1
|
Ng WL, Rego EH. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in Mycobacterium smegmatis. mSphere 2024; 9:e0012224. [PMID: 38591887 PMCID: PMC11237743 DOI: 10.1128/msphere.00122-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Antibiotic resistance in Mycobacterium tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that in Mycobacterium smegmatis, as in other bacterial species, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA. IMPORTANCE Unlike many other pathogens, Mycobacterium tuberculosis has limited ability for horizontal gene transfer, a major mechanism for developing antibiotic resistance. Thus, the mechanisms that facilitate chromosomal mutagenesis are of particular importance in mycobacteria. Here, we show that Lsr2, a nucleoid-associated protein, has a novel role in DNA replication and mutagenesis in the model mycobacterium Mycobacterium smegmatis. We find that Lsr2 promotes the fast exchange rate of the replicative DNA polymerase, DnaE1, at the replication fork and is important for the effective loading of the DnaE2-ImuA'-ImuB translesion complex. Without lsr2, M. smegmatis replicates its chromosome more faithfully and acquires resistance to rifampin at a lower rate, but at the cost of impaired survival to DNA damaging agents. Together, our work establishes Lsr2 as a potential factor in the emergence of mycobacterial antibiotic resistance.
Collapse
Affiliation(s)
- Wei L Ng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - E Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Liu X, Li J, Zhang Z, He Y, Wang M, Zhao Y, Lin S, Liu T, Liao Y, Zhang N, Yuan K, Ling Y, Liu Z, Chen X, Chen Z, Chen R, Wang X, Gu B. Acetylation of xenogeneic silencer H-NS regulates biofilm development through the nitrogen homeostasis regulator in Shewanella. Nucleic Acids Res 2024; 52:2886-2903. [PMID: 38142446 PMCID: PMC11014242 DOI: 10.1093/nar/gkad1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jun Li
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhixuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Yizhou He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Mingfang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
3
|
Gerges E, Herrmann JL, Crémazy F. [Lsr2: A Nucleoid Associated Protein (NAP) and a transcription factor in mycobacteria]. Med Sci (Paris) 2024; 40:154-160. [PMID: 38411423 DOI: 10.1051/medsci/2023218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Lsr2, a small protein mainly found in actinobacteria, plays a crucial role in the virulence and adaptation of mycobacteria to environmental conditions. As a member of the nucleoid-associated protein (NAPs) superfamily, Lsr2 influences DNA organization by facilitating the formation of chromosomal loops in vitro and, therefore, may be a major player in the three-dimensional folding of the genome. Additionally, Lsr2 also acts as a transcription factor, regulating the expression of numerous genes responsible for coordinating a myriad of cellular and molecular processes essential for the actinobacteria. Similar to the H-NS protein, its ortholog in enterobacteria, its role in transcriptional repression likely relies on oligomerization, rigidifying, and bridging of DNA, thereby disrupting RNA polymerase recruitment as well as the elongation of RNA transcripts.
Collapse
Affiliation(s)
- Elias Gerges
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| | - Frédéric Crémazy
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, 78180 Montigny-Le-Bretonneux, France
| |
Collapse
|
4
|
Ng WL, Rego EH. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in M. smegmatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.12.544663. [PMID: 38260554 PMCID: PMC10802252 DOI: 10.1101/2023.06.12.544663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Antibiotic resistance in M. tuberculosis exclusively originates from chromosomal mutations, either during normal DNA replication or under stress, when the expression of error-prone DNA polymerases increases to repair damaged DNA. To bypass DNA lesions and catalyze error-prone DNA synthesis, translesion polymerases must be able to access the DNA, temporarily replacing the high-fidelity replicative polymerase. The mechanisms that govern polymerase exchange are not well understood, especially in mycobacteria. Here, using a suite of quantitative fluorescence imaging techniques, we discover that, as in other bacterial species, in M. smegmatis, the replicative polymerase, DnaE1, exchanges at a timescale much faster than that of DNA replication. Interestingly, this fast exchange rate depends on an actinobacteria-specific nucleoid-associated protein (NAP), Lsr2. In cells missing lsr2, DnaE1 exchanges less frequently, and the chromosome is replicated more faithfully. Additionally, in conditions that damage DNA, cells lacking lsr2 load the complex needed to bypass DNA lesions less effectively and, consistently, replicate with higher fidelity but exhibit growth defects. Together, our results show that Lsr2 promotes dynamic flexibility of the mycobacterial replisome, which is critical for robust cell growth and lesion repair in conditions that damage DNA.
Collapse
Affiliation(s)
- Wei L. Ng
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06519
| |
Collapse
|
5
|
Miotto P, Sorrentino R, De Giorgi S, Provvedi R, Cirillo DM, Manganelli R. Transcriptional regulation and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:990312. [PMID: 36118045 PMCID: PMC9480834 DOI: 10.3389/fcimb.2022.990312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial drug resistance is one of the major challenges to present and future human health, as the continuous selection of multidrug resistant bacteria poses at serious risk the possibility to treat infectious diseases in the near future. One of the infection at higher risk to become incurable is tuberculosis, due to the few drugs available in the market against Mycobacterium tuberculosis. Drug resistance in this species is usually due to point mutations in the drug target or in proteins required to activate prodrugs. However, another interesting and underexplored aspect of bacterial physiology with important impact on drug susceptibility is represented by the changes in transcriptional regulation following drug exposure. The main regulators involved in this phenomenon in M. tuberculosis are the sigma factors, and regulators belonging to the WhiB, GntR, XRE, Mar and TetR families. Better understanding the impact of these regulators in survival to drug treatment might contribute to identify new drug targets and/or to design new strategies of intervention.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Rita Sorrentino
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano De Giorgi
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Div. of Immunology, Transplantation and Infectious Diseases IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | |
Collapse
|
6
|
Lata S, Mahatha AC, Mal S, Gupta UD, Kundu M, Basu J. Unravelling novel roles of the Mycobacterium tuberculosis transcription factor Rv0081 in regulation of the nucleoid-associated proteins Lsr2 and EspR, cholesterol utilization and subversion of lysosomal trafficking in macrophages. Mol Microbiol 2022; 117:1104-1120. [PMID: 35304930 DOI: 10.1111/mmi.14895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/30/2022]
Abstract
The transcriptional network of Mycobacterium tuberculosis is designed to enable the organism to withstand host-associated stresses and to exploit the host milieu for its own survival and multiplication. Rv0081 (MT0088) is a transcriptional regulator whose interplay with other gene regulatory proteins and role in enabling M. tuberculosis to thrive within its host is incompletely understood. M. tuberculosis utilizes cholesterol within the granuloma. We show that deletion of Rv0081 compromises the ability of M. tuberculosis to utilize cholesterol as sole carbon source, to subvert lysosomal trafficking, and to form granulomas in vitro. Rv0081 downregulates expression of the nucleoid associated repressor Lsr2, leading to increased expression of the cholesterol catabolism-linked gene kshA and genes of the cholesterol importing operon, accounting for the requirement of Rv0081 in cholesterol utilization. Further, Rv0081 activates EspR which is required for secretion of ESX-1 substrates, which in turn are involved in subversion of lysosomal traffickingof M. tuberculosisand granuloma expansion. These results provide new insight into the role of Rv0081 under conditions which resemble the environment encountered by M. tuberculosis within its host. Rv0081 emergesas a central regulator of genes linked to various pathways which are crucial for the survival of the bacterium in vivo.
Collapse
Affiliation(s)
- Suruchi Lata
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Amar Chandra Mahatha
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Soumya Mal
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Umesh D Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700009, India
| |
Collapse
|
7
|
Nagarajan SN, Lenoir C, Grangeasse C. Recent advances in bacterial signaling by serine/threonine protein kinases. Trends Microbiol 2021; 30:553-566. [PMID: 34836791 DOI: 10.1016/j.tim.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been nearly three decades since the discovery of the first bacterial serine/threonine protein kinase (STPK). Since then, a blend of technological advances has led to the characterization of a multitude of STPKs and phosphorylation substrates in several bacterial species that finely regulate intricate signaling cascades. Years of intense research from several laboratories have demonstrated unexpected roles for serine/threonine phosphorylation, regulating not only bacterial growth and cell division but also antibiotic persistence, virulence and infection, metabolism, chromosomal biology, and cellular differentiation. This review aims to provide an account of the most recent and significant developments in this up and growing field in microbiology.
Collapse
Affiliation(s)
- Sathya Narayanan Nagarajan
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université de Lyon, CNRS, IBCP building, 7 passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
8
|
Elimination of PknL and MSMEG_4242 in Mycobacterium smegmatis alters the character of the outer cell envelope and selects for mutations in Lsr2. ACTA ACUST UNITED AC 2021; 7:100060. [PMID: 34485766 PMCID: PMC8408660 DOI: 10.1016/j.tcsw.2021.100060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022]
Abstract
Elimination of pknL and adjacent gene MSMEG_4242 in M. smegmatis produces rough & smooth colonies. All smooth colony mutants have inactivated lsr2 genes. Inactivated lsr2 leads to high expression of MSMEG_4727 and increased synthesis of LOS. Smooth mutants don’t form biofilms, have longer bacilli and increased sliding motility. Rough strains deleted for pknL and MSMEG_4242 form biofilms but have aberrant sliding motility. We propose a phosphorylation cascade of PknB phosphorylating PknL that then phosphorylates Lsr2.
Four serine/threonine kinases are present in all mycobacteria: PknA, PknB, PknG and PknL. PknA and PknB are essential for growth and replication, PknG regulates metabolism, but little is known about PknL. Inactivation of pknL and adjacent regulator MSMEG_4242 in rough colony M. smegmatis mc2155 produced both smooth and rough colonies. Upon restreaking rough colonies, smooth colonies appeared at a frequency of ~ 1/250. Smooth mutants did not form biofilms, showed increased sliding motility and anomalous lipids on thin-layer chromatography, identified by mass spectrometry as lipooligosaccharides and perhaps also glycopeptidolipids. RNA-seq and Sanger sequencing revealed that all smooth mutants had inactivated lsr2 genes due to mutations and different IS1096 insertions. When complemented with lsr2, the colonies became rough, anomalous lipids disappeared and sliding motility decreased. Smooth mutants showed increased expression of IS1096 transposase TnpA and MSMEG_4727, which encodes a protein similar to PKS5. When MSMEG_4727 was deleted, smooth pknL/MSMEG_4242/lsr2 mutants reverted to rough, formed good biofilms, their motility decreased slightly and their anomalous lipids disappeared. Rough delpknL/del4242 mutants formed poor biofilms and showed decreased, aberrant sliding motility and both phenotypes were complemented with the two deleted genes. Inactivation of lsr2 changes colony morphology from rough to smooth, augments sliding motility and increases expression of MSMEG_4727 and other enzymes synthesizing lipooligosaccharides, apparently preventing biofilm formation. Similar morphological phase changes occur in other mycobacteria, likely reflecting environmental adaptations. PknL and MSMEG_4242 regulate lipid components of the outer cell envelope and their absence selects for lsr2 inactivation. A regulatory, phosphorylation cascade model is proposed.
Collapse
|
9
|
Natural products from Brazilian biodiversity identified as potential inhibitors of PknA and PknB of M. tuberculosis using molecular modeling tools. Comput Biol Med 2021; 136:104694. [PMID: 34365277 DOI: 10.1016/j.compbiomed.2021.104694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022]
Abstract
Mycobacterium tuberculosis was discovered in 1882 by Robert Koch but, since its discovery, the tuberculosis (TB) epidemic has endured, being one of the top 10 causes of death worldwide. Drug-resistant TB continues to be a public health threat and bioactive compounds with a new mode of action (MoA) are needed to overcome this. Since natural products are described as important sources for the development of new drugs, the objective of this work was to identify potential ligands from Brazilian natural products (NPs) for M. tuberculosis targets using molecular modeling tools. Using chemogenomics we identified the Serine/Threonine Protein Kinase PknB as a putative target for 13 NPs from a database from Brazilian biodiversity (NuBBE). Literature data supported further investigation of NuBBE105, NuBBE598, NuBBE936, NuBBE964, NuBBE1045, and NuBBE1180 by molecular docking and dynamics. Key interactions were observed with PknB and simulations confirmed stability and favorable binding energies. Considering structural similarity with PknB, we further explored binding of the NPs to PknA, critical for M. tuberculosis survival, and all of them resembled important interactions with the enzyme, showing stable and favorable binding energies, whilst van der Waals interactions seem to play a key role for binding to PknA and PknB. NuBBE936 and NuBBE1180 have already had their antimycobacterial activity reported and our results can provide a basis for their MoA. Finally, the other NPs which have not been tested against M. tuberculosis deserve further investigation, aiming at the discovery of antimycobacterial drug candidates with innovative MoA.
Collapse
|
10
|
Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in Streptomyces. mBio 2021; 12:e0107721. [PMID: 34311581 PMCID: PMC8406272 DOI: 10.1128/mbio.01077-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to “countersilence” Lsr2’s repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems.
Collapse
|
11
|
Lsr2 and Its Novel Paralogue Mediate the Adjustment of Mycobacterium smegmatis to Unfavorable Environmental Conditions. mSphere 2021; 6:6/3/e00290-21. [PMID: 33980681 PMCID: PMC8125055 DOI: 10.1128/msphere.00290-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nucleoid-associated proteins (NAPs) are the most abundant proteins involved in bacterial chromosome organization and global transcription regulation. The mycobacterial NAP family includes many diverse proteins; some are unique to actinobacteria, and many are crucial for survival under stress (e.g., HupB and Lsr2) and/or optimal growth conditions (e.g., mycobacterial integration host factor [mIHF]). Lsr2 is a nucleoid-associated protein (NAP) that has been found strictly in actinobacteria, including mycobacteria. It is a functional homolog of histone-like nucleoid-structuring protein (H-NS); it acts as a DNA-bridging protein that plays a role in chromosomal organization and transcriptional regulation. To date, the studies on Lsr2 have focused mainly on Mycobacterium tuberculosis. In this study, we analyze the role of Lsr2 as a transcription factor in Mycobacterium smegmatis, a saprophytic bacterium whose natural habitat (soil and water) substantially differs from those of the obligatory mycobacterial pathogens. Our chromatin immunoprecipitation-sequencing (ChIP-seq) data revealed that Lsr2 binds preferentially to AT-rich regions of the M. smegmatis chromosome. We found that Lsr2 acts mainly as a repressor, controlling gene expression either directly by binding promoter regions or indirectly through DNA loop formation and DNA coating. One of the Lsr2-repressed genes encodes polyketide synthase (MSMEG_4727), which is involved in the synthesis of lipooligosaccharides (LOSs). An M. smegmatis strain deprived of Lsr2 produces more LOSs, which is mirrored by changes in the smoothness of cells and their susceptibilities to antibiotics. Unlike M. tuberculosis, M. smegmatis additionally encodes a paralogue of Lsr2, MSMEG_1060, which is a novel member of the mycobacterial NAP family. The Lsr2 and MSMEG_1060 proteins exhibit different DNA binding specificities and chromosomal localizations. Our results suggest that these proteins help M. smegmatis cells cope with stress conditions, including hypoxia and exposure to antibiotics. Thus, the present work provides novel insight into the role of Lsr2 paralogues in the ability of a saprophytic mycobacterial species to adjust to environmental changes. IMPORTANCE Nucleoid-associated proteins (NAPs) are the most abundant proteins involved in bacterial chromosome organization and global transcription regulation. The mycobacterial NAP family includes many diverse proteins; some are unique to actinobacteria, and many are crucial for survival under stress (e.g., HupB and Lsr2) and/or optimal growth conditions (e.g., mycobacterial integration host factor [mIHF]). Here, we present a comprehensive study concerning two functional homologues of mycobacterial H-NS: Lsr2 and its paralogue from M. smegmatis, MSMEG_1060. We found that Lsr2 plays a role in transcriptional regulation, mainly by repressing gene expression via DNA loop formation and/or DNA-coating mechanisms. Intriguingly, the number of Lsr2-mediated genes was found to increase under hypoxia. Compared to Lsr2, MSMEG_1060 exhibits a different DNA binding specificity and chromosomal localization. Since tuberculosis remains a serious worldwide health problem, studies on stress response-mediating agents, such as Lsr2, may contribute to the development of novel antituberculosis drugs.
Collapse
|
12
|
Liu X, Lin S, Liu T, Zhou Y, Wang W, Yao J, Guo Y, Tang K, Chen R, Benedik MJ, Wang X. Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in Shewanella. Nucleic Acids Res 2021; 49:3427-3440. [PMID: 33693785 PMCID: PMC8034616 DOI: 10.1093/nar/gkab137] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiqing Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou 511458, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Niño-Padilla EI, Velazquez C, Garibay-Escobar A. Mycobacterial biofilms as players in human infections: a review. BIOFOULING 2021; 37:410-432. [PMID: 34024206 DOI: 10.1080/08927014.2021.1925886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The role of biofilms in pathogenicity and treatment strategies is often neglected in mycobacterial infections. In recent years, the emergence of nontuberculous mycobacterial infections has necessitated the development of novel prophylactic strategies and elucidation of the mechanisms underlying the establishment of chronic infections. More importantly, the question arises whether members of the Mycobacterium tuberculosis complex can form biofilms and contribute to latent tuberculosis and drug resistance because of the long-lasting and recalcitrant nature of its infections. This review discusses some of the molecular mechanisms by which biofilms could play a role in infection or pathological events in humans.
Collapse
Affiliation(s)
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| |
Collapse
|
14
|
Abstract
A vast array of molecular biology tools have been developed to investigate the Mycobacterium tuberculosis genome since the advent of its successful sequencing in 1998. These tools, such as quantitative and end point polymerase chain reaction, chromatin immunoprecipitation, and whole genome sequencing, require genomic DNA extracted from lysed mycobacteria. There are numerous methods described in the literature using mechanical, enzymatic, or chemical means to lyse cells and extract genomic DNA to varying degrees of purity. Here, we describe appropriate methods for genomic DNA isolation from solid or liquid cultures from both M. tuberculosis and nontuberculous mycobacteria.
Collapse
Affiliation(s)
- Heena Jagatia
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.
| | - Daire Cantillon
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
15
|
Jia Y, Yu C, Fan J, Fu Y, Ye Z, Guo X, Xu Y, Shen C. Alterations in the Cell Wall of Rhodococcus biphenylivorans Under Norfloxacin Stress. Front Microbiol 2020; 11:554957. [PMID: 33123102 PMCID: PMC7573542 DOI: 10.3389/fmicb.2020.554957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Many microorganisms can enter a viable but non-culturable (VBNC) state under various environmental stresses, while they can also resuscitate when the surroundings turn to suitable conditions. Cell walls play a vital role in maintaining cellular integrity and protecting cells from ambient threats. Here, we investigated the alterations in the cell wall of Rhodococcus biphenylivorans TG9 at VBNC state under norfloxacin stress and then at resuscitated state in fresh lysogeny broth medium. Electron microscopy analyses presented that TG9 in the VBNC state had a thicker and rougher cell wall than that in exponential phase or resuscitated state. Meanwhile, the results from infrared spectroscopy also showed that its VBNC state has different peptidoglycan structures in the cell wall. Moreover, in the VBNC cells the gene expressions related to cell wall synthesis and remodeling maintain a relatively high level. It indicates that the morphological variations of TG9 at the VBNC state might result from kinetic changes in the cell wall synthesis and remodeling. As a consequence, the alterations in the cell wall of VBNC TG9 may somewhat account for its tolerance mechanisms to antibiotic treatment.
Collapse
Affiliation(s)
- Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
16
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|