1
|
Hu J, Wang Z, Xu W. Production-optimized fermentation of antifungal compounds by bacillus velezensis LZN01 and transcriptome analysis. Microb Biotechnol 2024; 17:e70026. [PMID: 39415743 PMCID: PMC11483751 DOI: 10.1111/1751-7915.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Fusarium wilt is one of the major constraints on global watermelon production, and Fusarium oxysporum f. sp. niveum (Fon) is the causative agent of Fusarium wilt in watermelon and results in severe yield and quality losses worldwide. The enhancement of antifungal activity from antagonistic bacteria against Fon is highly practical for managing Fusarium wilt in watermelon. The aim of this study was to maximize the antifungal activity of Bacillus velezensis LZN01 by optimizing fermentation conditions and analysing its regulatory mechanism via transcriptome sequencing. The culture and fermentation conditions for strain LZN01 were optimized by single-factor and response surface experiments. The optimum culture conditions for this strain were as follows: the addition of D-fructose at 35 g/L and NH4Cl at 5 g/L in LB medium, pH 7, and incubation at 30°C for 72 h. The fungal inhibition rate for strain LZN01 reached 71.1%. The improvement of inhibition rate for strain LZN01 in optimization fermentation was supported by transcriptomic analysis; a total of 491 genes were upregulated, while 736 genes were downregulated. Transcriptome analysis revealed that some differentially expressed genes involved in carbon and nitrogen metabolism, oxidation-reduction, fatty acid and secondary metabolism; This optimization process could potentially lead to significant alterations in the production levels and types of antimicrobial compounds by the strain. Metabolomics and UPLC/Q-Exactive Orbitrap MS analysis revealed that the production yields of antimicrobial compounds, such as surfactin, fengycin, shikimic acid, and myriocin, increased or were detected in the cell-free supernatant (CFS) after the fermentation optimization process. Our results indicate that fermentation optimization enhances the antifungal activity of the LZN01 strain by influencing the expression of genes responsible for the synthesis of antimicrobial compounds.
Collapse
Affiliation(s)
- Jiale Hu
- College of Life Science and AgroforestryQiqihar UniversityQiqiharChina
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation IndustrializationQiqiharChina
- Heilongjiang Provincial Collabarative Innovation Center of Agrobiological Preparation IndustrializationQiqiharChina
| | - Zhigang Wang
- College of Life Science and AgroforestryQiqihar UniversityQiqiharChina
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation IndustrializationQiqiharChina
- Heilongjiang Provincial Collabarative Innovation Center of Agrobiological Preparation IndustrializationQiqiharChina
| | - Weihui Xu
- College of Life Science and AgroforestryQiqihar UniversityQiqiharChina
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation IndustrializationQiqiharChina
- Heilongjiang Provincial Collabarative Innovation Center of Agrobiological Preparation IndustrializationQiqiharChina
| |
Collapse
|
2
|
Cronan JE. Lipoic acid attachment to proteins: stimulating new developments. Microbiol Mol Biol Rev 2024; 88:e0000524. [PMID: 38624243 PMCID: PMC11332335 DOI: 10.1128/mmbr.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
SUMMARYLipoic acid-modified proteins are essential for central metabolism and pathogenesis. In recent years, the Escherichia coli and Bacillus subtilis lipoyl assembly pathways have been modified and extended to archaea and diverse eukaryotes including humans. These extensions include a new pathway to insert the key sulfur atoms of lipoate, several new pathways of lipoate salvage, and a novel use of lipoic acid in sulfur-oxidizing bacteria. Other advances are the modification of E. coli LplA for studies of protein localization and protein-protein interactions in cell biology and in enzymatic removal of lipoate from lipoyl proteins. Finally, scenarios have been put forth for the evolution of lipoate assembly in archaea.
Collapse
Affiliation(s)
- John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
3
|
Scattolini A, Grammatoglou K, Nikitjuka A, Jirgensons A, Mansilla MC, Windshügel B. Substrate Analogues Entering the Lipoic Acid Salvage Pathway via Lipoate-Protein Ligase 2 Interfere with Staphylococcus aureus Virulence. ACS Infect Dis 2024; 10:2172-2182. [PMID: 38724014 PMCID: PMC11184557 DOI: 10.1021/acsinfecdis.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
Lipoic acid (LA) is an essential cofactor in prokaryotic and eukaryotic organisms, required for the function of several multienzyme complexes such as oxoacid dehydrogenases. Prokaryotes either synthesize LA or salvage it from the environment. The salvage pathway in Staphylococcus aureus includes two lipoate-protein ligases, LplA1 and LplA2, as well as the amidotransferase LipL. In this study, we intended to hijack the salvage pathway by LA analogues that are transferred via LplA2 and LipL to the E2 subunits of various dehydrogenases, thereby resulting in nonfunctional enzymes that eventually impair viability of the bacterium. Initially, a virtual screening campaign was carried out to identify potential LA analogues that bind to LplA2. Three selected compounds affected S. aureus USA300 growth in minimal medium at concentrations ranging from 2.5 to 10 μg/mL. Further analysis of the most potent compound (Lpl-004) revealed its transfer to E2 subunits of dehydrogenase complexes and a negative impact on its functionality. Growth impairment caused by Lpl-004 treatment was restored by adding products of the lipoate-dependent enzyme complexes. In addition, Caenorhabditis elegans infected with LpL-004-treated USA300 demonstrated a significantly expanded lifespan compared to worms infected with untreated bacteria. Our results provide evidence that LA analogues exploiting the LA salvage pathway represent an innovative strategy for the development of novel antimicrobial substances.
Collapse
Affiliation(s)
- Albertina Scattolini
- Instituto
de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas
y Técnicas, Ocampo y Esmeralda, S2000FHQ Rosario, Argentina
- Departamento
de Microbiología, Facultad de Ciencias Bioquímicas y
Farmacéuticas, Universidad Nacional
de Rosario, 2000 Rosario, Argentina
| | | | - Anna Nikitjuka
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Aigars Jirgensons
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - María Cecilia Mansilla
- Instituto
de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas
y Técnicas, Ocampo y Esmeralda, S2000FHQ Rosario, Argentina
- Departamento
de Microbiología, Facultad de Ciencias Bioquímicas y
Farmacéuticas, Universidad Nacional
de Rosario, 2000 Rosario, Argentina
| | - Björn Windshügel
- Fraunhofer
Institute for Translational Medicine and Pharmacology ITMP, Discovery
Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
- School
of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
4
|
Tanabe TS, Grosser M, Hahn L, Kümpel C, Hartenfels H, Vtulkin E, Flegler W, Dahl C. Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes. PLoS Biol 2023; 21:e3002177. [PMID: 37368881 DOI: 10.1371/journal.pbio.3002177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Lipoic acid is an essential biomolecule found in all domains of life and is involved in central carbon metabolism and dissimilatory sulfur oxidation. The machineries for lipoate assembly in mitochondria and chloroplasts of higher eukaryotes, as well as in the apicoplasts of some protozoa, are all of prokaryotic origin. Here, we provide experimental evidence for a novel lipoate assembly pathway in bacteria based on a sLpl(AB) lipoate:protein ligase, which attaches octanoate or lipoate to apo-proteins, and 2 radical SAM proteins, LipS1 and LipS2, which work together as lipoyl synthase and insert 2 sulfur atoms. Extensive homology searches combined with genomic context analyses allowed us to precisely distinguish between the new and established pathways and map them on the tree of life. This not only revealed a much wider distribution of lipoate biogenesis systems than expected, in particular, the novel sLpl(AB)-LipS1/S2 pathway, and indicated a highly modular nature of the enzymes involved, with unforeseen combinations, but also provided a new framework for the evolution of lipoate assembly. Our results show that dedicated machineries for both de novo lipoate biogenesis and scavenging from the environment were implemented early in evolution and that their distribution in the 2 prokaryotic domains was shaped by a complex network of horizontal gene transfers, acquisition of additional genes, fusions, and losses. Our large-scale phylogenetic analyses identify the bipartite archaeal LplAB ligase as the ancestor of the bacterial sLpl(AB) proteins, which were obtained by horizontal gene transfer. LipS1/S2 have a more complex evolutionary history with multiple of such events but probably also originated in the domain archaea.
Collapse
Affiliation(s)
- Tomohisa Sebastian Tanabe
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martina Grosser
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Lea Hahn
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Carolin Kümpel
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Hanna Hartenfels
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Evelyn Vtulkin
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wanda Flegler
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
5
|
Gao GR, Hou ZJ, Ding MZ, Bai S, Wei SY, Qiao B, Xu QM, Cheng JS, Yuan YJ. Improved Production of Fengycin in Bacillus subtilis by Integrated Strain Engineering Strategy. ACS Synth Biol 2022; 11:4065-4076. [PMID: 36379006 DOI: 10.1021/acssynbio.2c00380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fengycin is a lipopeptide with broad-spectrum antifungal activity. However, its low yield limits its commercial application. Therefore, we iteratively edited multiple target genes associated with fengycin synthesis by combinatorial metabolic engineering. The ability of Bacillus subtilis 168 to manufacture lipopeptides was restored, and the fengycin titer was 1.81 mg/L. Fengycin production was further increased to 174.63 mg/L after knocking out pathways associated with surfactin and bacillaene synthesis and replacing the native promoter (PppsA) with the Pveg promoter. Subsequently, fengycin levels were elevated to 258.52 mg/L by upregulating the expression of relevant genes involved in the fatty acid pathway. After blocking spore and biofilm formation, fengycin production reached 302.51 mg/L. Finally, fengycin production was increased to approximately 885.37 mg/L after adding threonine in the optimized culture medium, which was 488-fold higher compared with that of the initial strain. Integrated strain engineering provides a strategy to construct a system for improving fengycin production.
Collapse
Affiliation(s)
- Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Song Bai
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Si-Yu Wei
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.,Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|
6
|
A Lipoate-Protein Ligase Is Required for De Novo Lipoyl-Protein Biosynthesis in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Appl Environ Microbiol 2022; 88:e0064422. [PMID: 35736229 PMCID: PMC9275244 DOI: 10.1128/aem.00644-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipoic acid is an organosulfur cofactor essential for several key enzyme complexes in oxidative and one-carbon metabolism. It is covalently bound to the lipoyl domain of the E2 subunit in some 2-oxoacid dehydrogenase complexes and the H-protein in the glycine cleavage system. Lipoate-protein ligase (Lpl) is involved in the salvage of exogenous lipoate and attaches free lipoate to the E2 subunit or the H-protein in an ATP-dependent manner. In the hyperthermophilic archaeon Thermococcus kodakarensis, TK1234 and TK1908 are predicted to encode the N- and C-terminal regions of Lpl, respectively. TK1908 and TK1234 recombinant proteins form a heterodimer and together displayed significant ligase activity toward octanoate in addition to lipoate when a chemically synthesized octapeptide was used as the acceptor. The proteins also displayed activity toward other fatty acids, indicating broad fatty acid specificity. On the other hand, lipoyl synthase from T. kodakarensis only recognized octanoyl-peptide as a substrate. Examination of individual proteins indicated that the TK1908 protein alone was able to catalyze the ligase reaction although with a much lower activity. Gene disruption of TK1908 led to lipoate/serine auxotrophy, whereas TK1234 gene deletion did not. Acyl carrier protein homologs are not found on the archaeal genomes, and the TK1908/TK1234 protein complex did not utilize octanoyl-CoA, raising the possibility that the substrate of the ligase reaction is octanoic acid itself. Although Lpl has been considered as an enzyme involved in lipoate salvage, the results imply that in T. kodakarensis, the TK1908 and TK1234 proteins function in de novo lipoyl-protein biosynthesis. IMPORTANCE Based on previous studies in bacteria and eukaryotes, lipoate-protein ligases (Lpls) have been considered to be involved exclusively in lipoate salvage. The genetic analyses in this study on the lipoate-protein ligase in T. kodakarensis, however, suggest otherwise and that the enzyme is additionally involved in de novo protein lipoylation. We also provide biochemical evidence that the lipoate-protein ligase displays broad substrate specificity and is capable of ligating acyl groups of various chain-lengths to the peptide substrate. We show that this apparent ambiguity in Lpl is resolved by the strict substrate specificity of the lipoyl synthase LipS in this organism, which only recognizes octanoyl-peptide. The results provide relevant physiological insight into archaeal protein lipoylation.
Collapse
|
7
|
Scattolini A, Lavatelli A, Vacchina P, Lambruschi DA, Mansilla MC, Uttaro AD. Functional characterization of the first lipoyl-relay pathway from a parasitic protozoan. Mol Microbiol 2022; 117:1352-1365. [PMID: 35484915 DOI: 10.1111/mmi.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Lipoic acid (LA) is a sulfur-containing cofactor covalently attached to key enzymes of central metabolism in prokaryotes and eukaryotes. LA can be acquired by scavenging, mediated by a lipoate ligase, or de novo synthesized by a pathway requiring an octanoyltransferase and a lipoate synthase. A more complex pathway, referred to as "lipoyl-relay", requires two additional proteins, GcvH, the glycine cleavage system H subunit, and an amidotransferase. This route was described so far in Bacillus subtilis and related Gram positive bacteria, Saccharomyces cerevisiae, Homo sapiens and Caenorhabditis elegans. Using collections of S. cerevisiae and B. subtilis mutants, defective in LA metabolism, we gathered evidence that allow us to propose for the first time that lipoyl-relay pathways are also present in parasitic protozoa. By a reverse genetic approach, we assigned octanoyltransferase and amidotransferase activity to the products of Tb927.11.9390 (TblipT) and Tb927.8.630 (TblipL) genes of Trypanosoma brucei, respectively. The B. subtilis model allowed us to identify the parasite amidotransferase as the target of lipoate analogues like 8-bromo octanoic acid, explaining the complete loss of protein lipoylation and growth impairment caused by this compound in T. cruzi. This model could be instrumental for the screening of selective and more efficient chemotherapies against trypanosomiases.
Collapse
Affiliation(s)
- Albertina Scattolini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| | - Antonela Lavatelli
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Consejo Superior de Investigaciones Científicas, Centre for Research in Agricultural Genomics
| | - Paola Vacchina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas
| | - Daniel A Lambruschi
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas
| | - María C Mansilla
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| | - Antonio D Uttaro
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Ocampo y Esmeralda, Predio CONICET (S2000FHQ) Rosario, Argentina
| |
Collapse
|
8
|
Jin J, Chen H, Wang N, Zhu K, Liu H, Shi D, Xin J, Liu H. A Novel Lipoate-Protein Ligase, Mhp-LplJ, Is Required for Lipoic Acid Metabolism in Mycoplasma hyopneumoniae. Front Microbiol 2021; 11:631433. [PMID: 33584596 PMCID: PMC7873978 DOI: 10.3389/fmicb.2020.631433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022] Open
Abstract
Lipoic acid is a conserved cofactor necessary for the activation of several critical enzyme complexes in the aerobic metabolism of 2-oxoacids and one-carbon metabolism. Lipoate metabolism enzymes are key for lipoic acid biosynthesis and salvage. In this study, we found that Mycoplasma hyopneumoniae (M. hyopneumoniae) Mhp-Lpl, which had been previously shown to have lipoate-protein ligase activity against glycine cleavage system H protein (GcvH) in vitro, did not lipoylate the lipoate-dependent subunit of dihydrolipoamide dehydrogenase (PdhD). Further studies indicated that a new putative lipoate-protein ligase in M. hyopneumoniae, MHP_RS00640 (Mhp-LplJ), catalyzes free lipoic acid attachment to PdhD in vitro. In a model organism, Mhp-LplJ exhibited lipoate and octanoate ligase activities against PdhD. When the enzyme activity of Mhp-LplJ was disrupted by lipoic acid analogs, 8-bromooctanoic acid (8-BrO) and 6,8-dichlorooctanoate (6,8-diClO), M. hyopneumoniae growth was arrested in vitro. Taken together, these results indicate that Mhp-LplJ plays a vital role in lipoic acid metabolism of M. hyopneumoniae, which is of great significance to further understand the metabolism of M. hyopneumoniae and develop new antimicrobials against it.
Collapse
Affiliation(s)
- Jin Jin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Huan Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and SUSTech-HKU Joint Laboratories for Matrix Biology and Diseases, Southern University of Science and Technology, Shenzhen, China
| | - Ning Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kemeng Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanhuan Liu
- College of Life Science, Yangtze University, Kingchow, China
| | - Dongfang Shi
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Henggui Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Riley EP, Lopez-Garrido J, Sugie J, Liu RB, Pogliano K. Metabolic differentiation and intercellular nurturing underpin bacterial endospore formation. SCIENCE ADVANCES 2021; 7:eabd6385. [PMID: 33523946 PMCID: PMC10670878 DOI: 10.1126/sciadv.abd6385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Despite intensive research, the role of metabolism in bacterial sporulation remains poorly understood. Here, we demonstrate that Bacillus subtilis sporulation entails a marked metabolic differentiation of the two cells comprising the sporangium: the forespore, which becomes the dormant spore, and the mother cell, which dies as sporulation completes. Our data provide evidence that metabolic precursor biosynthesis becomes restricted to the mother cell and that the forespore becomes reliant on mother cell-derived metabolites for protein synthesis. We further show that arginine is trafficked between the two cells and that proposed proteinaceous channels mediate small-molecule intercellular transport. Thus, sporulation entails the profound metabolic reprogramming of the forespore, which is depleted of key metabolic enzymes and must import metabolites from the mother cell. Together, our results provide a bacterial example analogous to progeny nurturing.
Collapse
Affiliation(s)
- Eammon P Riley
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Roland B Liu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kit Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Lavatelli A, de Mendoza D, Mansilla MC. Defining Caenorhabditis elegans as a model system to investigate lipoic acid metabolism. J Biol Chem 2020; 295:14973-14986. [PMID: 32843480 DOI: 10.1074/jbc.ra120.013760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/22/2020] [Indexed: 11/06/2022] Open
Abstract
Lipoic acid (LA) is a sulfur-containing cofactor that covalently binds to a variety of cognate enzymes that are essential for redox reactions in all three domains of life. Inherited mutations in the enzymes that make LA, namely lipoyl synthase, octanoyltransferase, and amidotransferase, result in devastating human metabolic disorders. Unfortunately, because many aspects of this essential pathway are still obscure, available treatments only serve to alleviate symptoms. We envisioned that the development of an organismal model system might provide new opportunities to interrogate LA biochemistry, biology, and physiology. Here we report our investigations on three Caenorhabditis elegans orthologous proteins involved in this post-translational modification. We established that M01F1.3 is a lipoyl synthase, ZC410.7 an octanoyltransferase, and C45G3.3 an amidotransferase. Worms subjected to RNAi against M01F1.3 and ZC410.7 manifest larval arrest in the second generation. The arrest was not rescued by LA supplementation, indicating that endogenous synthesis of LA is essential for C. elegans development. Expression of the enzymes M01F1.3, ZC410.7, and C45G3.3 completely rescue bacterial or yeast mutants affected in different steps of the lipoylation pathway, indicating functional overlap. Thus, we demonstrate that, similarly to humans, C. elegans is able to synthesize LA de novo via a lipoyl-relay pathway, and suggest that this nematode could be a valuable model to dissect the role of protein mislipoylation and to develop new therapies.
Collapse
Affiliation(s)
- Antonela Lavatelli
- Laboratory of Microbial Physiology, Institute of Molecular and Cellular Biology of Rosario, National Scientific and Technical Research Council, Rosario, Santa Fe, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, Argentina
| | - Diego de Mendoza
- Laboratory of Microbial Physiology, Institute of Molecular and Cellular Biology of Rosario, National Scientific and Technical Research Council, Rosario, Santa Fe, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, Argentina
| | - María Cecilia Mansilla
- Laboratory of Microbial Physiology, Institute of Molecular and Cellular Biology of Rosario, National Scientific and Technical Research Council, Rosario, Santa Fe, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Rosario, Santa Fe, Argentina.
| |
Collapse
|
11
|
Dynamic Relay of Protein-Bound Lipoic Acid in Staphylococcus aureus. J Bacteriol 2019; 201:JB.00446-19. [PMID: 31451544 DOI: 10.1128/jb.00446-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus competes for myriad essential nutrients during host infection. One of these nutrients is the organosulfur compound lipoic acid, a cofactor required for the activity of several metabolic enzyme complexes. In S. aureus, these include the E2 subunits of three α-ketoacid dehydrogenases and two H proteins, GcvH of the glycine cleavage system and its paralog, GcvH-L. We previously determined that the S. aureus amidotransferase LipL is required for lipoylation of the E2 subunits of pyruvate dehydrogenase (PDH) and branched-chain 2-oxoacid dehydrogenase (BCODH) complexes. The results from this study, coupled with those from Bacillus subtilis, suggested that LipL catalyzes lipoyl transfer from H proteins to E2 subunits. However, to date, the range of LipL targets, the extent of LipL-dependent lipoic acid shuttling between lipoyl domain-containing proteins, and the importance of lipoyl relay in pathogenesis remain unknown. Here, we demonstrate that LipL uses both lipoyl-H proteins as the substrates for lipoyl transfer to all E2 subunits. Moreover, LipL facilitates lipoyl relay between E2 subunits and between H proteins, a property that potentially constitutes an adaptive response to nutrient scarcity in the host, as LipL is required for virulence during infection. Together, these observations support a role for LipL in facilitating flexible lipoyl relay between proteins and highlight the complexity of protein lipoylation in S. aureus IMPORTANCE Protein lipoylation is a posttranslational modification that is evolutionarily conserved from bacteria to humans. Lipoic acid modifications are found on five proteins in S. aureus, four of which are components of major metabolic enzymes. In some bacteria, the amidotransferase LipL is critical for the attachment of lipoic acid to these proteins, and yet it is unclear to what extent LipL facilitates the transfer of this cofactor. We find that S. aureus LipL flexibly shuttles lipoic acid among metabolic enzyme subunits, alluding to a dynamic redistribution mechanism within the bacterial cell. This discovery exemplifies a potential means by which bacteria optimize the use of scarce nutrients when resources are limited.
Collapse
|