1
|
Trouve J, Zapun A, Bellard L, Juillot D, Pelletier A, Freton C, Baudoin M, Carballido-Lopez R, Campo N, Wong YS, Grangeasse C, Morlot C. DivIVA controls the dynamics of septum splitting and cell elongation in Streptococcus pneumoniae. mBio 2024; 15:e0131124. [PMID: 39287436 PMCID: PMC11481917 DOI: 10.1128/mbio.01311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Bacterial shape and division rely on the dynamics of cell wall assembly, which involves regulated synthesis and cleavage of the peptidoglycan. In ovococci, these processes are coordinated within an annular mid-cell region with nanometric dimensions. More precisely, the cross-wall synthesized by the divisome is split to generate a lateral wall, whose expansion is insured by the insertion of the so-called peripheral peptidoglycan by the elongasome. Septum cleavage and peripheral peptidoglycan synthesis are, thus, crucial remodeling events for ovococcal cell division and elongation. The structural DivIVA protein has long been known as a major regulator of these processes, but its mode of action remains unknown. Here, we integrate click chemistry-based peptidoglycan labeling, direct stochastic optical reconstruction microscopy, and in silico modeling, as well as epifluorescence and stimulated emission depletion microscopy to investigate the role of DivIVA in Streptococcus pneumoniae cell morphogenesis. Our work reveals two distinct phases of peptidoglycan remodeling during the cell cycle that are differentially controlled by DivIVA. In particular, we show that DivIVA ensures homogeneous septum cleavage and peripheral peptidoglycan synthesis around the division site and their maintenance throughout the cell cycle. Our data additionally suggest that DivIVA impacts the contribution of the elongasome and class A penicillin-binding proteins to cell elongation. We also report the position of DivIVA on either side of the septum, consistent with its known affinity for negatively curved membranes. Finally, we take the opportunity provided by these new observations to propose hypotheses for the mechanism of action of this key morphogenetic protein.IMPORTANCEThis study sheds light on fundamental processes governing bacterial growth and division, using integrated click chemistry, advanced microscopy, and computational modeling approaches. It addresses cell wall synthesis mechanisms in the opportunistic human pathogen Streptococcus pneumoniae, responsible for a range of illnesses (otitis, pneumonia, meningitis, septicemia) and for one million deaths every year worldwide. This bacterium belongs to the morphological group of ovococci, which includes many streptococcal and enterococcal pathogens. In this study, we have dissected the function of DivIVA, which is a structural protein involved in cell division, morphogenesis, and chromosome partitioning in Gram-positive bacteria. This work unveils the role of DivIVA in the orchestration of cell division and elongation along the pneumococcal cell cycle. It not only enhances our understanding of how ovoid bacteria proliferate but also offers the opportunity to consider how DivIVA might serve as a scaffold and sensor for particular membrane regions, thereby participating in various cell cycle processes.
Collapse
Affiliation(s)
| | - André Zapun
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Laure Bellard
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Dimitri Juillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Anais Pelletier
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | - Celine Freton
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | | | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nathalie Campo
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre de Biologie Intégrative, Centre National de la Recherche Scientifique, Toulouse, France
- Université Paul Sabatier (Toulouse III), Toulouse, France
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, Université Lyon 1, UMR 5086, Lyon, France
| | - Cecile Morlot
- Université Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| |
Collapse
|
2
|
Nelson ME, Little JL, Kristich CJ. Pbp4 provides transpeptidase activity to the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in Enterococcus faecalis. Antimicrob Agents Chemother 2024; 68:e0055524. [PMID: 39058024 PMCID: PMC11373202 DOI: 10.1128/aac.00555-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Enterococci exhibit intrinsic resistance to cephalosporins, mediated in part by the class B penicillin-binding protein (bPBP) Pbp4 that exhibits low reactivity toward cephalosporins and thus can continue crosslinking peptidoglycan despite exposure to cephalosporins. bPBPs partner with cognate SEDS (shape, elongation, division, and sporulation) glycosyltransferases to form the core catalytic complex of peptidoglycan synthases that synthesize peptidoglycan at discrete cellular locations, although the SEDS partner for Pbp4 is unknown. SEDS-bPBP peptidoglycan synthases of enterococci have not been studied, but some SEDS-bPBP pairs can be predicted based on sequence similarity. For example, FtsW (SEDS)-PbpB (bPBP) is predicted to form the catalytic core of the peptidoglycan synthase that functions at the division septum (the divisome). However, PbpB is readily inactivated by cephalosporins, raising the question-how could the FtsW-PbpB synthase continue functioning to enable growth in the presence of cephalosporins? In this work, we report that the FtsW-PbpB peptidoglycan synthase is required for cephalosporin resistance of Enterococcus faecalis, despite the fact that PbpB is inactivated by cephalosporins. Moreover, Pbp4 associates with the FtsW-PbpB synthase and the TPase activity of Pbp4 is required to enable growth in the presence of cephalosporins in an FtsW-PbpB-synthase-dependent manner. Overall, our results implicate a model in which Pbp4 directly interacts with the FtsW-PbpB peptidoglycan synthase to provide TPase activity during cephalosporin treatment, thereby maintaining the divisome SEDS-bPBP peptidoglycan synthase in a functional state competent to synthesize crosslinked peptidoglycan. These results suggest that two bPBPs coordinate within the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in E. faecalis.
Collapse
Affiliation(s)
- Madison E Nelson
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jaime L Little
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
4
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. Proc Natl Acad Sci U S A 2024; 121:e2401831121. [PMID: 38875147 PMCID: PMC11194595 DOI: 10.1073/pnas.2401831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
Affiliation(s)
- Amilcar J. Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Melissa M. Lamanna
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Marc A. Touraev
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | - Julia E. Page
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Sidney L. Shaw
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| | | | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN47405
| |
Collapse
|
5
|
Perez AJ, Xiao J. Stay on track - revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging. Curr Opin Microbiol 2024; 79:102490. [PMID: 38821027 PMCID: PMC11162910 DOI: 10.1016/j.mib.2024.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Perez AJ, Lamanna MM, Bruce KE, Touraev MA, Page JE, Shaw SL, Tsui HCT, Winkler ME. Elongasome core proteins and class A PBP1a display zonal, processive movement at the midcell of Streptococcus pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575112. [PMID: 38328058 PMCID: PMC10849506 DOI: 10.1101/2024.01.10.575112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed non-processive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.
Collapse
|
7
|
Zhu L, Liang J, Zheng Y, Chen S, Xu Q, Yin S, Hong Y, Cao W, Lai W, Gong Z. Combined mutations of the penA with ftsX genes contribute to ceftriaxone resistance in Neisseria gonorrhoeae and peptide nucleic acids targeting these genes reverse ceftriaxone resistance. J Glob Antimicrob Resist 2023; 35:19-25. [PMID: 37567469 DOI: 10.1016/j.jgar.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES To investigate the gene mutations associated with ceftriaxone (CRO) resistance among gonococcal isolates, and to determine the effects of the mutated genes on CRO minimum inhibitory concentrations (MICs) with transformation assays and antisense peptide nucleic acids (asPNAs). METHODS Ceftriaxone-resistant (CROR) and ceftriaxone-susceptible (CROS) isolates were identified using EUCAST and paired according to similarity in their MICs to other antimicrobials. The two groups of gonococci were sequenced and analysed. Mutated genes that showed a statistical difference between the two groups were transformed into gonococcal reference strains to determine their functions. AsPNAs were designed and transformed into the former transformant to further confirm the effects of the mutated genes. RESULTS Twenty-two paired CROR and CROS isolates were obtained. The incidence of the penA-A501T and penA-G542S mutations individually, as well as combined mutations (penA-A501T and ftsX-R251H, penA-G542S and ftsX R251H), was statistically different between the two groups. The MIC of ATCC43069 (A43) increased 2 times following transformation with penA-A501T, and the MICs of A43 and ATCC49226 (A49) increased 32 times and 2 times following transformation with penA-A501T and ftsX-R251H, respectively. Antisense PNA-P3 reduced the MIC of the A43 transformant most significantly when transformed individually. PNA-P3 and PNA-F1 (asPNAs of the penA and ftsX) restored CRO susceptibility. CONCLUSIONS PenA-A501T and penA-G542S mutations are important in CRO resistance among gonococci isolates. The ftsX-R251H mutation is also related to CRO resistance, and combined mutations of ftsX-R251H and penA-A501T comediate a significant reduction in CRO susceptibility. The combined application of PNA-P3 and PNA-F1 could effectively reverse the resistance to CRO in N. gonorrhoeae.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jingyao Liang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Yue Zheng
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shaochun Chen
- Institute of Dermatology and Hospital for Skin Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Songchao Yin
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yiyong Hong
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenling Cao
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zijian Gong
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Lenoir C, Pelletier A, Manuse S, Millat H, Ducret A, Galinier A, Doan T, Grangeasse C. The morphogenic protein CopD controls the spatio-temporal dynamics of PBP1a and PBP2b in Streptococcus pneumoniae. mBio 2023; 14:e0141123. [PMID: 37728370 PMCID: PMC10653890 DOI: 10.1128/mbio.01411-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE Penicillin-binding proteins (PBPs) are essential for proper bacterial cell division and morphogenesis. The genome of Streptococcus pneumoniae encodes for two class B PBPs (PBP2x and 2b), which are required for the assembly of the peptidoglycan framework and three class A PBPs (PBP1a, 1b and 2a), which remodel the peptidoglycan mesh during cell division. Therefore, their activities should be finely regulated in space and time to generate the pneumococcal ovoid cell shape. To date, two proteins, CozE and MacP, are known to regulate the function of PBP1a and PBP2a, respectively. In this study, we describe a novel regulator (CopD) that acts on both PBP1a and PBP2b. These findings provide valuable information for understanding bacterial cell division. Furthermore, knowing that ß-lactam antibiotic resistance often arises from PBP mutations, the characterization of such a regulator represents a promising opportunity to develop new strategies to resensitize resistant strains.
Collapse
Affiliation(s)
- Cassandra Lenoir
- Molecular Microbiology and Structural Biochemistry, UMR, Université de Lyon, CNRS, Lyon, France
| | - Anaïs Pelletier
- Molecular Microbiology and Structural Biochemistry, UMR, Université de Lyon, CNRS, Lyon, France
| | - Sylvie Manuse
- Molecular Microbiology and Structural Biochemistry, UMR, Université de Lyon, CNRS, Lyon, France
| | - Hugo Millat
- Molecular Microbiology and Structural Biochemistry, UMR, Université de Lyon, CNRS, Lyon, France
| | - Adrien Ducret
- Molecular Microbiology and Structural Biochemistry, UMR, Université de Lyon, CNRS, Lyon, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR, Aix-Marseille Université, CNRS, Marseille, France
| | - Thierry Doan
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR, Aix-Marseille Université, Marseille, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR, Université de Lyon, CNRS, Lyon, France
| |
Collapse
|
9
|
Jiang Q, Li B, Zhang L, Li T, Hu Q, Li H, Zou W, Hu Z, Huang Q, Zhou R. DivIVA Interacts with the Cell Wall Hydrolase MltG To Regulate Peptidoglycan Synthesis in Streptococcus suis. Microbiol Spectr 2023; 11:e0475022. [PMID: 37212666 PMCID: PMC10269899 DOI: 10.1128/spectrum.04750-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/23/2023] [Indexed: 05/23/2023] Open
Abstract
Bacterial morphology is largely determined by the spatial and temporal regulation of peptidoglycan (PG) biosynthesis. Ovococci possess a unique pattern of PG synthesis different from the well studied Bacillus, and the mechanism of the coordination of PG synthesis remains poorly understood. Several regulatory proteins have been identified to be involved in the regulation of ovococcal morphogenesis, among which DivIVA is an important one to regulate PG synthesis in streptococci, while its mechanism is largely unknown. Here, the zoonotic pathogen Streptococcus suis was used to investigate the regulation of DivIVA on PG synthesis. Fluorescent d-amino acid probing and 3D-structured illumination microscopy found that DivIVA deletion caused abortive peripheral PG synthesis, resulting in a decreased aspect ratio. The phosphorylation-depleted mutant (DivIVA3A) cells displayed a longer nascent PG and became longer, whereas the phosphorylation-mimicking mutant (DivIVA3E) cells showed a shorter nascent PG and became shorter, suggesting that DivIVA phosphorylation is involved in regulating peripheral PG synthesis. Several DivIVA-interacting proteins were identified, and the interaction was confirmed between DivIVA and MltG, a cell wall hydrolase essential for cell elongation. DivIVA did not affect the PG hydrolysis activity of MltG, while the phosphorylation state of DivIVA affected its interaction with MltG. MltG was mislocalized in the ΔdivIVA and DivIVA3E cells, and both ΔmltG and DivIVA3E cells formed significantly rounder cells, indicating an important role of DivIVA phosphorylation in regulating PG synthesis through MltG. These findings highlight the regulatory mechanism of PG synthesis and morphogenesis of ovococci. IMPORTANCE The peptidoglycan (PG) biosynthesis pathway provides a rich source of novel antimicrobial drug targets. However, bacterial PG synthesis and its regulation is a very complex process involving dozens of proteins. Moreover, unlike the well studied Bacillus, ovococci undergo unusual PG synthesis with unique mechanisms of coordination. DivIVA is an important regulator of PG synthesis in ovococci, while its exact role in regulating PG synthesis remains poorly understood. In this study, we determined the role of DivIVA in regulating lateral PG synthesis of Streptococcus suis and identified a critical interacting partner, MltG, in which DivIVA influenced the subcellular localizations of MltG through its phosphorylation. Our study characterizes the detailed role of DivIVA in regulating bacterial PG synthesis, which is very helpful for understanding the process of PG synthesis in streptococci.
Collapse
Affiliation(s)
- Qinggen Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Boxi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liangsheng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiao Hu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Haotian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenjin Zou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- International Research Centre for Animal Diseases (MOST), Wuhan, China
| |
Collapse
|
10
|
Nakamoto R, Bamyaci S, Blomqvist K, Normark S, Henriques-Normark B, Sham LT. The divisome but not the elongasome organizes capsule synthesis in Streptococcus pneumoniae. Nat Commun 2023; 14:3170. [PMID: 37264013 DOI: 10.1038/s41467-023-38904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial cell envelope consists of multiple layers, including the peptidoglycan cell wall, one or two membranes, and often an external layer composed of capsular polysaccharides (CPS) or other components. How the synthesis of all these layers is precisely coordinated remains unclear. Here, we identify a mechanism that coordinates the synthesis of CPS and peptidoglycan in Streptococcus pneumoniae. We show that CPS synthesis initiates from the division septum and propagates along the long axis of the cell, organized by the tyrosine kinase system CpsCD. CpsC and the rest of the CPS synthesis complex are recruited to the septum by proteins associated with the divisome (a complex involved in septal peptidoglycan synthesis) but not the elongasome (involved in peripheral peptidoglycan synthesis). Assembly of the CPS complex starts with CpsCD, then CpsA and CpsH, the glycosyltransferases, and finally CpsJ. Remarkably, targeting CpsC to the cell pole is sufficient to reposition CPS synthesis, leading to diplococci that lack CPS at the septum. We propose that septal CPS synthesis is important for chain formation and complement evasion, thereby promoting bacterial survival inside the host.
Collapse
Affiliation(s)
- Rei Nakamoto
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore
| | - Sarp Bamyaci
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, SE-17177, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
| |
Collapse
|
11
|
Gibson PS, Veening JW. Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae. Curr Opin Microbiol 2023; 72:102261. [PMID: 36638546 DOI: 10.1016/j.mib.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.
Collapse
Affiliation(s)
- Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
12
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
13
|
Lund V, Gangotra H, Zhao Z, Sutton JAF, Wacnik K, DeMeester K, Liang H, Santiago C, Leimkuhler Grimes C, Jones S, Foster SJ. Coupling Novel Probes with Molecular Localization Microscopy Reveals Cell Wall Homeostatic Mechanisms in Staphylococcus aureus. ACS Chem Biol 2022; 17:3298-3305. [PMID: 36414253 PMCID: PMC9764285 DOI: 10.1021/acschembio.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Bacterial cell wall peptidoglycan is essential for viability, and its synthesis is targeted by antibiotics, including penicillin. To determine how peptidoglycan homeostasis controls cell architecture, growth, and division, we have developed novel labeling approaches. These are compatible with super-resolution fluorescence microscopy to examine peptidoglycan synthesis, hydrolysis, and the localization of the enzymes required for its biosynthesis (penicillin binding proteins (PBPs)). Synthesis of a cephalosporin-based fluorescent probe revealed a pattern of PBPs at the septum during division, supporting a model of dispersed peptidoglycan synthesis. Metabolic and hydroxylamine-based probes respectively enabled the synthesis of glycan strands and associated reducing termini of the peptidoglycan to be mapped. Foci and arcs of reducing termini appear as a result of both synthesis of glycan strands and glucosaminidase activity of the major peptidoglycan hydrolase, SagB. Our studies provide molecular level details of how essential peptidoglycan dynamics are controlled during growth and division.
Collapse
Affiliation(s)
- Victoria
A. Lund
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Haneesh Gangotra
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Zhen Zhao
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Joshua A. F. Sutton
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katarzyna Wacnik
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kristen DeMeester
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Hai Liang
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia Santiago
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Simon Jones
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Simon J. Foster
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
14
|
Lamanna MM, Manzoor I, Joseph M, Ye ZA, Benedet M, Zanardi A, Ren Z, Wang X, Massidda O, Tsui HT, Winkler ME. Roles of RodZ and class A PBP1b in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoid-shaped cells of Streptococcus pneumoniae D39. Mol Microbiol 2022; 118:336-368. [PMID: 36001060 PMCID: PMC9804626 DOI: 10.1111/mmi.14969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023]
Abstract
RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.
Collapse
Affiliation(s)
- Melissa M. Lamanna
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Irfan Manzoor
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Merrin Joseph
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Ziyun A. Ye
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessia Zanardi
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Zhongqing Ren
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Xindan Wang
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Ho‐Ching T. Tsui
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Malcolm E. Winkler
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
15
|
Shirley JD, Nauta KM, Carlson EE. Live-Cell Profiling of Penicillin-Binding Protein Inhibitors in Escherichia coli MG1655. ACS Infect Dis 2022; 8:1241-1252. [PMID: 35763562 PMCID: PMC10040144 DOI: 10.1021/acsinfecdis.2c00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding proteins (PBPs) make up an essential class of bacterial enzymes that carry out the final steps of peptidoglycan synthesis and regulate the recycling of this polymeric structure. PBPs are an excellent drug target and have been the most clinically relevant antibacterial target since the 1940s with the introduction of β-lactams. Despite this, a large gap in knowledge remains regarding the individual function and regulation of each PBP homologue in most bacteria. This can be attributed to a lack of chemical tools and methods that enable the study of individual PBPs in an activity-dependent manner and in their native environment. The development of such methods in Gram-negative bacteria has been particularly challenging due to the presence of an outer membrane and numerous resistance mechanisms. To address this, we have developed an optimized live-cell assay for screening inhibitors of the PBPs in Escherichia coli MG1655. We utilized EDTA to permeabilize Gram-negative cells, enabling increased penetration of our readout probe, Bocillin-FL, and subsequent analysis of PBP-inhibition profiles. To identify scaffolds for future development of PBP-selective activity-based probes, we screened ten β-lactams, one diazabicyclooctane, and one monobactam for their PBP-selectivity profiles in E. coli MG1655. These results demonstrate the utility of our assay for the screening of inhibitors in live, non-hypersusceptible Gram-negative organisms.
Collapse
Affiliation(s)
- Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Kelsie M Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States.,Department of Pharmacology, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
16
|
Flores-Kim J, Dobihal GS, Bernhardt TG, Rudner DZ. WhyD tailors surface polymers to prevent premature bacteriolysis and direct cell elongation in Streptococcus pneumoniae. eLife 2022; 11:e76392. [PMID: 35593695 PMCID: PMC9208761 DOI: 10.7554/elife.76392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked teichoic acids (LTAs). Because LytA binds to both species of teichoic acids, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis during exponential growth . We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active peptidoglycan (PG) synthesis. Our results support a model in which the WTA tailoring activity of WhyD during exponential growth directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- UMass Chan Medical SchoolWorcesterUnited States
| | | | - Thomas G Bernhardt
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Howard Hughes Medical InstituteBostonUnited States
| | - David Z Rudner
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
17
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
18
|
Tonkin-Hill G, Ling C, Chaguza C, Salter SJ, Hinfonthong P, Nikolaou E, Tate N, Pastusiak A, Turner C, Chewapreecha C, Frost SDW, Corander J, Croucher NJ, Turner P, Bentley SD. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat Microbiol 2022; 7:1791-1804. [PMID: 36216891 PMCID: PMC9613479 DOI: 10.1038/s41564-022-01238-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022]
Abstract
Characterizing the genetic diversity of pathogens within the host promises to greatly improve surveillance and reconstruction of transmission chains. For bacteria, it also informs our understanding of inter-strain competition and how this shapes the distribution of resistant and sensitive bacteria. Here we study the genetic diversity of Streptococcus pneumoniae within 468 infants and 145 of their mothers by deep sequencing whole pneumococcal populations from 3,761 longitudinal nasopharyngeal samples. We demonstrate that deep sequencing has unsurpassed sensitivity for detecting multiple colonization, doubling the rate at which highly invasive serotype 1 bacteria were detected in carriage compared with gold-standard methods. The greater resolution identified an elevated rate of transmission from mothers to their children in the first year of the child's life. Comprehensive treatment data demonstrated that infants were at an elevated risk of both the acquisition and persistent colonization of a multidrug-resistant bacterium following antimicrobial treatment. Some alleles were enriched after antimicrobial treatment, suggesting that they aided persistence, but generally purifying selection dominated within-host evolution. Rates of co-colonization imply that in the absence of treatment, susceptible lineages outcompeted resistant lineages within the host. These results demonstrate the many benefits of deep sequencing for the genomic surveillance of bacterial pathogens.
Collapse
Affiliation(s)
- Gerry Tonkin-Hill
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Blindern, Norway
| | - Clare Ling
- grid.10223.320000 0004 1937 0490Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand ,grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chrispin Chaguza
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.47100.320000000419368710Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT USA
| | - Susannah J. Salter
- grid.5335.00000000121885934Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pattaraporn Hinfonthong
- grid.10223.320000 0004 1937 0490Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Elissavet Nikolaou
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK ,grid.1058.c0000 0000 9442 535XInfection and Immunity, Murdoch Children’s Research Institute, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria Australia
| | - Natalie Tate
- grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Claudia Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Claire Chewapreecha
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.10223.320000 0004 1937 0490Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Simon D. W. Frost
- grid.419815.00000 0001 2181 3404Microsoft Research, Redmond, WA USA ,grid.8991.90000 0004 0425 469XLondon School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK ,grid.5510.10000 0004 1936 8921Department of Biostatistics, University of Oslo, Blindern, Norway ,grid.7737.40000 0004 0410 2071Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Nicholas J. Croucher
- grid.7445.20000 0001 2113 8111MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Paul Turner
- grid.4991.50000 0004 1936 8948Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK ,grid.459332.a0000 0004 0418 5364Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Stephen D. Bentley
- grid.10306.340000 0004 0606 5382Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| |
Collapse
|
19
|
Perez AJ, Villicana JB, Tsui HCT, Danforth ML, Benedet M, Massidda O, Winkler ME. FtsZ-Ring Regulation and Cell Division Are Mediated by Essential EzrA and Accessory Proteins ZapA and ZapJ in Streptococcus pneumoniae. Front Microbiol 2021; 12:780864. [PMID: 34938281 PMCID: PMC8687745 DOI: 10.3389/fmicb.2021.780864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
The bacterial FtsZ-ring initiates division by recruiting a large repertoire of proteins (the divisome; Z-ring) needed for septation and separation of cells. Although FtsZ is essential and its role as the main orchestrator of cell division is conserved in most eubacteria, the regulators of Z-ring presence and positioning are not universal. This study characterizes factors that regulate divisome presence and placement in the ovoid-shaped pathogen, Streptococcus pneumoniae (Spn), focusing on FtsZ, EzrA, SepF, ZapA, and ZapJ, which is reported here as a partner of ZapA. Epi-fluorescence microscopy (EFm) and high-resolution microscopy experiments showed that FtsZ and EzrA co-localize during the entire Spn cell cycle, whereas ZapA and ZapJ are late-arriving divisome proteins. Depletion and conditional mutants demonstrate that EzrA is essential in Spn and required for normal cell growth, size, shape homeostasis, and chromosome segregation. Moreover, EzrA(Spn) is required for midcell placement of FtsZ-rings and PG synthesis. Notably, overexpression of EzrA leads to the appearance of extra Z-rings in Spn. Together, these observations support a role for EzrA as a positive regulator of FtsZ-ring formation in Spn. Conversely, FtsZ is required for EzrA recruitment to equatorial rings and for the organization of PG synthesis. In contrast to EzrA depletion, which causes a bacteriostatic phenotype in Spn, depletion of FtsZ results in enlarged spherical cells that are subject to LytA-dependent autolysis. Co-immunoprecipitation and bacterial two-hybrid assays show that EzrA(Spn) is in complexes with FtsZ, Z-ring regulators (FtsA, SepF, ZapA, MapZ), division proteins (FtsK, StkP), and proteins that mediate peptidoglycan synthesis (GpsB, aPBP1a), consistent with a role for EzrA at the interface of cell division and PG synthesis. In contrast to the essentiality of FtsZ and EzrA, ZapA and SepF have accessory roles in regulating pneumococcal physiology. We further show that ZapA interacts with a non-ZapB homolog, named here as ZapJ, which is conserved in Streptococcus species. The absence of the accessory proteins, ZapA, ZapJ, and SepF, exacerbates growth defects when EzrA is depleted or MapZ is deleted. Taken together, these results provide new information about the spatially and temporally distinct proteins that regulate FtsZ-ring organization and cell division in Spn.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Jesus Bazan Villicana
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Ho-Ching T Tsui
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Madeline L Danforth
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Malcolm E Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
20
|
Briggs NS, Bruce KE, Naskar S, Winkler ME, Roper DI. The Pneumococcal Divisome: Dynamic Control of Streptococcus pneumoniae Cell Division. Front Microbiol 2021; 12:737396. [PMID: 34737730 PMCID: PMC8563077 DOI: 10.3389/fmicb.2021.737396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Cell division in Streptococcus pneumoniae (pneumococcus) is performed and regulated by a protein complex consisting of at least 14 different protein elements; known as the divisome. Recent findings have advanced our understanding of the molecular events surrounding this process and have provided new understanding of the mechanisms that occur during the division of pneumococcus. This review will provide an overview of the key protein complexes and how they are involved in cell division. We will discuss the interaction of proteins in the divisome complex that underpin the control mechanisms for cell division and cell wall synthesis and remodelling that are required in S. pneumoniae, including the involvement of virulence factors and capsular polysaccharides.
Collapse
Affiliation(s)
- Nicholas S. Briggs
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kevin E. Bruce
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - Souvik Naskar
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Malcolm E. Winkler
- Department of Biology, Indiana University Bloomington, Bloomington, IN, United States
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
21
|
EloR interacts with the lytic transglycosylase MltG at midcell in Streptococcus pneumoniae R6. J Bacteriol 2021; 203:JB.00691-20. [PMID: 33558392 PMCID: PMC8092159 DOI: 10.1128/jb.00691-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The ellipsoid shape of Streptococcus pneumoniae is determined by the synchronized actions of the elongasome and the divisome, which have the task of creating a protective layer of peptidoglycan (PG) enveloping the cell membrane. The elongasome is necessary for expanding PG in the longitudinal direction whereas the divisome synthesizes the PG that divides one cell into two. Although there is still little knowledge about how these two modes of PG synthesis are coordinated, it was recently discovered that two RNA-binding proteins called EloR and KhpA are part of a novel regulatory pathway controlling elongation in S. pneumoniae EloR and KhpA form a complex that work closely with the Ser/Thr kinase StkP to regulate cell elongation. Here, we have further explored how this regulation occur. EloR/KhpA is found at midcell, a localization fully dependent on EloR. Using a bacterial two-hybrid assay we probed EloR against several elongasome proteins and found an interaction with the lytic transglycosylase homolog MltG. By using EloR as bait in immunoprecipitation assays, MltG was pulled down confirming that they are part of the same protein complex. Fluorescent microscopy demonstrated that the Jag domain of EloR is essential for EloR's midcell localization and its interaction with MltG. Since MltG is found at midcell independent of EloR, our results suggest that MltG is responsible for recruitment of the EloR/KhpA complex to the division zone to regulate cell elongation.Importance Bacterial cell division has been a successful target for antimicrobial agents for decades. How different pathogens regulate cell division is, however, poorly understood. To fully exploit the potential for future antibiotics targeting cell division, we need to understand the details of how the bacteria regulate and construct cell wall during this process. Here we have revealed that the newly identified EloR/KhpA complex, regulating cell elongation in S. pneumoniae, forms a complex with the essential peptidoglycan transglycosylase MltG at midcell. EloR, KhpA and MltG are conserved among many bacterial species and the EloR/KhpA/MltG regulatory pathway is most likely a common mechanism employed by many Gram-positive bacteria to coordinate cell elongation and septation.
Collapse
|