
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,Research Complex NanoBio, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya ulitsa 29A, Saint Petersburg, 195251, Russia
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert-Koch-Institute, Seestraße 10, 13353, Berlin, Germany
| | - Inge Schwedt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kai-Uwe Schmidtke
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Sven Halbedel
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
7
|
Elements in the LftR Repressor Operator Interface Contributing to Regulation of Aurantimycin Resistance in Listeria monocytogenes. J Bacteriol 2021; 203:JB.00503-20. [PMID: 33649145 DOI: 10.1128/jb.00503-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
The bacterium Listeria monocytogenes ubiquitously occurs in the environment but can cause severe invasive disease in susceptible individuals when ingested. We recently identified the L. monocytogenes genes lieAB and lftRS, encoding a multidrug resistance ABC transporter and a regulatory module, respectively. These genes jointly mediate resistance against aurantimycin, an antibiotic produced by the soil-dwelling species Streptomyces aurantiacus, and thus contribute to the survival of L. monocytogenes in its natural habitat, the soil. Repression of lieAB and lftRS is exceptionally tight but strongly induced in the presence of aurantimycin. Repression depends on LftR, which belongs to subfamily 2 of the PadR-like transcriptional repressors. To better understand this interesting class of transcriptional repressors, we here deduce the LftR operator sequence from a systematic truncation and mutation analysis of the P lieAB promoter. The sequence identified is also present in the P lftRS promoter but not found elsewhere in the chromosome. Mutational analysis of the putative operator in the P lftRS promoter confirmed its relevance for LftR-dependent repression. The proposed operator sequence was sufficient for DNA binding by LftR in vitro, and a mutation in this sequence affected aurantimycin resistance. Our results provide further insights into the transcriptional adaptation of an important human pathogen to survive the conditions in its natural reservoir.IMPORTANCE Listeria monocytogenes is an environmental bacterium that lives in the soil but can infect humans upon ingestion, and this can lead to severe invasive disease. Adaptation to these entirely different habitats involves massive reprogramming of transcription. Among the differentially expressed genes is the lieAB operon, which encodes a transporter for the detoxification of aurantimycin, an antimicrobial compound produced by soil-dwelling competitors. While lieAB is important for survival in the environment, its expression is detrimental during infection. We here identify critical elements in the lieAB promoter and its transcriptional regulator LftR that contribute to habitat-specific expression of the lieAB genes. These results further clarify the molecular mechanisms underlying the aurantimycin resistance of L. monocytogenes.
Collapse
|
8
|
Guerreiro DN, Wu J, Dessaux C, Oliveira AH, Tiensuu T, Gudynaite D, Marinho CM, Boyd A, García-Del Portillo F, Johansson J, O'Byrne CP. Mild Stress Conditions during Laboratory Culture Promote the Proliferation of Mutations That Negatively Affect Sigma B Activity in Listeria monocytogenes. J Bacteriol 2020; 202:e00751-19. [PMID: 32094160 PMCID: PMC7148139 DOI: 10.1128/jb.00751-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/01/2020] [Indexed: 12/18/2022] Open
Abstract
In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.IMPORTANCE In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.
Collapse
Affiliation(s)
- Duarte N Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Charlotte Dessaux
- Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - Ana H Oliveira
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center of Microbial Research, Umeå, Sweden
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center of Microbial Research, Umeå, Sweden
| | - Diana Gudynaite
- Molecular Microbiology Department, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catarina M Marinho
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- Université Bourgogne Franche-Conté, Dijon, France
- Institut National de la Recherche Agronomique, UMR Agroécologie, Dijon, France
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, National University of Ireland, Galway, Ireland
| | | | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Center of Microbial Research, Umeå, Sweden
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
9
|
Structural and DNA-binding studies of the PadR-like transcriptional regulator BC1756 from Bacillus cereus. Biochem Biophys Res Commun 2019; 515:607-613. [PMID: 31178139 DOI: 10.1016/j.bbrc.2019.05.141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023]
Abstract
Transcription factors that belong to the PadR family play an essential role in the transcriptional regulation of diverse biological processes by recognizing their cognate palindromic DNA sequences. Bacillus cereus harbors a gene that encodes a PadR-like protein (bcPLP; BC1756). bcPLP has not been structurally characterized, and it remains unelucidated how bcPLP interacts with a specific DNA sequence to function as a transcription factor. To provide structural insights into DNA recognition by bcPLP, we performed a structural study and a DNA-binding analysis of bcPLP. The crystal structure of bcPLP was determined at 1.92 Å resolution. bcPLP consists of two domains, an N-terminal domain (NTD) and a C-terminal domain (CTD), and forms a homodimer mainly using the CTD. In the structure, bcPLP contains a highly positively charged elongated patch in the NTD that serves as a putative DNA-binding site. Indeed, an electrophoresis mobility shift assay and a fluorescence polarization assay showed that bcPLP specifically recognizes a palindromic DNA sequence upstream of the bcPLP-encoding region. Moreover, based on our mutagenesis and modeling studies, we demonstrate that bcPLP interacts with dsDNA primarily using the Y19, Y41, P64, and K66 residues in the NTD.
Collapse
|
10
|
Hauf S, Möller L, Fuchs S, Halbedel S. PadR-type repressors controlling production of a non-canonical FtsW/RodA homologue and other trans-membrane proteins. Sci Rep 2019; 9:10023. [PMID: 31296881 PMCID: PMC6624303 DOI: 10.1038/s41598-019-46347-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/27/2019] [Indexed: 01/02/2023] Open
Abstract
The Gram-positive bacterium Listeria monocytogenes occurs ubiquitously in the environment and infects humans upon ingestion. It encodes four PadR-like repressors, out of which LftR has been characterized previously and was shown to control gene expression in response to the antibiotic aurantimycin produced by other environmental bacteria. To better understand the PadR regulons of L. monocytogenes, we performed RNA-sequencing with mutants of the other three repressors LadR, LstR and Lmo0599. We show that LadR is primarily responsible for the regulation of the mdrL gene, encoding an efflux pump, while LstR and Lmo0599 mainly regulate their own operons. The lstR operon contains the lmo0421 gene, encoding a homolog of the RodA/FtsW protein family. However, this protein does not possess such functionality, as we demonstrate here. The lmo0599 operon contains two additional genes coding for the hypothetical trans-membrane proteins lmo0600 and lmo0601. A striking phenotype of the lmo0599 mutant is its impaired growth at refrigeration temperature. In light of these and other results we suggest that Lmo0599 should be renamed and propose LltR (listerial low temperature regulator) as its new designation. Based on the nature of the PadR target genes we assume that these repressors collectively respond to compounds acting on the cellular envelope.
Collapse
Affiliation(s)
- Samuel Hauf
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Lars Möller
- ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Burgstrasse 37, 38855, Wernigerode, Germany.
| |
Collapse
|