1
|
Sun Y, Jin B, Yang J, Liu B, Li T, Zhang X, Chen X, Chen Y. Risk assessment of resistance to prochloraz in Phoma arachidicola causing peanut web blotch. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106025. [PMID: 39084764 DOI: 10.1016/j.pestbp.2024.106025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Peanut web blotch (PWB) caused by Phoma arachidicola, is one of the most serious foliar diseases of peanut. Although prochloraz is an active fungicide with broad anti-fungal spectrum, it has not been registered for the control of PWB in China. The activity of prochloraz against P. arachidicola and the risk of resistance to prochloraz in P. arachidicola are still unclear. In current study, the inhibitory activity of prochloraz against 96 P. arachidicola strains was determined with the average EC50 value of 1.2700 ± 0.7786 μg/mL. Prochloraz exhibited excellent protective and curative effect on detached peanut leaves, and the effect was obviously better than that of carbendazim and difenoconazole at the same concentration. After prochloraz treatment, the mycelium of P. arachidicola contorted, shrunk and ruptured, with shrinking of cell wall and membrane, enhanced cell membrane permeability, and reduced ergosterol content. Totally 80 prochloraz-resistant mutants were obtained by fungicide adaptation with the frequency of 6.7 × 10-3. All the selected 12 prochloraz-resistant mutants lost their resistance to prochloraz after 10 transfers on PDA plates. And these mutants exhibited decreased biological fitness in mycelial growth and pathogenicity. Moreover, there was positive cross-resistance between prochloraz and other demethylation inhibitor (DMI) fungicides, such as tebuconazole, triflumizole and difenoconazole, but no cross-resistance was found between prochloraz and other classes of fungicides, such as carbendazim, pydiflumetofen or fludioxonil. Overexpression of PaCYP51 and PaAtrB genes were detected in the resistant mutants. All the above results demonstrated that prochloraz has a great potential in management of PWB. The risk of P. arachidicola developing resistance to prochloraz is relatively low-to-medium. Overexpressing of PaCYP51 and PaAtrB might be linked to prochloraz resistance in P. arachidicola.
Collapse
Affiliation(s)
- Yang Sun
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bingbing Jin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jiawei Yang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bing Liu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xia Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China
| | - Xing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yu Chen
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China; Anhui Province Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Xi Y, Zhang J, Fan B, Sun M, Cao W, Liu X, Gai Y, Shen C, Wang H, Wang M. Transcriptome Analysis Reveals Potential Regulators of DMI Fungicide Resistance in the Citrus Postharvest Pathogen Penicillium digitatum. J Fungi (Basel) 2024; 10:360. [PMID: 38786715 PMCID: PMC11122302 DOI: 10.3390/jof10050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Green mold, caused by Penicillium digitatum, is the major cause of citrus postharvest decay. Currently, the application of sterol demethylation inhibitor (DMI) fungicide is one of the main control measures to prevent green mold. However, the fungicide-resistance problem in the pathogen P. digitatum is growing. The regulatory mechanism of DMI fungicide resistance in P. digitatum is poorly understood. Here, we first performed transcriptomic analysis of the P. digitatum strain Pdw03 treated with imazalil (IMZ) for 2 and 12 h. A total of 1338 genes were up-regulated and 1635 were down-regulated under IMZ treatment for 2 h compared to control while 1700 were up-regulated and 1661 down-regulated under IMZ treatment for 12 h. The expression of about half of the genes in the ergosterol biosynthesis pathway was affected during IMZ stress. Further analysis identified that 84 of 320 transcription factors (TFs) were differentially expressed at both conditions, making them potential regulators in DMI resistance. To confirm their roles, three differentially expressed TFs were selected to generate disruption mutants using the CRISPR/Cas9 technology. The results showed that two of them had no response to IMZ stress while ∆PdflbC was more sensitive compared with the wild type. However, disruption of PdflbC did not affect the ergosterol content. The defect in IMZ sensitivity of ∆PdflbC was restored by genetic complementation of the mutant with a functional copy of PdflbC. Taken together, our results offer a rich source of information to identify novel regulators in DMI resistance.
Collapse
Affiliation(s)
- Yue Xi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Jing Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Botao Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Miaomiao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Wenqian Cao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Xiaotian Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China;
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (Y.X.); (J.Z.); (B.F.); (M.S.); (W.C.); (X.L.); (C.S.); (H.W.)
| |
Collapse
|
3
|
Cao Y, Song X, Xu G, Zhang X, Yan H, Feng J, Ma Z, Liu X, Wang Y. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17713-17722. [PMID: 37943656 DOI: 10.1021/acs.jafc.3c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
In this investigation, the antifungal activity, its influence on the quality of apples, and the molecular mechanism of natamycin against Colletotrichum fructicola were systematically explored. Our findings indicated that natamycin showed significant inhibition against C. fructicola. Moreover, it efficaciously maintained the apple quality by modulating the physicochemical index. Research on the antifungal mechanism showed that natamycin altered the mycelial microstructure, disrupted the plasma membrane integrality, and decreased the ergosterol content of C. fructicola. Interestingly, the exogenous addition of ergosterol weakened the antifungal activity of natamycin. Importantly, natamycin markedly inhibited the expression of Cyp51A and Cyp51B genes in C. fructicola, which was contrary to the results obtained after treatment with triazole fungicide flusilazole. All these results exhibited sufficient proof that natamycin had enormous potential to be conducive as a promising biopreservative against C. fructicola on apples, and these findings will advance our knowledge on the mechanism of natamycin against pathogenic fungi.
Collapse
Affiliation(s)
- Yuxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xiaoning Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Guanyou Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - He Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Juntao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Zhiqing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
- Provincial Center for Bio-Pesticide Engineering, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi, China
| |
Collapse
|
4
|
Doughty KJ, Sierotzki H, Semar M, Goertz A. Selection and Amplification of Fungicide Resistance in Aspergillus fumigatus in Relation to DMI Fungicide Use in Agronomic Settings: Hotspots versus Coldspots. Microorganisms 2021; 9:2439. [PMID: 34946041 PMCID: PMC8704312 DOI: 10.3390/microorganisms9122439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Aspergillus fumigatus is a ubiquitous saprophytic fungus. Inhalation of A. fumigatus spores can lead to Invasive Aspergillosis (IA) in people with weakened immune systems. The use of triazole antifungals with the demethylation inhibitor (DMI) mode of action to treat IA is being hampered by the spread of DMI-resistant "ARAf" (azole-resistant Aspergillus fumigatus) genotypes. DMIs are also used in the environment, for example, as fungicides to protect yield and quality in agronomic settings, which may lead to exposure of A. fumigatus to DMI residues. An agronomic setting can be a "hotspot" for ARAf if it provides a suitable substrate and favourable conditions for the growth of A. fumigatus in the presence of DMI fungicides at concentrations capable of selecting ARAf genotypes at the expense of the susceptible wild-type, followed by the release of predominantly resistant spores. Agronomic settings that do not provide these conditions are considered "coldspots". Identifying and mitigating hotspots will be key to securing the agronomic use of DMIs without compromising their use in medicine. We provide a review of studies of the prevalence of ARAf in various agronomic settings and discuss the mitigation options for confirmed hotspots, particularly those relating to the management of crop waste.
Collapse
Affiliation(s)
- Kevin J. Doughty
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| | - Helge Sierotzki
- Syngenta Crop Protection, Schaffhauserstrasse 101, 4332 Stein, Switzerland;
| | - Martin Semar
- BASF SE, Speyerer Strasse 2, 67117 Limburgerhof, Germany;
| | - Andreas Goertz
- Bayer AG, Alfred Nobel Strasse 50, 40789 Monheim-am-Rhein, Germany;
| |
Collapse
|
5
|
Jørgensen LN, Heick TM. Azole Use in Agriculture, Horticulture, and Wood Preservation - Is It Indispensable? Front Cell Infect Microbiol 2021; 11:730297. [PMID: 34557427 PMCID: PMC8453013 DOI: 10.3389/fcimb.2021.730297] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Plant pathogens cause significant damage to plant products, compromising both quantities and quality. Even though many elements of agricultural practices are an integral part of reducing disease attacks, modern agriculture is still highly reliant on fungicides to guarantee high yields and product quality. The azoles, 14-alpha demethylase inhibitors, have been the fungicide class used most widely to control fungal plant diseases for more than four decades. More than 25 different azoles have been developed for the control of plant diseases in crops and the group has a world market value share of 20-25%. Azoles have proven to provide long-lasting control of many target plant pathogens and are categorized to have moderate risk for developing fungicide resistance. Field performances against many fungal pathogens have correspondingly been stable or only moderately reduced over time. Hence azoles are still, to date, considered the backbone in many control strategies and widely used as solo fungicides or as mixing partners with other fungicide groups, broadening the control spectrum as well as minimizing the overall risk of resistance development. This review describes the historic perspective of azoles, their market shares and importance for production of major crops like cereals, rice, oilseed rape, sugar beet, banana, citrus, and soybeans. In addition, information regarding use in amenity grass, in the wood preservation industry and as plant growth regulators are described. At the end of the review azoles are discussed in a wider context including future threats following stricter requirements for registration and potential impact on human health.
Collapse
|
6
|
Chong P, Essoh JN, Arango Isaza RE, Keizer P, Stergiopoulos I, Seidl MF, Guzman M, Sandoval J, Verweij PE, Scalliet G, Sierotzski H, de Lapeyre de Bellaire L, Crous PW, Carlier J, Cros S, Meijer HJG, Peralta EL, Kema GHJ. A world-wide analysis of reduced sensitivity to DMI fungicides in the banana pathogen Pseudocercospora fijiensis. PEST MANAGEMENT SCIENCE 2021; 77:3273-3288. [PMID: 33764651 PMCID: PMC8252799 DOI: 10.1002/ps.6372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 03/25/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pseudocercospora fijiensis is the causal agent of the black leaf streak disease (BLSD) of banana. Bananas are important global export commodities and a major staple food. Their susceptibility to BLSD pushes disease management towards excessive fungicide use, largely relying on multisite inhibitors and sterol demethylation inhibitors (DMIs). These fungicides are ubiquitous in plant disease control, targeting the CYP51 enzyme. We examined sensitivity to DMIs in P. fijiensis field isolates collected from various major banana production zones in Colombia, Costa Rica, Dominican Republic, Ecuador, the Philippines, Guadalupe, Martinique and Cameroon and determined the underlying genetic reasons for the observed phenotypes. RESULTS We observed a continuous range of sensitivity towards the DMI fungicides difenoconazole, epoxiconazole and propiconazole with clear cross-sensitivity. Sequence analyses of PfCYP51 in 266 isolates showed 28 independent amino acid substitutions, nine of which correlated with reduced sensitivity to DMIs. In addition to the mutations, we observed up to six insertions in the Pfcyp51 promoter. Such promoter insertions contain repeated elements with a palindromic core and correlate with the enhanced expression of Pfcyp51 and hence with reduced DMI sensitivity. Wild-type isolates from unsprayed bananas fields did not contain any promoter insertions. CONCLUSION The presented data significantly contribute to understanding of the evolution and global distribution of DMI resistance mechanisms in P. fijiensis field populations and facilitate the prediction of different DMI efficacy. The overall reduced DMI sensitivity calls for the deployment of a wider range of solutions for sustainable control of this major banana disease. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Pablo Chong
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBELaboratorio de FitopatologíaEscuela Superior Politécnica del Litoral, ESPOL.km 30.5 via perimetralGuayaquil090112Ecuador
- Wageningen ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Josué Ngando Essoh
- Unité de Recherches sur les Systèmes de Production Durables (SYSPROD)Laboratoire de PhytopathologieCentre Africain de Recherches sur Bananiers et Plantain, CARBAPDoualaCameroun
- UPR GECOCIRADMontpellierFrance
| | - Rafael E Arango Isaza
- Escuela de BiocienciasUniversidad Nacional de Colombia, Sede Medellín (UNALMED)MedellínColombia
- Corporación para Investigaciones BiológicasUnidad de biotecnología Vegetal (CIB)MedellínColombia
| | - Paul Keizer
- BiometrisWageningen University and ResearchWageningenThe Netherlands
| | | | | | - Mauricio Guzman
- Departamento de FitoprotecciónCorporación Bananera Nacional (CORBANA S.A.)LimónCosta Rica
| | - Jorge Sandoval
- Departamento de FitoprotecciónCorporación Bananera Nacional (CORBANA S.A.)LimónCosta Rica
| | - Paul E Verweij
- Department of Medical MicrobiologyRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Gabriel Scalliet
- Disease control groupSyngenta Crop Protection AGSteinSwitzerland
| | - Helge Sierotzski
- Disease control groupSyngenta Crop Protection AGSteinSwitzerland
| | | | - Pedro W Crous
- Hugo R. KruytgebouwUtrecht UniversityUtrechtThe Netherlands
- Lab of Evolutionary PhytopahtologyCBS‐KNAW Fungal Biodiversity CenterUtrechtThe Netherlands
| | - Jean Carlier
- UMR BGPICIRADMontpellierFrance
- BGPIMontpellier University, Cirad, Inrae, Montpellier SupAgroMontpellierFrance
| | - Sandrine Cros
- BGPIMontpellier University, Cirad, Inrae, Montpellier SupAgroMontpellierFrance
| | - Harold J G Meijer
- Wageningen ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Esther Lilia Peralta
- Centro de Investigaciones Biotecnológicas del Ecuador, CIBELaboratorio de FitopatologíaEscuela Superior Politécnica del Litoral, ESPOL.km 30.5 via perimetralGuayaquil090112Ecuador
| | - Gert H J Kema
- Wageningen ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of PhytopathologyWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
7
|
Wang Y, Jiang L, Wang MM, Feng JT. Baseline sensitivity and action mechanism of the sterol demethylation inhibitor flusilazole to Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104722. [PMID: 33357544 DOI: 10.1016/j.pestbp.2020.104722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
The apple Valsa canker caused by Valsa mali is a devastating branch disease that has seriously threatened the development of the apple industry worldwide. In current study, a total of 115 V. mali strains collected from different apple orchards in Shaanxi Province of China during 2016 and 2017 were tested for their sensitivity to flusilazole. The average EC50 (effective concentrations causing 50% mycelial growth inhibition) value of all tested strains for flusilazole was 0.0892 (±0.0036) μg/mL and the frequency distribution of the EC50 values was unimodal. Flusilazole exhibited both excellent protective and curative activity on detached apple branches, which was significantly better than the commonly used fungicide thiophanate-methyl. After flusilazole treatment, mycelia twisted with offshoot of top increased, the V. mali strains lost the ability of fruiting body production, and cell membrane permeability of the mycelia increased while ergosterol content and pectinase activity decreased. The expression of pectinase genes involved in virulence down-regulated after flusilazole treatment. This study is the first report on the baseline sensitivity of V. mali to flusilazole. These results indicated that flusilazole has a great potential to play an important role in the management of Valsa canker.
Collapse
Affiliation(s)
- Yong Wang
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lin Jiang
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Miao-Miao Wang
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jun-Tao Feng
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Wang Y, Wang M, Xu L, Sun Y, Feng J. Baseline Sensitivity and Toxic Action of the Sterol Demethylation Inhibitor Flusilazole Against Botrytis cinerea. PLANT DISEASE 2020; 104:2986-2993. [PMID: 32852244 DOI: 10.1094/pdis-11-19-2478-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present study, a total of 95 Botrytis cinerea single-spore strains collected from different hosts in Shaanxi Province of China were characterized for their sensitivity to the sterol demethylation inhibitor fungicide flusilazole. The effective concentration for 50% inhibition of mycelial growth (EC50) of flusilazole ranged from 0.021 to 0.372 µg/ml, with an average value of 0.093 µg/ml. Cross-resistance between flusilazole and commonly used fungicides was not detected, and no flusilazole-resistant mutants were induced. Both on detached strawberry leaves and in greenhouse experiments, flusilazole was more effective than the commonly used fungicide carbendazim at reducing gray mold. After culture on PDA plates or detached strawberry leaves, no difference in sclerotia production or pathogenicity was detected between two strains, WG12 (most sensitive to flusilazole) and MX18 (least sensitive to flusilazole). After treatment with flusilazole, however, the two strains lost the ability to produce sclerotia, and oxalic acid and ergosterol contents in mycelium decreased. Interestingly, the inhibition rate of ergosterol content in MX18 was significantly lower than that in WG12. Expression of Cyp51, BcatrD, and Bcmfs1 genes all increased after treatment with flusilazole, especially the Cyp51 and BcatrD genes. However, the expression of Cyp51 gene or BcatrD gene in WG12 and MX18 were significantly different from each other after treatment with flusilazole. In addition, no point mutations in Cyp51 gene were found in MX18. These data suggest flusilazole is a promising fungicide for resistance management of gray mold and also provided novel insights into understanding the resistance mechanism of flusilazole against plant pathogens.
Collapse
Affiliation(s)
- Yong Wang
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Miaomaio Wang
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Letian Xu
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Sun
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Juntao Feng
- College of Plant Protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Amarillas L, Estrada-Acosta M, León-Chan RG, López-Orona C, Lightbourn L. First Draft Genome Sequence Resource of a Strain of Pseudocercospora fijiensis Isolated in North America. PHYTOPATHOLOGY 2020; 110:1620-1622. [PMID: 32378452 DOI: 10.1094/phyto-04-20-0121-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Black Sigatoka disease, caused by the fungus Pseudocercospora fijiensis, is one of the most devastating diseases of banana around the world. Fungicide applications are the primary tool used to manage black Sigatoka, but fungicide resistance in P. fijiensis, as in other fungal pathogens, is one of the major limitations in the efficient management and prevention of this disease. In the current study, we present the draft genome of P. fijiensis strain IIL-20, the first genomic sequence published from a strain of this fungus isolated in North America. Bioinformatic analysis showed putative genes involved in fungus virulence and fungicide resistance. These findings may lead us to a better understanding of the molecular pathogenesis of this fungal pathogen and also to the discovery of the mechanisms conferring fungicide resistance.
Collapse
Affiliation(s)
- Luis Amarillas
- Instituto de Investigación Lightbourn, A. C., Ciudad Jiménez, Chihuahua, México
| | | | - Rubén G León-Chan
- Instituto de Investigación Lightbourn, A. C., Ciudad Jiménez, Chihuahua, México
| | | | - Luis Lightbourn
- Instituto de Investigación Lightbourn, A. C., Ciudad Jiménez, Chihuahua, México
| |
Collapse
|
10
|
Zhang Y, Zhou Q, Tian P, Li Y, Duan G, Li D, Zhan J, Chen F. Induced expression of CYP51 associated with difenoconazole resistance in the pathogenic Alternaria sect. on potato in China. PEST MANAGEMENT SCIENCE 2020; 76:1751-1760. [PMID: 31785067 DOI: 10.1002/ps.5699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Early blight caused by Alternaria spp. is amongst the most important diseases in potato. Demethylation inhibitor (DMI) fungicides are widely used to control the disease but long-term use may decrease its control efficacy due to fungicide resistance. This study investigated the occurrence of difenoconazole resistance in Alternaria spp. and molecular resistant mechanisms. RESULTS EC50 values of 160 isolates to difenoconazole ranged from 0.026 μg mL-1 to 15.506 μg mL-1 and the frequency of difenoconazole sensitivity formed a non-normal distribution curve with a major and a minor peak. Isolates with EC50 values of 4.121 and 5.461 μg mL-1 were not controlled effectively at fungicide doses of 50 and 100 μg mL-1 . Cross-resistance was observed between DMI fungicides difenoconazole and propiconazole, but not between difenoconazole and other fungicide groups, including boscalid, iprodione, or carbendazim. The CYP51gene was 1673 bp encoding 525 amino acids in length and contained two introns. All sensitive and resistant isolates had the identical amino acid sequence of CYP51, with the exception of one resistant isolate carrying a mutation of R511W. A 6 bp insertion in the upstream region was observed in half of the resistant isolates. In the absence of propiconazole, the relative expression of CYP51 was not significantly different in sensitive and resistant isolates. In the presence of difenoconazole, expression of CYP51 gene was induced significantly in the DMI-resistant isolates but not in the sensitive ones. CONCLUSION Induced expression of CYP51 in resistant isolates exposed to difenoconazole is an important determinant for DMI resistance in potato pathogens Alternaria sect. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhou
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peiyu Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Chong P, Vichou AE, Schouten HJ, Meijer HJG, Arango Isaza RE, Kema GHJ. Pfcyp51 exclusively determines reduced sensitivity to 14α-demethylase inhibitor fungicides in the banana black Sigatoka pathogen Pseudocercospora fijiensis. PLoS One 2019; 14:e0223858. [PMID: 31622393 PMCID: PMC6797121 DOI: 10.1371/journal.pone.0223858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/30/2019] [Indexed: 11/27/2022] Open
Abstract
The haploid fungus Pseudocercospora fijiensis causes black Sigatoka in banana and is chiefly controlled by extensive fungicide applications, threatening occupational health and the environment. The 14α-Demethylase Inhibitors (DMIs) are important disease control fungicides, but they lose sensitivity in a rather gradual fashion, suggesting an underlying polygenic genetic mechanism. In spite of this, evidence found thus far suggests that P. fijiensis cyp51 gene mutations are the main responsible factor for sensitivity loss in the field. To better understand the mechanisms involved in DMI resistance, in this study we constructed a genetic map using DArTseq markers on two F1 populations generated by crossing two different DMI resistant strains with a sensitive strain. Analysis of the inheritance of DMI resistance in the F1 populations revealed two major and discrete DMI-sensitivity groups. This is an indicative of a single major responsible gene. Using the DMI-sensitivity scorings of both F1 populations and the generation of genetic linkage maps, the sensitivity causal factor was located in a single genetic region. Full agreement was found for genetic markers in either population, underlining the robustness of the approach. The two maps indicated a similar genetic region where the Pfcyp51 gene is found. Sequence analyses of the Pfcyp51 gene of the F1 populations also revealed a matching bimodal distribution with the DMI resistant. Amino acid substitutions in P. fijiensis CYP51 enzyme of the resistant progeny were previously correlated with the loss of DMI sensitivity. In addition, the resistant progeny inherited a Pfcyp51 gene promoter insertion, composed of a repeat element with a palindromic core, also previously correlated with increased gene expression. This genetic approach confirms that Pfcyp51 is the single explanatory gene for reduced sensitivity to DMI fungicides in the analysed P. fijiensis strains. Our study is the first genetic analysis to map the underlying genetic factors for reduced DMI efficacy.
Collapse
Affiliation(s)
- Pablo Chong
- ESPOL Polythecnic University, Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, Laboratorio de Fitopatología, Guayaquil, Ecuador
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands, Wageningen, the Netherlands
| | - Aikaterini-Eleni Vichou
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands, Wageningen, the Netherlands
| | - Henk J. Schouten
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands, Wageningen, the Netherlands
| | - Harold J. G. Meijer
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands, Wageningen, the Netherlands
| | - Rafael E. Arango Isaza
- Escuela de Biociencias, Faculta de Ciencias, Universidad Nacional de Colombia -Sede Medellín (UNALMED), Medellín, Colombia
- Unidad de biotecnología (UNALMED-CIB), Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Gert H. J. Kema
- Laboratory of Phytopathology, Wageningen University and Research, The Netherlands, Wageningen, the Netherlands
| |
Collapse
|
12
|
Targeted and random genetic modification of the black Sigatoka pathogen Pseudocercospora fijiensis by Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2018; 148:127-137. [PMID: 29654806 DOI: 10.1016/j.mimet.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022]
|
13
|
Kema GHJ, Mirzadi Gohari A, Aouini L, Gibriel HAY, Ware SB, van den Bosch F, Manning-Smith R, Alonso-Chavez V, Helps J, Ben M'Barek S, Mehrabi R, Diaz-Trujillo C, Zamani E, Schouten HJ, van der Lee TAJ, Waalwijk C, de Waard MA, de Wit PJGM, Verstappen ECP, Thomma BPHJ, Meijer HJG, Seidl MF. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat Genet 2018; 50:375-380. [PMID: 29434356 DOI: 10.1038/s41588-018-0052-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 01/06/2018] [Indexed: 11/09/2022]
Abstract
Host resistance and fungicide treatments are cornerstones of plant-disease control. Here, we show that these treatments allow sex and modulate parenthood in the fungal wheat pathogen Zymoseptoria tritici. We demonstrate that the Z. tritici-wheat interaction complies with the gene-for-gene model by identifying the effector AvrStb6, which is recognized by the wheat resistance protein Stb6. Recognition triggers host resistance, thus implying removal of avirulent strains from pathogen populations. However, Z. tritici crosses on wheat show that sex occurs even with an avirulent parent, and avirulence alleles are thereby retained in subsequent populations. Crossing fungicide-sensitive and fungicide-resistant isolates under fungicide pressure results in a rapid increase in resistance-allele frequency. Isolates under selection always act as male donors, and thus disease control modulates parenthood. Modeling these observations for agricultural and natural environments reveals extended durability of host resistance and rapid emergence of fungicide resistance. Therefore, fungal sex has major implications for disease control.
Collapse
Affiliation(s)
- Gerrit H J Kema
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands. .,Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands.
| | - Amir Mirzadi Gohari
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Lamia Aouini
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Hesham A Y Gibriel
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sarah B Ware
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Department of Biological Sciences, Benedictine University, Lisle, IL, USA
| | | | | | | | | | - Sarrah Ben M'Barek
- Laboratory of Molecular Plant Physiology, Biotechnology Center of Borj Cedria (CBBC), Hammam-Lif, Tunisia
| | - Rahim Mehrabi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Caucasella Diaz-Trujillo
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands.,Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Elham Zamani
- Department of Plant Pathology, Tarbiat Modares University, Tehran, Iran
| | - Henk J Schouten
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Theo A J van der Lee
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Cees Waalwijk
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A de Waard
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Els C P Verstappen
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| | - Harold J G Meijer
- Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
14
|
Zheng SJ, García-Bastidas FA, Li X, Zeng L, Bai T, Xu S, Yin K, Li H, Fu G, Yu Y, Yang L, Nguyen HC, Douangboupha B, Khaing AA, Drenth A, Seidl MF, Meijer HJG, Kema GHJ. New Geographical Insights of the Latest Expansion of Fusarium oxysporum f.sp. cubense Tropical Race 4 Into the Greater Mekong Subregion. FRONTIERS IN PLANT SCIENCE 2018; 9:457. [PMID: 29686692 PMCID: PMC5900031 DOI: 10.3389/fpls.2018.00457] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Banana is the most popular and most exported fruit and also a major food crop for millions of people around the world. Despite its importance and the presence of serious disease threats, research into this crop is limited. One of those is Panama disease or Fusarium wilt. In the previous century Fusarium wilt wiped out the "Gros Michel" based banana industry in Central America. The epidemic was eventually quenched by planting "Cavendish" bananas. However, 50 years ago the disease recurred, but now on "Cavendish" bananas. Since then the disease has spread across South-East Asia, to the Middle-East and the Indian subcontinent and leaped into Africa. Here, we report the presence of Fusarium oxysporum f.sp. cubense Tropical Race 4 (Foc TR4) in "Cavendish" plantations in Laos, Myanmar, and Vietnam. A combination of classical morphology, DNA sequencing, and phenotyping assays revealed a very close relationship between the Foc TR4 strains in the entire Greater Mekong Subregion (GMS), which is increasingly prone to intensive banana production. Analyses of single-nucleotide polymorphisms enabled us to initiate a phylogeography of Foc TR4 across three geographical areas-GMS, Indian subcontinent, and the Middle East revealing three distinct Foc TR4 sub-lineages. Collectively, our data place these new incursions in a broader agroecological context and underscore the need for awareness campaigns and the implementation of validated quarantine measures to prevent further international dissemination of Foc TR4.
Collapse
Affiliation(s)
- Si-Jun Zheng
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Bioversity International, Kunming, China
- *Correspondence: Si-Jun Zheng
| | - Fernando A. García-Bastidas
- Wageningen University and Research, Wageningen Plant Research, Wageningen, Netherlands
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, Netherlands
| | - Xundong Li
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li Zeng
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Tingting Bai
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Shengtao Xu
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Kesuo Yin
- Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Hongxiang Li
- Xishuangbanna Dai Autonomous Prefecture, Plant Quarantine and Protection Station, Jinghong, China
| | - Gang Fu
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yanchun Yu
- Institute of Tropical and Subtropical Industry Crops, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Liu Yang
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Huy Chung Nguyen
- Plant Protection Research Institute, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
| | - Bounneuang Douangboupha
- Ministry of Agriculture & Forestry, National Agriculture & Forestry Research Institute, Horticulture Research Center, Vientiane, Laos
| | | | - Andre Drenth
- Centre for Horticultural Science, The University of Queensland, Brisbane, QLD, Australia
| | - Michael F. Seidl
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, Netherlands
| | - Harold J. G. Meijer
- Wageningen University and Research, Wageningen Plant Research, Wageningen, Netherlands
| | - Gert H. J. Kema
- Wageningen University and Research, Wageningen Plant Research, Wageningen, Netherlands
- Wageningen University and Research, Laboratory of Phytopathology, Wageningen, Netherlands
- *Correspondence: Si-Jun Zheng
| |
Collapse
|