1
|
Liu H, Liu T, Chen S, Liu X, Li N, Huang T, Ma B, Liu X, Pan S, Zhang H. Biogeochemical cycles of iron: Processes, mechanisms, and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175722. [PMID: 39187081 DOI: 10.1016/j.scitotenv.2024.175722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The iron (Fe) biogeochemical cycle is critical for abiotic and biological environmental processes that overlap spatially and may compete with each other. The development of modern molecular biology technologies promoted the understanding of the electron transport mechanisms of Fe-cycling-related microorganisms. Recent studies have revealed a novel pathway for microaerophilic ferrous iron (Fe(II))-oxidizers in extracellular Fe(II) oxidation. In addition, OmcS, OmcZ, and OmcE nanowires on the cell surface have been shown to promote electron transfer between microorganisms and their environment. These processes affect the fate of pollutants in directly or indirectly ways, such as greenhouse gas emissions. In this review, these advances and the environmental implications of the Fe cycle process were discussed, with a particular focus on the mechanisms of intracellular or extracellular electron transport in microorganisms.
Collapse
Affiliation(s)
- Huan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Yang G, Lin A, Wu X, Lin C, Zhu S, Zhuang L. Geobacter-associated prophages confer beneficial effect on dissimilatory reduction of Fe(III) oxides. FUNDAMENTAL RESEARCH 2024; 4:1568-1575. [PMID: 39734524 PMCID: PMC11670727 DOI: 10.1016/j.fmre.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
The dissimilatory reduction of Fe(III) oxides driven by Fe(III)-reducing bacteria (FRB) is an important biogeochemical process that influences not only iron cycling but also the biogeochemical cycles of carbon, trace metals, nutrients and contaminants. Phages have central roles in modulating the population and activity of FRB, but the mechanism for phage-involved Fe(III) oxide reduction is still unclear. This work used a common FRB, Geobacter soli, to explore the roles and underlying mechanisms of FRB-harboring prophages in the dissimilatory reduction of Fe(III) oxides. Bioinformatic analysis predicted 185 phage-related genes in the G. soli genome, comprising functional prophages that were verified to be induced to form tailed phage particles. Ferrihydrite reduction was facilitated as prophage induction was stimulated and declined as prophage induction was inhibited, which indicated a positive role of G. soli-harboring prophages in Fe(III) oxide reduction. A comparison of gene expression and released phage particles in the cells grown with Fe(III)-citrate and ferrihydrite suggested that microbial ferrihydrite reduction would activate the SOS response and consequently induce the prophages to enter lytic cycles. The prophage-mediated lysis of the subpopulation resulted in an increased release of extracellular DNA and membrane vesicles that were conducive to Fe(III) oxide reduction, which might explain the positive role of prophages in ferrihydrite reduction. In summary, our results revealed the functional roles and underlying mechanisms of FRB-associated prophages in facilitating the dissimilatory reduction of Fe(III) oxides, which will advance our understanding of iron cycling in natural ecosystems.
Collapse
Affiliation(s)
- Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Annian Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xian Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Canfen Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Siyue Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Yang X, Liu C, Liang C, Wang T, Tian J. The Phosphorus-Iron Nexus: Decoding the Nutrients Interaction in Soil and Plant. Int J Mol Sci 2024; 25:6992. [PMID: 39000100 PMCID: PMC11241702 DOI: 10.3390/ijms25136992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phosphorus (P) and iron (Fe) are two essential mineral nutrients in plant growth. It is widely observed that interactions of P and Fe could influence their availability in soils and affect their homeostasis in plants, which has received significant attention in recent years. This review presents a summary of latest advances in the activation of insoluble Fe-P complexes by soil properties, microorganisms, and plants. Furthermore, we elucidate the physiological and molecular mechanisms underlying how plants adapt to Fe-P interactions. This review also discusses the current limitations and presents potential avenues for promoting sustainable agriculture through the optimization of P and Fe utilization efficiency in crops.
Collapse
Affiliation(s)
| | | | | | - Tianqi Wang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.Y.); (C.L.); (C.L.); (J.T.)
| | | |
Collapse
|
4
|
Ye Y, Zhang L, Hong X, Chen M, Liu X, Zhou S. Interspecies ecological competition rejuvenates decayed Geobacter electroactive biofilm. THE ISME JOURNAL 2024; 18:wrae118. [PMID: 38916438 PMCID: PMC11227281 DOI: 10.1093/ismejo/wrae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/26/2024]
Abstract
Bioelectrochemical systems (BESs) exploit electroactive biofilms (EABs) for promising applications in biosensing, wastewater treatment, energy production, and chemical biosynthesis. However, during the operation of BESs, EABs inevitably decay. Seeking approaches to rejuvenate decayed EABs is critical for the sustainability and practical application of BESs. Prophage induction has been recognized as the primary reason for EAB decay. Herein, we report that introducing a competitive species of Geobacter uraniireducens suspended prophage induction in Geobacter sulfurreducens and thereby rejuvenated the decayed G. sulfurreducens EAB. The transcriptomic profile of G. sulfurreducens demonstrated that the addition of G. uraniireducens significantly affected the expression of metabolism- and stress response system-related genes and in particular suppressed the induction of phage-related genes. Mechanistic analyses revealed that interspecies ecological competition exerted by G. uraniireducens suppressed prophage induction. Our findings not only reveal a novel strategy to rejuvenate decayed EABs, which is significant for the sustainability of BESs, but also provide new knowledge for understanding phage-host interactions from an ecological perspective, with implications for developing therapies to defend against phage attack.
Collapse
Affiliation(s)
- Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaohui Hong
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Liu X, Ye Y, Yang N, Cheng C, Rensing C, Jin C, Nealson KH, Zhou S. Nonelectroactive clostridium obtains extracellular electron transfer-capability after forming chimera with Geobacter. ISME COMMUNICATIONS 2024; 4:ycae058. [PMID: 38770058 PMCID: PMC11104457 DOI: 10.1093/ismeco/ycae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Extracellular electron transfer (EET) of microorganisms is a major driver of the microbial growth and metabolism, including reactions involved in the cycling of C, N, and Fe in anaerobic environments such as soils and sediments. Understanding the mechanisms of EET, as well as knowing which organisms are EET-capable (or can become so) is fundamental to electromicrobiology and geomicrobiology. In general, Gram-positive bacteria very seldomly perform EET due to their thick non-conductive cell wall. Here, we report that a Gram-positive Clostridium intestinale (C.i) attained EET-capability for ethanol metabolism only after forming chimera with electroactive Geobacter sulfurreducens (G.s). Mechanism analyses demonstrated that the EET was possible after the cell fusion of the two species was achieved. Under these conditions, the ethanol metabolism pathway of C.i was integrated by the EET pathway of G.s, by which achieved the oxidation of ethanol for the subsequent reduction of extracellular electron acceptors in the coculture. Our study displays a new approach to perform EET for Gram-positive bacteria via recruiting the EET pathway of an electroactive bacterium, which suggests a previously unanticipated prevalence of EET in the microbial world. These findings also provide new perspectives to understand the energetic coupling between bacterial species and the ecology of interspecies mutualisms.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Naiming Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chen Cheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Kenneth H Nealson
- Department of Earth Science & Biological Sciences, University of Southern California, Los Angeles, CA 91030, United States
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Zhou H, Xuanyuan X, Lv X, Wang J, Feng K, Chen C, Ma J, Xing D. Mechanisms of magnetic sensing and regulating extracellular electron transfer of electroactive bacteria under magnetic fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165104. [PMID: 37356761 DOI: 10.1016/j.scitotenv.2023.165104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Electroactive bacteria can display notable plasticity in their response to magnetic field (MF), which prompted bioelectrochemical system as promising candidates for magnetic sensor applications. In this study, we explored the sensing and stimulatory effect of MF on current generation by Geobacter sulfurreducens, and elucidated the related molecular mechanism at the transcriptomic level. MF treatment significantly enhanced electricity generation and overall energy efficiency of G. sulfurreducens by 50 % and 22 %, respectively. The response of current to MFs was instantaneous and reversible. Cyclic voltammetry analysis of the anode biofilm revealed that the redox couples changed from -0.31 to -0.39 V (vs. Ag/AgCl), suggesting that MFs could alter electron transfer related components. Differential gene expression analysis further verified this hypothesis, genes associated with electron transfer were upregulated in G. sulfurreducens under MF treatment relative to the control group, specifically, genes encoding periplasmic c-type cytochromes (ppcA and ppcD), outer membrane cytochrome (omcF, omcZ, omcB), pili (pilA-C, pilM, and pilV2), and ribosome. The enhanced bacterial extracellular electron transfer process was also linked to the overexpression of the NADH dehydrogenase I subunit, the ABC transporter, transcriptional regulation, and ATP synthase. Overall, our findings shed light on the molecular mechanism underlying the effects of magnetic field stimuli on EAB and provide a theoretical basis for its further application in magnetic sensors and other biological system.
Collapse
Affiliation(s)
- Huihui Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xianwen Xuanyuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xiaowei Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| |
Collapse
|
7
|
Liu X, Ye Y, Zhang Z, Rensing C, Zhou S, Nealson KH. Prophage Induction Causes Geobacter Electroactive Biofilm Decay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6196-6204. [PMID: 36997849 DOI: 10.1021/acs.est.2c08443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Sustaining a metabolically active electroactive biofilm (EAB) is essential for the high efficiency and durable operation of microbial fuel cells (MFCs). However, EABs usually decay during long-term operation, and, until now, the causes remain unknown. Here, we report that lysogenic phages can cause EAB decay in Geobacter sulfurreducens fuel cells. A cross-streak agar assay and bioinformatic analysis revealed the presence of prophages on the G. sulfurreducens genome, and a mitomycin C induction assay revealed the lysogenic to lytic transition of those prophages, resulting in a progressive decay in both current generation and the EAB. Furthermore, the addition of phages purified from decayed EAB resulted in accelerated decay of the EAB, thereafter contributing to a faster decline in current generation; otherwise, deleting prophage-related genes rescued the decay process. Our study provides the first evidence of an interaction between phages and electroactive bacteria and suggests that attack by phages is a primary cause of EAB decay, having significant implications in bioelectrochemical systems.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yin Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhishuai Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Fessler M, Madsen JS, Zhang Y. Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Front Microbiol 2023; 14:1150091. [PMID: 37007462 PMCID: PMC10063792 DOI: 10.3389/fmicb.2023.1150091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Geobacter sulfurreducens is part of a specialized group of microbes with the unique ability to exchange electrons with insoluble materials, such as iron oxides and electrodes. Therefore, G. sulfurreducens plays an essential role in the biogeochemical iron cycle and microbial electrochemical systems. In G. sulfurreducens this ability is primarily dependent on electrically conductive nanowires that link internal electron flow from metabolism to solid electron acceptors in the extracellular environment. Here we show that when carrying conjugative plasmids, which are self-transmissible plasmids that are ubiquitous in environmental bacteria, G. sulfurreducens reduces insoluble iron oxides at much slower rates. This was the case for all three conjugative plasmids tested (pKJK5, RP4 and pB10). Growth with electron acceptors that do not require expression of nanowires was, on the other hand, unaffected. Furthermore, iron oxide reduction was also inhibited in Geobacter chapellei, but not in Shewanella oneidensis where electron export is nanowire-independent. As determined by transcriptomics, presence of pKJK5 reduces transcription of several genes that have been shown to be implicated in extracellular electron transfer in G. sulfurreducens, including pilA and omcE. These results suggest that conjugative plasmids can in fact be very disadvantageous for the bacterial host by imposing specific phenotypic changes, and that these plasmids may contribute to shaping the microbial composition in electrode-respiring biofilms in microbial electrochemical reactors.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Yifeng Zhang,
| |
Collapse
|
9
|
Han S, Tang R, Yang S, Xie CJ, Narsing Rao MP, Rensing C, Liu GH, Zhou SG. Geothrix oryzisoli sp. nov., a ferric iron-reducing bacterium isolated from paddy soil. Antonie Van Leeuwenhoek 2023; 116:477-486. [PMID: 36897496 DOI: 10.1007/s10482-023-01817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/18/2023] [Indexed: 03/11/2023]
Abstract
An anaerobic, Gram-staining-negative, rod-shaped, Fe(III)-reducing strain, designated SG189T, was isolated from paddy soil in Fujian Province, China. Growth occurred at 20-35 ℃ (optimum 30 ℃), pH 6.5-8.0 (optimum 7.0) and 0-0.2% (w/v) NaCl (optimum 0%). The strain SG189T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix fermentans DSM 14018T (98.9%), "Geothrix terrae" SG184T (99.0%) and "Geothrix alkalitolerans" SG263T (99.3%). ANI and dDDH values between strain SG189T and the most closely related Geothrix species were 86.5-87.1% and 31.5-32.9%, which lower than the cut-off values (ANI 95-96% and dDDH 70%) for prokaryotic species delineation. Further, genome-based phylogenomic trees constructed using 81 core genes (UBCG2) and 120 conserved genes (GTDB) showed that strain SG189T formed a clade with members of the genus Geothrix. The menaquinone was shown to be MK-8, and the major fatty acids were iso-C15:0 and iso-C13:0 3OH. The genomic DNA G + C content was 68.2%. Additionally, we found that strain SG189T possessed ability to reduce ferric iron, and strain SG189T could reduce 10 mM of ferric citrate in 10 days with lactate as the sole electron donor. Based on the observed physiological and biochemical properties, chemotaxonomic characteristics, ANI and dDDH values, SG189T represents a novel species of the genus Geothrix, for which the name Geothrix oryzisoli sp. nov. is proposed. The type strain is SG189T (= GDMCC 1.3408T = JCM 39324T).
Collapse
Affiliation(s)
- Shuang Han
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Rong Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Shang Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Cheng-Jie Xie
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Manik Prabhu Narsing Rao
- Programa de Doctorado en Ciencias Aplicadas, Universidad Autónoma de Chile, Talca, 3460000, Chile
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China
| | - Guo-Hong Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, Fujian, People's Republic of China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Pérgola M, Sacco NJ, Bonetto MC, Galagovsky L, Cortón E. A laboratory experiment for science courses: Sedimentary microbial fuel cells. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 51:221-229. [PMID: 36495269 DOI: 10.1002/bmb.21702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Nowadays there is a concern to improve the quality of education by including an interdisciplinary approach of concepts and their integration in the curriculum of scientific disciplines. The development of microbial fuel cells as a potential alternative for production of renewable energies gives undergraduate students the challenge of integrating interdisciplinary concepts in a hot topic of global interest as alternative energies. We present a laboratory experiment that has been part of a third-year undergraduate course in biology where students gained experience in assembling microbial fuel cells and the understanding of how they work. In this process, the students could integrate biological, biochemical, and electric concepts. In addition, the acquisition of manual skills and experimental design decisions are important for the development of future professionals.
Collapse
Affiliation(s)
- Martín Pérgola
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Centro de Formación e Investigación en Enseñanza de las Ciencias. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Natalia J Sacco
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - M Celina Bonetto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), Buenos Aires, Argentina
| | - Lydia Galagovsky
- Centro de Formación e Investigación en Enseñanza de las Ciencias. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Cortón
- Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
|
12
|
Huang TY, Lim HL. Electrogenic Staphylococcus warneri in lactate-rich skin. Biochem Biophys Res Commun 2022; 618:67-72. [PMID: 35716597 DOI: 10.1016/j.bbrc.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
The electrogenicity of environmental bacteria has been thoroughly explored and has been known to have the unique capability of decomposing hazardous chemicals for environmental remediation. However, electrogenic bacteria in human skin in regards to their electrical properties and locations have not yet been determined. Here, electrodermal activities and metabolite compositions at different locations of arm skin were assessed. Compared to the uppermost part of arm, we found that the forearm elicited high electrodermal activity and carried abundant lactate and alpha-ketoglutarate, two components commonly present in sweat. Upon culturing bacteria from the forearm, an iron-resistant strain of Staphylococcus warneri (S. warneri) was identified through 16S ribosomal RNA sequencing. Voltage changes induced by S. warneri in the presence of glucose were detected by two voltmeters of different electrode materials, demonstrating the electrogenicity of skin bacteria. Furthermore, we discovered that S. warneri has the ability to metabolize lactate to generate electricity. The results of this study reveal changes in skin conductance caused by bacterial electricity that are mediated by skin endogenous molecules and may provide a novel method of monitoring environmental skin insults.
Collapse
|
13
|
Jing X, Liu X, Zhang Z, Wang X, Rensing C, Zhou S. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens. WATER RESEARCH 2022; 208:117860. [PMID: 34798422 DOI: 10.1016/j.watres.2021.117860] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The present nitrogen fixation industry is usually energy-intensive and environmentally detrimental. Therefore, it is appealing to find alternatives. Here, we achieved both a synchronized biological nitrogen fixation and electric energy production by using Geobacter sulfurreducens in a microbial electrochemical system. The results showed that G. sulfurreducens was able to fix nitrogen depending on anode respiration, producing a maximum current density of 0.17 ± 0.015 mA cm-2 and a nitrogen-fixing activity of ca. 0.78 μmol C2H4 mg protein-1 h-1, thereby achieving a net total nitrogen-fixing rate of ca. 5.6 mg L-1 day-1. Specifically, nitrogen fixation did not impair coulombic efficiency. Transcriptomic and metabolic analyses demonstrated that anode respiration provided sufficient energy to drive nitrogen fixation, and in turn nitrogen fixation promoted anode respiration of the cell by increasing acetate catabolism but reducing acetate anabolism. Furthermore, we showed that G. sulfurreducens could be supplied in a bioelectrochemical system for N-deficient wastewater treatment to relieve N-deficiency stress contributing to the formation of an electroactive biofilm, thereby simultaneously achieving nitrogen fixation, current generation and dissoluble organic carbon removal. Our study revealed a synergistic effect between biological nitrogen fixation and current generation by G. sulfurreducens, providing a green nitrogen fixation alternative through shifting the nitrogen fixation field from energy consumption to energy production and having implications for N-deficient wastewater treatment.
Collapse
Affiliation(s)
- Xianyue Jing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| | - Zhishuai Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, China.
| |
Collapse
|
14
|
Redwan AM, Millerick K. Anaerobic bacterial responses to carbonaceous materials and implications for contaminant transformation: Cellular, metabolic, and community level findings. BIORESOURCE TECHNOLOGY 2021; 341:125738. [PMID: 34474238 DOI: 10.1016/j.biortech.2021.125738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Carbonaceous materials (CM) enhance the abundance and activity of bacteria capable of persistent organic (micro)pollutant (POP) degradation. This review synthesizes anaerobic bacterial responses to minimally modified CM in non-fuel cell bioremediation applications at three stages: attachment, metabolism, and biofilm genetic composition. Established relationships between biological behavior and CM surface properties are identified, but temporal relationships are not well understood, making it difficult to connect substratum properties and "pioneer" bacteria with mature microorganism-CM systems. Stark differences in laboratory methodology at each temporal stage results in observational, but not causative, linkages as system complexity increases. This review is the first to critically examine relationships between material and cellular properties with respect to time. The work highlights critical knowledge gaps that must be addressed to accurately predict microorganism-CM behavior and to tailor CM properties for optimized microbial activity, critical frontiers in establishing this approach as an effective bioremediation strategy.
Collapse
Affiliation(s)
- Asef Mohammad Redwan
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, TX, United States
| | - Kayleigh Millerick
- Department of Civil, Environmental & Construction Engineering, Texas Tech University, TX, United States.
| |
Collapse
|
15
|
Cytochrome OmcS is not essential for extracellular electron transport via conductive pili in Geobacter sulfurreducens strain KN400. Appl Environ Microbiol 2021; 88:e0162221. [PMID: 34669448 DOI: 10.1128/aem.01622-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multi-heme c-type cytochrome OmcS is one of the central components for extracellular electron transport in Geobacter sulfurreducens strain DL-1, but its role in other microbes, including other strains of G. sulfurreducens is currently a matter of debate. Therefore, we investigated the function of OmcS in G. sulfurreducens strain KN400, which is even more effective in extracellular electron transfer than strain DL-1. We found that deleting omcS from strain KN400 did not negatively impact the rate of Fe(III) oxide reduction and that the cells expressed conductive filaments. Replacing the wild-type pilin gene with the aro-5 pilin gene eliminated the OmcS-deficient strain's ability for electron transport to insoluble electron acceptors and diminished filament conductivity. These results are consistent with the concept that electrically conductive pili are the primary conduit for long-range electron transfer in G. sulfurreducens and closely related species. These findings, coupled with the lack of OmcS homologs in most other microbes capable of extracellular electron transfer, suggest that OmcS is not a common critical component for extracellular electron transfer. Importance OmcS has been widely studied and noted to be one of the key components for extracellular electron exchange by Geobacter sulfurreducens strain DL-1. However, the true importance of OmcS warrants further investigation as it is well-known that very few bacteria, even within the Geobacteraceae family, contain OmcS homologs, and many bacteria capable of extracellular electron transfer lack an abundance of any type of outer-surface c-type cytochrome. In addition, there is much debate regarding the importance of OmcS filaments in the mechanism of extracellular electron transport to insoluble electron acceptors by G. sulfurreducens. It has been suggested that filaments comprised of OmcS, rather than e-pili, are the predominant conductive filaments expressed by G. sulfurreducens. However, the results presented in this manuscript, along with multiple other lines of evidence, indicate that OmcS filaments cannot be the primary conductive protein nanowires expressed by G. sulfurreducens.
Collapse
|
16
|
Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature 2021; 597:430-434. [PMID: 34471289 PMCID: PMC9127704 DOI: 10.1038/s41586-021-03857-w] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Extracellular electron transfer by Geobacter species through surface appendages known as microbial nanowires1 is important in a range of globally important environmental phenomena2, as well as for applications in bio-remediation, bioenergy, biofuels and bioelectronics. Since 2005, these nanowires have been thought to be type 4 pili composed solely of the PilA-N protein1. However, previous structural analyses have demonstrated that, during extracellular electron transfer, cells do not produce pili but rather nanowires made up of the cytochromes OmcS2,3 and OmcZ4. Here we show that Geobacter sulfurreducens binds PilA-N to PilA-C to assemble heterodimeric pili, which remain periplasmic under nanowire-producing conditions that require extracellular electron transfer5. Cryo-electron microscopy revealed that C-terminal residues of PilA-N stabilize its copolymerization with PilA-C (to form PilA-N-C) through electrostatic and hydrophobic interactions that position PilA-C along the outer surface of the filament. PilA-N-C filaments lack π-stacking of aromatic side chains and show a conductivity that is 20,000-fold lower than that of OmcZ nanowires. In contrast with surface-displayed type 4 pili, PilA-N-C filaments show structure, function and localization akin to those of type 2 secretion pseudopili6. The secretion of OmcS and OmcZ nanowires is lost when pilA-N is deleted and restored when PilA-N-C filaments are reconstituted. The substitution of pilA-N with the type 4 pili of other microorganisms also causes a loss of secretion of OmcZ nanowires. As all major phyla of prokaryotes use systems similar to type 4 pili, this nanowire translocation machinery may have a widespread effect in identifying the evolution and prevalence of diverse electron-transferring microorganisms and in determining nanowire assembly architecture for designing synthetic protein nanowires.
Collapse
|
17
|
Lovley DR, Holmes DE. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat Rev Microbiol 2021; 20:5-19. [PMID: 34316046 DOI: 10.1038/s41579-021-00597-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/03/2023]
Abstract
Electroactive microorganisms markedly affect many environments in which they establish outer-surface electrical contacts with other cells and minerals or reduce soluble extracellular redox-active molecules such as flavins and humic substances. A growing body of research emphasizes their broad phylogenetic diversity and shows that these microorganisms have key roles in multiple biogeochemical cycles, as well as the microbiome of the gut, anaerobic waste digesters and metal corrosion. Diverse bacteria and archaea have independently evolved cytochrome-based strategies for electron exchange between the outer cell surface and the cell interior, but cytochrome-free mechanisms are also prevalent. Electrically conductive protein filaments, soluble electron shuttles and non-biological conductive materials can substantially extend the electronic reach of microorganisms beyond the surface of the cell. The growing appreciation of the diversity of electroactive microorganisms and their unique electronic capabilities is leading to a broad range of applications.
Collapse
Affiliation(s)
- Derek R Lovley
- Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, China. .,Department of Microbiology, University of Massachusetts, Amherst, MA, USA. .,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA.,Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, USA.,Department of Physical and Biological Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
18
|
Liu X, Zhan J, Liu L, Gan F, Ye J, Nealson KH, Rensing C, Zhou S. In Situ Spectroelectrochemical Characterization Reveals Cytochrome-Mediated Electric Syntrophy in Geobacter Coculture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10142-10151. [PMID: 34196176 DOI: 10.1021/acs.est.1c00356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct interspecies electron transfer (DIET) between microbial species prevails in some key microbial consortia. However, the electron transfer mechanism(s) in these consortia is controversial due to lack of efficient characterization methods. Here, we provide an in situ anaerobic spectroelectrochemical coculture cell (in situ ASCC) to induce the formation of DIET coculture biofilm on the interdigitated microelectrode arrays and characterize the electron transfer directly. Two typical Geobacter DIET cocultures, Geobacter metallireducens and wild-type Geobacter sulfurreducens (G.m&G.s) and G. metallireducens and a G. sulfurreducens strain deficient in citrate synthase (G.m&G.s-ΔgltA), were selected. In situ Raman and electrochemical Fourier transform infrared (FTIR) spectroscopy indicated that cytochromes are abundant in the electric syntrophic coculture. Cyclic voltammetry and potential step experiment revealed a diffusion-controlled electron transfer process and the electrochemical gating measurements further demonstrated a cytochrome-mediated electron transfer in the DIET coculture. Furthermore, the G.m&G.s-ΔgltA coculture displayed a higher redox conductivity than the G.m&G.s coculture, consistent with the existence of an intimate and efficient electrical connection between these two species. Our findings provide the first report of a redox-gradient-driven electron transport facilitated by c-type cytochromes in DIET coculture, supporting the model that DIET is mediated by cytochromes and suggest a platform to explore the other DIET consortia.
Collapse
Affiliation(s)
- Xing Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Zhan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lu Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feiting Gan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kenneth H Nealson
- Department of Earth Science, University of Southern California, Los Angeles, California 90007, United States
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Dissecting the Structural and Conductive Functions of Nanowires in Geobacter sulfurreducens Electroactive Biofilms. mBio 2021; 13:e0382221. [PMID: 35164556 PMCID: PMC8844916 DOI: 10.1128/mbio.03822-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Conductive nanowires are thought to contribute to long-range electron transfer (LET) in Geobacter sulfurreducens anode biofilms. Three types of nanowires have been identified: pili, OmcS, and OmcZ. Previous studies highlighted their conductive function in anode biofilms, yet a structural function also has to be considered. We present here a comprehensive analysis of the function of nanowires in LET by inhibiting the expression of each nanowire. Meanwhile, flagella with poor conductivity were expressed to recover the structural function but not the conductive function of nanowires in the corresponding nanowire mutant strain. The results demonstrated that pili played a structural but not a conductive function in supporting biofilm formation. In contrast, the OmcS nanowire played a conductive but not a structural function in facilitating electron transfer in the biofilm. The OmcZ nanowire played both a structural and a conductive function to contribute to current generation. Expression of the poorly conductive flagellum was shown to enhance biofilm formation, subsequently increasing current generation. These data support a model in which multiheme cytochromes facilitate long-distance electron transfer in G. sulfurreducens biofilms. Our findings also suggest that the formation of a thicker biofilm, which contributed to a higher current generation by G. sulfurreducens, was confined by the biofilm formation deficiency, and this has applications in microbial electrochemical systems. IMPORTANCE The low power generation of microbial fuel cells limits their utility. Many factors can affect power generation, including inefficient electron transfer in the anode biofilm. Thus, understanding the mechanism(s) of electron transfer provides a pathway for increasing the power density of microbial fuel cells. Geobacter sulfurreducens was shown to form a thick biofilm on the anode. Cells far away from the anode reduce the anode through long-range electron transfer. Based on their conductive properties, three types of nanowires have been hypothesized to directly facilitate long-range electron transfer: pili, OmcS, and OmcZ nanowires. However, their structural contributions to electron transfer in anode biofilm have not been elucidated. Based on studies of mutants lacking one or more of these facilitators, our results support a cytochrome-mediated electron transfer process in Geobacter biofilms and highlight the structural contribution of nanowires in anode biofilm formation, which contributes to biofilm formation and current generation, thereby providing a strategy to increase current generation.
Collapse
|
20
|
Zhang F, Battaglia-Brunet F, Hellal J, Joulian C, Gautret P, Motelica-Heino M. Impact of Fe(III) (Oxyhydr)oxides Mineralogy on Iron Solubilization and Associated Microbial Communities. Front Microbiol 2020; 11:571244. [PMID: 33329429 PMCID: PMC7715016 DOI: 10.3389/fmicb.2020.571244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Iron-reducing bacteria (IRB) are strongly involved in Fe cycling in surface environments. Transformation of Fe and associated trace elements is strongly linked to the reactivity of various iron minerals. Mechanisms of Fe (oxyhydr)oxides bio-reduction have been mostly elucidated with pure bacterial strains belonging to Geobacter or Shewanella genera, whereas studies involving mixed IRB populations remain scarce. The present study aimed to evaluate the iron reducing rates of IRB enriched consortia originating from complex environmental samples, when grown in presence of Fe (oxyhydr)oxides of different mineralogy. The abundances of Geobacter and Shewanella were assessed in order to acquire knowledge about the abundance of these two genera in relation to the effects of mixed IRB populations on kinetic control of mineralogical Fe (oxyhydr)oxides reductive dissolution. Laboratory experiments were carried out with two freshly synthetized Fe (oxyhydr)oxides presenting contrasting specific surfaces, and two defined Fe-oxides, i.e., goethite and hematite. Three IRB consortia were enriched from environmental samples from a riverbank subjected to cyclic redox oscillations related to flooding periods (Decize, France): an unsaturated surface soil, a flooded surface soil and an aquatic sediment, with a mixture of organic compounds provided as electron donors. The consortia could all reduce iron-nitrilotriacetate acid (Fe(III)-NTA) in 1–2 days. When grown on Fe (oxyhydr)oxides, Fe solubilization rates decreased as follows: fresh Fe (oxyhydr)oxides > goethite > hematite. Based on a bacterial rrs gene fingerprinting approach (CE-SSCP), bacterial community structure in presence of Fe(III)-minerals was similar to those of the site sample communities from which they originated but differed from that of the Fe(III)-NTA enrichments. Shewanella was more abundant than Geobacter in all cultures. Its abundance was higher in presence of the most efficiently reduced Fe (oxyhydr)oxide than with other Fe(III)-minerals. Geobacter as a proportion of the total community was highest in the presence of the least easily solubilized Fe (oxyhydr)oxides. This study highlights the influence of Fe mineralogy on the abundance of Geobacter and Shewanella in relation to Fe bio-reduction kinetics in presence of a complex mixture of electron donors.
Collapse
Affiliation(s)
- Fengfeng Zhang
- Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, Orléans, France.,BRGM, Orléans, France
| | | | | | | | | | | |
Collapse
|
21
|
Zhuang Z, Yang G, Mai Q, Guo J, Liu X, Zhuang L. Physiological potential of extracellular polysaccharide in promoting Geobacter biofilm formation and extracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140365. [PMID: 32610234 DOI: 10.1016/j.scitotenv.2020.140365] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Geobacter sulfurreducens biofilms have promising applications in renewable energy, pollutant bioremediation, and bioelectronic applications. Genetically manipulating G. sulfurreducens biofilms is an effective strategy to improve the capacity of extracellular electron transfer (EET). Extracellular polysaccharide, a sticky component surrounding microbes, plays an important role in EET. Herein, we constructed a mutant of G. sulfurreducens strain PCA overexpressing the gene GSU1501 (part of the ATP-dependent exporter of the polysaccharide biosynthesis gene operon), designated strain PCA-1501, to increase EET capacity. Experimental results showed that the overexpression of GSU1501 increased extracellular polysaccharide secretion by 25.5%, which promoted the formation of biofilm with higher thickness and viability, as well as the content of extracellular c-type cytochromes. Compared with the control strain, the mutant showed a higher capacity of Fe(III) oxide reduction and current generation (increased by 20.4% and 22.2%, respectively). Interestingly, the overexpression of GSU1501 hindered the pili formation by reducing the transcription level of pilA; a compensatory relationship between extracellular polysaccharide and pili in promoting biofilm formation deserves further investigation. This study provides a feasible method to promote the EET capacity of G. sulfurreducens biofilms, which benefit their bioelectrochemical applications.
Collapse
Affiliation(s)
- Zheng Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Qijun Mai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Junhui Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xing Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
22
|
Lovley DR, Holmes DE. Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own. J Bacteriol 2020; 202:e00331-20. [PMID: 32747429 PMCID: PMC7515249 DOI: 10.1128/jb.00331-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electrically conductive protein nanowires appear to be widespread in the microbial world and are a revolutionary "green" material for the fabrication of electronic devices. Electrically conductive pili (e-pili) assembled from type IV pilin monomers have independently evolved multiple times in microbial history as have electrically conductive archaella (e-archaella) assembled from homologous archaellin monomers. A role for e-pili in long-range (micrometer) extracellular electron transport has been demonstrated in some microbes. The surprising finding of e-pili in syntrophic bacteria and the role of e-pili as conduits for direct interspecies electron transfer have necessitated a reassessment of routes for electron flux in important methanogenic environments, such as anaerobic digesters and terrestrial wetlands. Pilin monomers similar to those found in e-pili may also be a major building block of the conductive "cables" that transport electrons over centimeter distances through continuous filaments of cable bacteria consisting of a thousand cells or more. Protein nanowires harvested from microbes have many functional and sustainability advantages over traditional nanowire materials and have already yielded novel electronic devices for sustainable electricity production, neuromorphic memory, and sensing. e-pili can be mass produced with an Escherichia coli chassis, providing a ready source of material for electronics as well as for studies on the basic mechanisms for long-range electron transport along protein nanowires. Continued exploration is required to better understand the electrification of microbial communities with microbial nanowires and to expand the "green toolbox" of sustainable materials for wiring and powering the emerging "Internet of things."
Collapse
Affiliation(s)
- Derek R Lovley
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Institute of Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Dawn E Holmes
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, USA
| |
Collapse
|