1
|
Hollingshead S, McVicker G, Nielsen MR, Zhang Y, Pilla G, Jones RA, Thomas JC, Johansen SEH, Exley RM, Brodersen DE, Tang CM. Shared mechanisms of enhanced plasmid maintenance and antibiotic tolerance mediated by the VapBC toxin:antitoxin system. mBio 2024:e0261624. [PMID: 39704502 DOI: 10.1128/mbio.02616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Toxin:antitoxin (TA) systems are widespread in bacteria and were first identified as plasmid addiction systems that kill bacteria lacking a TA-encoding plasmid following cell division. TA systems have also been implicated in bacterial persistence and antibiotic tolerance, which can be precursors of antibiotic resistance. Here, we identified a clinical isolate of Shigella sonnei (CS14) with a remarkably stable pINV virulence plasmid; pINV is usually frequently lost from S. sonnei, but plasmid loss was not detected from CS14. We found that the plasmid in CS14 is stabilized by a single nucleotide polymorphism (SNP) in its vapBC TA system. VapBC TA systems are the most common Type II TA system in bacteria, and consist of a VapB antitoxin and VapC PIN domain-containing toxin. The plasmid stabilizing SNP leads to a Q12L substitution in the DNA-binding domain of VapB, which reduces VapBC binding to its own promoter, impairing vapBC autorepression. However, VapBL12C mediates high-level plasmid stabilization because VapBL12 is more prone to degradation by Lon than wild-type VapB; this liberates VapC to efficiently kill bacteria that no longer contain a plasmid. Of note, mutations that confer tolerance to antibiotics in Escherichia coli also map to the DNA-binding domain of VapBC encoded by the chromosomally integrated F plasmid. We demonstrate that the tolerance mutations also enhance plasmid stabilization by the same mechanism as VapBL12. Our findings highlight the links between plasmid maintenance and antibiotic tolerance, both of which can promote the development of antimicrobial resistance. IMPORTANCE Our work addresses two processes, the maintenance of plasmids and antibiotic tolerance; both contribute to the development of antimicrobial resistance in bacteria that cause human disease. Here, we found a single nucleotide change in the vapBC toxin:antitoxin system that stabilizes the large virulence plasmid of Shigella sonnei. The mutation is in the vapB antitoxin gene and makes the antitoxin more likely to be degraded, releasing the VapC toxin to efficiently kill cells without the plasmid (and thus unable to produce more antitoxin as an antidote). We found that vapBC mutations in E. coli that lead to antibiotic tolerance (a precursor to resistance) also operate by the same mechanism (i.e., generating VapB that is prone to cleavage); free VapC during tolerance will arrest bacterial growth and prevent susceptibility to antibiotics. This work shows the mechanistic links between plasmid maintenance and tolerance, and has applications in biotech and in the design and evaluation of vaccines against shigellosis.
Collapse
Affiliation(s)
- Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Maria R Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - YuGeng Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rebekah A Jones
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan C Thomas
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Sarah E H Johansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Charles H, Sinka K, Simms I, Baker KS, Godbole G, Jenkins C. Trends in shigellosis notifications in England, January 2016 to March 2023. Epidemiol Infect 2024; 152:e115. [PMID: 39363593 PMCID: PMC11450503 DOI: 10.1017/s0950268824001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 10/05/2024] Open
Abstract
We reviewed all diagnoses of Shigella species notified to the UK Health Security Agency from January 2016 to March 2023. An overall increase in notifications of shigellosis was seen between 2016 (n = 415/quarter) and 2023 (n = 1 029/quarter). However, notifications dramatically declined between March 2020 and September 2021 during the COVID-19 pandemic (n = 208/quarter) highlighting the impact of travel and social distancing restrictions on transmission. S. sonnei diagnoses were more affected by lockdown restrictions than S. flexneri, most likely due to a combination of species-specific characteristics and host attributes. Azithromycin resistance continued to be associated with epidemics of sexually transmissible S. flexneri (adult males = 45.6% vs. adult females = 8.7%) and S. sonnei (adult males = 59.5% vs. adult females = 14.6%). We detected resistance to ciprofloxacin in S. sonnei from adult male cases not reporting travel at a higher frequency (79.4%) than in travel-associated cases (61.7%). Extensively drug-resistant Shigella species associated with sexual transmission among men almost exclusively had ESBL encoded by blaCTX-M-27, whereas those associated with returning travellers had blaCTX-M-15. Given the increasing incidence of infections and AMR, we recommend that enhanced surveillance is used to better understand the impact of travel and sexual transmission on the acquisition and spread of MDR and XDR Shigella species.
Collapse
Affiliation(s)
| | | | - Ian Simms
- UK Health Security Agency, London, UK
| | - Kate S. Baker
- Department of Genetics, University of Cambridge, Cambridge, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | | | - Claire Jenkins
- UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Shutt-McCabe J, Shaik KB, Hoyles L, McVicker G. The plasmid-borne hipBA operon of Klebsiella michiganensis encodes a potent plasmid stabilization system. J Appl Microbiol 2024; 135:lxae246. [PMID: 39304528 PMCID: PMC11487325 DOI: 10.1093/jambio/lxae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
AIMS Klebsiella michiganensis is a medically important bacterium that has been subject to relatively little attention in the literature. Interrogation of sequence data from K. michiganensis strains in our collection has revealed the presence of multiple large plasmids encoding type II toxin-antitoxin (TA) systems. Such TA systems are responsible for mediating a range of phenotypes, including plasmid stability ('addiction') and antibiotic persistence. In this work, we characterize the hipBA TA locus found within the Klebsiella oxytoca species complex (KoSC). METHODS AND RESULTS The HipBA TA system is encoded on a plasmid carried by K. michiganensis PS_Koxy4, isolated from an infection outbreak. Employing viability and plasmid stability assays, we demonstrate that PS_Koxy4 HipA is a potent antibacterial toxin and that HipBA is a functional TA module contributing substantially to plasmid maintenance. Further, we provide in silico data comparing HipBA modules across the entire KoSC. CONCLUSIONS We provide the first evidence of the role of a plasmid-encoded HipBA system in stability of mobile genetic elements and analyse the presence of HipBA across the KoSC. These results expand our knowledge of both a common enterobacterial TA system and a highly medically relevant group of bacteria.
Collapse
Affiliation(s)
- Jordan Shutt-McCabe
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Karimunnisa Begum Shaik
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
4
|
Nielsen MR, Brodersen DE. Structural Variations and Rearrangements in Bacterial Type II Toxin-Antitoxin Systems. Subcell Biochem 2024; 104:245-267. [PMID: 38963490 DOI: 10.1007/978-3-031-58843-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Bacteria encode a wide range of survival and immunity systems, including CRISPR-Cas, restriction-modification systems, and toxin-antitoxin systems involved in defence against bacteriophages, as well as survival during challenging growth conditions or exposure to antibiotics. Toxin-antitoxin (TA) systems are small two- or three-gene cassettes consisting of a metabolic regulator (the "toxin") and its associated antidote (the "antitoxin"), which also often functions as a transcriptional regulator. TA systems are widespread in the genomes of pathogens but are also present in commensal bacterial species and on plasmids. For mobile elements such as plasmids, TA systems play a role in maintenance, and increasing evidence now points to roles of chromosomal toxin-antitoxin systems in anti-phage defence. Moreover, the widespread occurrence of toxin-antitoxin systems in the genomes of pathogens has been suggested to relate to survival during host infection as well as in persistence during antibiotic treatment. Upon repeated exposure to antibiotics, TA systems have been shown to acquire point mutations as well as more dramatic rearrangements such as in-frame deletions with potential relevance for bacterial survival and pathogenesis. In this review, we present an overview of the known functional and structural consequences of mutations and rearrangements arising in bacterial toxin-antitoxin systems and discuss their relevance for survival and persistence of pathogenic species.
Collapse
Affiliation(s)
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
5
|
Gerson TM, Ott AM, Karney MMA, Socea JN, Ginete DR, Iyer LM, Aravind L, Gary RK, Wing HJ. VirB, a key transcriptional regulator of Shigella virulence, requires a CTP ligand for its regulatory activities. mBio 2023; 14:e0151923. [PMID: 37728345 PMCID: PMC10653881 DOI: 10.1128/mbio.01519-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Shigella species cause bacillary dysentery, the second leading cause of diarrheal deaths worldwide. There is a pressing need to identify novel molecular drug targets. Shigella virulence phenotypes are controlled by the transcriptional regulator, VirB. We show that VirB belongs to a fast-evolving, plasmid-borne clade of the ParB superfamily, which has diverged from versions with a distinct cellular role-DNA partitioning. We report that, like classic members of the ParB family, VirB binds a highly unusual ligand, CTP. Mutants predicted to be defective in CTP binding are compromised in a variety of virulence attributes controlled by VirB, likely because these mutants cannot engage DNA. This study (i) reveals that VirB binds CTP, (ii) provides a link between VirB-CTP interactions and Shigella virulence phenotypes, (iii) provides new insight into VirB-CTP-DNA interactions, and (iv) broadens our understanding of the ParB superfamily, a group of bacterial proteins that play critical roles in many bacteria.
Collapse
Affiliation(s)
- Taylor M. Gerson
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Audrey M. Ott
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Monika M. A. Karney
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jillian N. Socea
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Daren R. Ginete
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | | | - L. Aravind
- Computational Biology Branch, National Library of Medicine, Bethesda, Maryland, USA
| | - Ronald K. Gary
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Helen J. Wing
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
6
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
7
|
Song N, De Greve H, Wang Q, Hernalsteens JP, Li Z. Plasmid parB contributes to uropathogenic Escherichia coli colonization in vivo by acting on biofilm formation and global gene regulation. Front Mol Biosci 2022; 9:1053888. [PMID: 36589237 PMCID: PMC9800825 DOI: 10.3389/fmolb.2022.1053888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The endogenous plasmid pUTI89 harbored by the uropathogenic Escherichia coli (UPEC) strain UTI89 plays an important role in the acute stage of infection. The partitioning gene parB is important for stable inheritance of pUTI89. However, the function of partitioning genes located on the plasmid in pathogenesis of UPEC still needs to be further investigated. In the present study, we observed that disruption of the parB gene leads to a deficiency in biofilm formation in vitro. Moreover, in a mixed infection with the wild type strain and the parB mutant, in an ascending UTI mouse model, the mutant displayed a lower bacterial burden in the bladder and kidneys, not only at the acute infection stage but also extending to 72 hours post infection. However, in the single infection test, the reduced colonization ability of the parB mutant was only observed at six hpi in the bladder, but not in the kidneys. The colonization capacity in vivo of the parB-complemented strain was recovered. qRT-PCR assay suggested that ParB could be a global regulator, influencing the expression of genes located on both the endogenous plasmid and chromosome, while the gene parA or the operon parAB could not. Our study demonstrates that parB contributes to the virulence of UPEC by influencing biofilm formation and proposes that the parB gene of the endogenous plasmid could regulate gene expression globally.
Collapse
Affiliation(s)
- Ningning Song
- School of Life Science and Technology, Weifang Medical University, Weifang, China,Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Henri De Greve
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quanjun Wang
- SAFE Pharmaceutical Technology Co, Ltd., Beijing, China
| | - Jean-Pierre Hernalsteens
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| | - Zhaoli Li
- Department of Biology, Vrije Universiteit Brussel, Brussels, Belgium,SAFE Pharmaceutical Technology Co, Ltd., Beijing, China,*Correspondence: Jean-Pierre Hernalsteens, , Zhaoli Li,
| |
Collapse
|
8
|
Pilla G, Arcari G, Tang CM, Carattoli A. Virulence plasmid pINV as a genetic signature for Shigella flexneri phylogeny. Microb Genom 2022; 8. [PMID: 35759406 PMCID: PMC9455713 DOI: 10.1099/mgen.0.000846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin–antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct ‘virulence sequence types’ (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host.
Collapse
Affiliation(s)
- Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabriele Arcari
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
9
|
Selvaraj GK, Wang H, Zhang Y, Tian Z, Chai W, Lu H. Class 1 In-Tn5393c array contributed to antibiotic resistance of non-pathogenic Pseudoxanthomonas mexicana isolated from a wastewater bioreactor treating streptomycin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153537. [PMID: 35101502 DOI: 10.1016/j.scitotenv.2022.153537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The emergence of antibiotic resistance in retort to environmental pollutants during wastewater treatment still remains elusive. Here, we first to investigate the emergence of antibiotic resistance in an environmental non-pathogenic bacterium, Pseudoxanthomonas mexicana isolated from a lab-scale bioreactor treating wastewater containing streptomycin. The molecular mechanism of antibiotic resistance development was evaluated in its genomic, transcriptional, and proteomic levels. The streptomycin resistant (SR) strain showed strong resistance to streptomycin (MIC > 600 μg/mL) as well to sulfamethoxazole, ampicillin, and kanamycin (≥250 μg/mL). A 13.4 kb class-1-integron array consisting of a new arrangement of gene cassette (IS6100-sul1-aadA2-catB3-aacA1-2-aadB-int1-IS256-int) linked with Tn5393c transposon was identified in the SR strain, which has only been reported in clinical pathogens so far. iTRAQ-LC-MS/MS proteomics revealed 22 up-regulated proteins in the SR strain growing under 100 mg L-1 streptomycin, involving antibiotic resistance, toxin production, stress response, and ribosomal protein synthesis. At the mRNA level, elevated expressions of ARGs (strA, strB, and aadB) and 30S-ribosomal protein genes (rpsA and rpsU) were observed in the SR strain. The results highlighted the genomic plasticity and multifaceted regulatory mechanism employed by P. mexicana in adaptation to high-level streptomycin during biological wastewater treatment.
Collapse
Affiliation(s)
- Ganesh-Kumar Selvaraj
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Microbiology, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India
| | - Hanqing Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbo Chai
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Maintenance of the Shigella sonnei virulence plasmid is dependent on its repertoire and amino acid sequence of toxin:antitoxin systems. J Bacteriol 2022; 204:e0051921. [PMID: 34978459 PMCID: PMC8923223 DOI: 10.1128/jb.00519-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCEShigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.
Collapse
|
11
|
VirB, a key transcriptional regulator of virulence plasmid genes in Shigella flexneri, forms DNA-binding site dependent foci in the bacterial cytoplasm. J Bacteriol 2021; 203:JB.00627-20. [PMID: 33722845 PMCID: PMC8117518 DOI: 10.1128/jb.00627-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
VirB is a key regulator of genes located on the large virulence plasmid (pINV) in the bacterial pathogen Shigella flexneri VirB is unusual; it is not related to other transcriptional regulators, instead, it belongs to a family of proteins that primarily function in plasmid and chromosome partitioning; exemplified by ParB. Despite this, VirB does not function to segregate DNA, but rather counters transcriptional silencing mediated by the nucleoid structuring protein, H-NS. Since ParB localizes subcellularly as discrete foci in the bacterial cytoplasm, we chose to investigate the subcellular localization of VirB to gain novel insight into how VirB functions as a transcriptional anti-silencer. To do this, a GFP-VirB fusion that retains the regulatory activity of VirB and yet, does not undergo significant protein degradation in S. flexneri, was used. Surprisingly, discrete fluorescent foci were observed in live wild-type S. flexneri cells and an isogenic virB mutant using fluorescence microscopy. In contrast, foci were rarely observed (<10%) in pINV-cured cells or in cells expressing a GFP-VirB fusion carrying amino acid substitutions in the VirB DNA binding domain. Finally, the 25 bp VirB-binding site was demonstrated to be sufficient and necessary for GFP-VirB focus formation using a set of small surrogate plasmids. Combined, these data demonstrate that the VirB:DNA interactions required for the transcriptional anti-silencing activity of VirB on pINV are a prerequisite for the subcellular localization of VirB in the bacterial cytoplasm. The significance of these findings, in light of the anti-silencing activity of VirB, is discussed.ImportanceThis study reveals the subcellular localization of VirB, a key transcriptional regulator of virulence genes found on the large virulence plasmid (pINV) in Shigella. Fluorescent signals generated by an active GFP-VirB fusion form 2, 3, or 4 discrete foci in the bacterial cytoplasm, predominantly at the quarter cell position. These signals are completely dependent upon VirB interacting with its DNA binding site found either on the virulence plasmid or an engineered surrogate. Our findings: 1) provide novel insight into VirB:pINV interactions, 2) suggest that VirB may have utility as a DNA marker, and 3) raise questions about how and why this anti-silencing protein that controls virulence gene expression on pINV of Shigella spp. forms discrete foci/hubs within the bacterial cytoplasm.
Collapse
|
12
|
Evaluation of Putative Type II Toxin-Antitoxin Systems and Lon Protease Expression in Shigella flexneri Following Infection of Caco-2 Cells. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.98625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
: Shigella flexneri causes bacillary dysentery in developing countries. Due to recent reports regarding antimicrobial resistance in human S. flexneri, finding alternative therapeutics is of vital importance. Toxin-antitoxin (TA) systems have recently been introduced as antimicrobial targets owing to their involvement in bacterial survival in stress conditions and “persister” cell formation. In this study, the presence of four TA loci were studied in S. flexneri ATCC 12022. The presence of genes coding for the identified TA loci and Lon protease were confirmed by the PCR method using specific primers. Caco-2 cell lines were then infected with this standard strain, and 8 and 24 h post-infection, expression levels of genes coding for the studied TA loci, and Lon protease were evaluated using a real-time PCR method. Expression of mazF, GNAT (Gcn5-related N-acetyltransferase), yeeU, pfam13975, and Lon genes showed 5.4, 9.8, 2.3, 2.7, and 13.8-fold increase, respectively, 8 h after bacterial invasion of the Caco-2 cell line. In addition, the expression of the aforementioned genes showed 4.8, 10.8, 2.3, 3.7, and 16.8-fold increase after 24 h. The GNAT and lon genes showed significantly higher expression levels compared to the control (P value < 0.05). However, the increase in the expression level of yeeU was the same at 8 h and 24 h post-infection. In addition, mazF expression level showed a slight decrease at 24 h compared to 8h post-infection. Genes coding for GNAT and Lon protease showed a significantly higher expression after invading the Caco-2 cell line. Therefore, targeting GNAT or Lon protease can be taken into consideration for finding novel antimicrobial drug strategies. The exact functions and mechanisms of TA systems in S. flexneri isolates are suggested to be experimentally determined.
Collapse
|
13
|
Wu AY, Kamruzzaman M, Iredell JR. Specialised functions of two common plasmid mediated toxin-antitoxin systems, ccdAB and pemIK, in Enterobacteriaceae. PLoS One 2020; 15:e0230652. [PMID: 32603331 PMCID: PMC7326226 DOI: 10.1371/journal.pone.0230652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin systems (TAS) are commonly found on bacterial plasmids and are generally involved in plasmid maintenance. In addition to plasmid maintenance, several plasmid-mediated TAS are also involved in bacterial stress response and virulence. Even though the same TAS are present in a variety of plasmid types and bacterial species, differences in their sequences, expression and functions are not well defined. Here, we aimed to identify commonly occurring plasmid TAS in Escherichia coli and Klebsiella pneumoniae and compare the sequence, expression and plasmid stability function of their variants. 27 putative type II TAS were identified from 1063 plasmids of Klebsiella pneumoniae in GenBank. Among these, ccdAB and pemIK were found to be most common, also occurring in plasmids of E. coli. Comparisons of ccdAB variants, taken from E. coli and K. pneumoniae, revealed sequence differences, while pemIK variants from IncF and IncL/M plasmids were almost identical. Similarly, the expression and plasmid stability functions of ccdAB variants varied according to the host strain and species, whereas the expression and functions of pemIK variants were consistent among host strains. The specialised functions of some TAS may determine the host specificity and epidemiology of major antibiotic resistance plasmids.
Collapse
Affiliation(s)
- Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| |
Collapse
|