1
|
Lozano-Sanchez E, Daròs JA, Merwaiss F. Production of Plant Virus-Derived Hybrid Nanoparticles Decorated with Different Nanobodies. ACS NANO 2024; 18:33890-33906. [PMID: 39622501 DOI: 10.1021/acsnano.4c07066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Viral nanoparticles (VNPs) are self-assembled nanometric complexes whose size and shape are similar to those of the virus from which they are derived. VNPs are arousing great attention due to potential biotechnological applications in fields like nanomedicine and nanotechnology because they allow the presentation of polypeptides of choice linked to the virus structural proteins. Starting from tobacco etch virus (TEV), a plant plus-strand RNA virus that belongs to the genus Potyvirus (family Potyviridae), here we describe the development of recombinant hybrid VNPs in Nicotiana benthamiana plants able of exposing simultaneously different proteins on their surface. This system is based on the synergic coinfection of TEV and potato virus X (PVX; Potexvirus), in which PVX provides a second TEV CP in trans allowing a mixed assembly. We first generated genetically modified hybrid VNPs simultaneously displaying green and red fluorescent proteins on their surface. A population of decorated and nondecorated CPs resulting from the insertion of the picornavirus F2A ribosomal escape peptide was required for viral particle assembly. Correct assembly of the recombinant mosaic VNPs presenting the exogenous peptides was successfully observed by immunoelectron microscopy. We next achieved the production of hybrid VNPs expressing a nanobody against SARS-CoV-2 and a fluorescent reporter protein, whose functionality was demonstrated by ELISA and dot-blot assay. Finally, we engineered the production of hybrid multivalent VNPs carrying two different nanobodies against distinct epitopes of the same SARS-CoV-2 antigenic protein, emulating a nanobody cocktail. These plant-produced recombinant mosaic VNPs, which are filamentous and flexuous in shape, presenting two different fused proteins on the surface, represent a molecular tool with several potential applications in biotechnology.
Collapse
Affiliation(s)
- Enrique Lozano-Sanchez
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| | - Fernando Merwaiss
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
2
|
Dutta P, Lõhmus A, Ahola T, Mäkinen K. The Replicase Protein of Potato Virus X Is Able to Recognize and Trans-Replicate Its RNA Component. Viruses 2024; 16:1611. [PMID: 39459944 PMCID: PMC11512358 DOI: 10.3390/v16101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The trans-replication system explores the concept of separating the viral RNA involved in the translation of the replicase protein from the replication of the viral genome and has been successfully used to study the replication mechanisms of alphaviruses. We tested the feasibility of this system with potato virus X (PVX), an alpha-like virus, in planta. A viral RNA template was designed which does not produce the replicase and prevents virion formation but remains recognizable by the replicase. The replicase construct encodes for the replicase protein, while lacking other virus-specific recognition sequences. Both the constructs were delivered into Nicotiana benthamiana leaves via Agrobacterium-mediated infiltration. Templates of various lengths were tested, with the longer templates not replicating at 4 and 6 days post inoculation, when the replicase protein was provided in trans. Co-expression of helper component proteinase with the short template led to its trans-replication. The cells where replication had been initiated were observed to be scattered across the leaf lamina. This study established that PVX is capable of trans-replicating and can likely be further optimized, and that the experimental freedom offered by the system can be utilized to delve deeper into understanding the replication mechanism of the virus.
Collapse
Affiliation(s)
- Pinky Dutta
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Andres Lõhmus
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Kristiina Mäkinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| |
Collapse
|
3
|
Pollari ME, Aspelin WWE, Wang L, Mäkinen KM. The Molecular Maze of Potyviral and Host Protein Interactions. Annu Rev Virol 2024; 11:147-170. [PMID: 38848589 DOI: 10.1146/annurev-virology-100422-034124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.
Collapse
Affiliation(s)
- Maija E Pollari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - William W E Aspelin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Linping Wang
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Kristiina M Mäkinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| |
Collapse
|
4
|
Su Q, Tang Y, Lan G, Yu L, Ding S, He Z, She X, Li Z. Pathogenicity analysis and seed transmission of watermelon virus A in bottle gourd. Virology 2024; 596:110112. [PMID: 38797063 DOI: 10.1016/j.virol.2024.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Seed transmission is among the primary strategies utilized by plant viruses for long-distance dissemination, leading to the widespread occurrence of viral diseases globally. Watermelon virus A (WVA) is a novel wamavirus first found in watermelon. However, the pathogenicity and transmission mode of WVA are still unclear. Our previous work found that the incidence of WVA in bottle gourd is very high. Based on that, the pathogenicity and seed transmission mode of WVA in bottle gourd were studied. Compared with healthy plant, bottle gourd infected by WVA showed no visible disease symptom. Moreover, in the seeds of 20 bottle gourd cultivars, the occurrence of WVA varies from 0 to 90%, and one cultivar even reaches 100%. We also found that the transmission rate from seeds to the resulting seedlings was 100%. Furthermore, WVA was present in both the seed coat and embryo, and seed disinfection cannot eliminate WVA. Besides the seed and leaf, WVA can also be detected in stem, flower, and fruit, but not in the root. To our surprise, the level of transmission from WVA-infected plants to seeds was more than 85%. In addition, the viral accumulations of both WVA and CGMMV were increased in plants with co-infection of WVA and CGMMV. Taken together, these findings reveal that WVA is a seed-transmitted virus which causes no disease symptom in bottle gourd, and there may be synergism between WVA and CGMMV.
Collapse
Affiliation(s)
- Qi Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Guobing Lan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Lin Yu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China.
| | - Zhenggang Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, PR China.
| |
Collapse
|
5
|
Tanaka T, Fujita M, Kusajima M, Narita F, Asami T, Maruyama-Nakashita A, Nakajima M, Nakashita H. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine. Int J Mol Sci 2024; 25:6315. [PMID: 38928022 PMCID: PMC11204331 DOI: 10.3390/ijms25126315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Moeka Fujita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Futo Narita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Masami Nakajima
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan;
| | - Hideo Nakashita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| |
Collapse
|
6
|
Kozieł E, Otulak-Kozieł K, Rusin P. Glutathione-the "master" antioxidant in the regulation of resistant and susceptible host-plant virus-interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1373801. [PMID: 38533404 PMCID: PMC10963531 DOI: 10.3389/fpls.2024.1373801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
The interaction between plant hosts and plant viruses is a very unique and complex process, relying on dynamically modulated intercellular redox states and the generation of reactive oxygen species (ROS). Plants strive to precisely control this state during biotic stress, as optimal redox levels enable proper induction of defense mechanisms against plant viruses. One of the crucial elements of ROS regulation and redox state is the production of metabolites, such as glutathione, or the activation of glutathione-associated enzymes. Both of these elements play a role in limiting the degree of potential oxidative damage in plant cells. While the role of glutathione and specific enzymes is well understood in other types of abiotic and biotic stresses, particularly those associated with bacteria or fungi, recent advances in research have highlighted the significance of glutathione modulation and mutations in genes encoding glutathione-associated enzymes in triggering immunity or susceptibility against plant viruses. Apparently, glutathione-associated genes are involved in precisely controlling and protecting host cells from damage caused by ROS during viral infections, playing a crucial role in the host's response. In this review, we aim to outline the significant improvements made in research on plant viruses and glutathione, specifically in the context of their involvement in susceptible and resistant responses, as well as changes in the localization of glutathione. Analyses of essential glutathione-associated enzymes in susceptible and resistant responses have demonstrated that the levels of enzymatic activity or the absence of specific enzymes can impact the spread of the virus and activate host-induced defense mechanisms. This contributes to the complex network of the plant immune system. Although investigations of glutathione during the plant-virus interplay remain a challenge, the use of novel tools and approaches to explore its role will significantly contribute to our knowledge in the field.
Collapse
Affiliation(s)
- Edmund Kozieł
- *Correspondence: Edmund Kozieł, ; Katarzyna Otulak-Kozieł,
| | | | | |
Collapse
|
7
|
Pollari M, Sipari N, Poque S, Himanen K, Mäkinen K. Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana. Viruses 2022; 15:121. [PMID: 36680161 PMCID: PMC9867248 DOI: 10.3390/v15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Mixed virus infections threaten crop production because interactions between the host and the pathogen mix may lead to viral synergism. While individual infections by potato virus A (PVA), a potyvirus, and potato virus X (PVX), a potexvirus, can be mild, co-infection leads to synergistic enhancement of PVX and severe symptoms. We combined image-based phenotyping with metabolite analysis of single and mixed PVA and PVX infections and compared their effects on growth, photosynthesis, and metabolites in Nicotiana benthamiana. Viral synergism was evident in symptom severity and impaired growth in the plants. Indicative of stress, the co-infection increased leaf temperature and decreased photosynthetic parameters. In contrast, singly infected plants sustained photosynthetic activity. The host's metabolic response differed significantly between single and mixed infections. Over 200 metabolites were differentially regulated in the mixed infection: especially defense-related metabolites and aromatic and branched-chain amino acids increased compared to the control. Changes in the levels of methionine cycle intermediates and a low S-adenosylmethionine/S-adenosylhomocysteine ratio suggested a decline in the methylation potential in co-infected plants. The decreased ratio between reduced glutathione, an important scavenger of reactive oxygen species, and its oxidized form, indicated that severe oxidative stress developed during co-infection. Based on the results, infection-associated oxidative stress is successfully controlled in the single infections but not in the synergistic infection, where activated defense pathways are not sufficient to counter the impact of the infections on plant growth.
Collapse
Affiliation(s)
- Maija Pollari
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Sylvain Poque
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Himanen
- National Plant Phenotyping Infrastructure, HiLIFE, Biocenter Finland, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Mäkinen
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Zhang K, Xu X, Guo X, Ding S, Gu T, Qin L, He Z. Sugarcane Streak Mosaic Virus P1 Attenuates Plant Antiviral Immunity and Enhances Potato Virus X Infection in Nicotiana benthamiana. Cells 2022; 11:2870. [PMID: 36139443 PMCID: PMC9497147 DOI: 10.3390/cells11182870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/05/2022] Open
Abstract
The sugarcane streak mosaic virus (SCSMV) is the most important disease in sugarcane produced in southern China. The SCSMV encoded protein 1 (P1SCSMV) is important in disease development, but little is known about its detailed functions in plant-virus interactions. Here, the differential accumulated proteins (DAPs) were identified in the heterologous expression of P1SCSMV via a potato virus X (PVX)-based expression system, using a newly developed four-dimensional proteomics approach. The data were evaluated for credibility and reliability using qRT-RCR and Western blot analyses. The physiological response caused by host factors that directly interacted with the PVX-encoded proteins was more pronounced for enhancing the PVX accumulation and pathogenesis in Nicotiana benthamiana. P1SCSMV reduced photosynthesis by damaging the photosystem II (PSII). Overall, P1SCSMV promotes changes in the physiological status of its host by up- or downregulating the expression of host factors that directly interact with the viral proteins. This creates optimal conditions for PVX replication and movement, thereby enhancing its accumulation levels and pathogenesis. Our investigation is the first to supply detailed evidence of the pathogenesis-enhancing role of P1SCSMV, which provides a deeper understanding of the mechanisms behind virus-host interactions.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaowei Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Shiwen Ding
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Tianxiao Gu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lang Qin
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhen He
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Verchot J. Potato virus X: A global potato-infecting virus and type member of the Potexvirus genus. MOLECULAR PLANT PATHOLOGY 2022; 23:315-320. [PMID: 34791766 PMCID: PMC8828454 DOI: 10.1111/mpp.13163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
TAXONOMY Potato virus X is the type-member of the plant-infecting Potexvirus genus in the family Alphaflexiviridae. PHYSICAL PROPERTIES Potato virus X (PVX) virions are flexuous filaments 460-480 nm in length. Virions are 13 nm in diameter and have a helical pitch of 3.4 nm. The genome is approximately 6.4 kb with a 5' cap and 3' poly(A) terminus. PVX contains five open reading frames, four of which are essential for cell-to-cell and systemic movement. One protein encodes the viral replicase. Cellular inclusions, known as X-bodies, occur near the nucleus of virus-infected cells. HOSTS The primary host is potato, but it infects a wide range of dicots. Diagnostic hosts include Datura stramonium and Nicotiana tabacum. PVX is transmitted in nature by mechanical contact. USEFUL WEBSITE: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/alphaflexiviridae/1330/genus-potexvirus.
Collapse
Affiliation(s)
- Jeanmarie Verchot
- Department of Plant Pathology & MicrobiologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
10
|
Zhu F, Zhang Q, Che Y, Zhu P, Zhang Q, Ji Z. Glutathione contributes to resistance responses to TMV through a differential modulation of salicylic acid and reactive oxygen species. MOLECULAR PLANT PATHOLOGY 2021; 22:1668-1687. [PMID: 34553471 PMCID: PMC8578835 DOI: 10.1111/mpp.13138] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 05/04/2023]
Abstract
Systemic acquired resistance (SAR) is induced by pathogens and confers protection against a broad range of pathogens. Several SAR signals have been characterized, but the nature of the other unknown signalling by small metabolites in SAR remains unclear. Glutathione (GSH) has long been implicated in the defence reaction against biotic stress. However, the mechanism that GSH increases plant tolerance against virus infection is not entirely known. Here, a combination of a chemical, virus-induced gene-silencing-based genetics approach, and transgenic technology was undertaken to investigate the role of GSH in plant viral resistance in Nicotiana benthamiana. Tobacco mosaic virus (TMV) infection results in increasing the expression of GSH biosynthesis genes NbECS and NbGS, and GSH content. Silencing of NbECS or NbGS accelerated oxidative damage, increased accumulation of reactive oxygen species (ROS), compromised plant resistance to TMV, and suppressed the salicylic acid (SA)-mediated signalling pathway. Application of GSH or l-2-oxothiazolidine-4-carboxylic acid (a GSH activator) alleviated oxidative damage, decreased accumulation of ROS, elevated plant local and systemic resistance, enhanced the SA-mediated signalling pathway, and increased the expression of ROS scavenging-related genes. However, treatment with buthionine sulfoximine (a GSH inhibitor) accelerated oxidative damage, elevated ROS accumulation, compromised plant systemic resistance, suppressed the SA-mediated signalling pathway, and reduced the expression of ROS-regulating genes. Overexpression of NbECS reduced oxidative damage, decreased accumulation of ROS, increased resistance to TMV, activated the SA-mediated signalling pathway, and increased the expression of the ROS scavenging-related genes. We present molecular evidence suggesting GSH is essential for both local and systemic resistance of N. benthamiana to TMV through a differential modulation of SA and ROS.
Collapse
Affiliation(s)
- Feng Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qi‐Ping Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Yan‐Ping Che
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Peng‐Xiang Zhu
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Qin‐Qin Zhang
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| | - Zhao‐Lin Ji
- College of Horticulture and Plant ProtectionJoint International Research Laboratory of Agriculture and Agri‐Product Safety, the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
| |
Collapse
|
11
|
Király L, Albert R, Zsemberi O, Schwarczinger I, Hafez YM, Künstler A. Reactive Oxygen Species Contribute to Symptomless, Extreme Resistance to Potato virus X in Tobacco. PHYTOPATHOLOGY 2021; 111:1870-1884. [PMID: 33593113 DOI: 10.1094/phyto-12-20-0540-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here we show that in tobacco (Nicotiana tabacum cultivar Samsun NN Rx1) the development of Rx1 gene-mediated, symptomless, extreme resistance to Potato virus X (PVX) is preceded by an early, intensive accumulation of the reactive oxygen species (ROS) superoxide (O2·-), evident between 1 and 6 h after inoculation and associated with increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activities. This suggests a direct contribution of this ROS to virus restriction during symptomless, extreme resistance. Superoxide inhibition in PVX-inoculated leaves by infiltration of antioxidants (superoxide dismutase [SOD] and catalase [CAT]) partially suppresses extreme resistance in parallel with the appearance of localized leaf necrosis resembling a hypersensitive resistance (HR) response. F1 progeny from crosses of Rx1 and ferritin overproducer (deficient in production of the ROS OH·) tobaccos also display a suppressed extreme resistance to PVX, because significantly increased virus levels are coupled to HR, suggesting a role of the hydroxyl radical (OH·) in this symptomless antiviral defense. In addition, treatment of PVX-susceptible tobacco with a superoxide-generating agent (riboflavin/methionine) results in HR-like symptoms and reduced PVX titers. Finally, by comparing defense responses during PVX-elicited symptomless, extreme resistance and HR-type resistance elicited by Tobacco mosaic virus, we conclude that defense reactions typical of an HR (e.g., induction of cell death/ROS-regulator genes and antioxidants) are early and transient in the course of extreme resistance. Our results demonstrate the contribution of early accumulation of ROS (superoxide, OH·) in limiting PVX replication during symptomless extreme resistance and support earlier findings that virus-elicited HR represents a delayed, slower resistance response than symptomless, extreme resistance.
Collapse
Affiliation(s)
- Lóránt Király
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| | - Réka Albert
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| | - Orsolya Zsemberi
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Ildikó Schwarczinger
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| | - Yaser Mohamed Hafez
- EPCRS Excellence Center & Plant Pathology and Biotechnology Lab, Department of Agricultural Botany, Faculty of Agriculture, Kafrelsheikh University, 33516 Kafr-El-Sheikh, Egypt
| | - András Künstler
- Department of Plant Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), H-1022 Budapest, Hungary
| |
Collapse
|
12
|
Ghosh D, M M, Chakraborty S. Impact of viral silencing suppressors on plant viral synergism: a global agro-economic concern. Appl Microbiol Biotechnol 2021; 105:6301-6313. [PMID: 34423406 DOI: 10.1007/s00253-021-11483-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
Plant viruses are known for their devastating impact on global agriculture. These intracellular biotrophic pathogens can infect a wide variety of plant hosts all over the world. The synergistic association of plant viruses makes the situation more alarming. It usually promotes the replication, movement, and transmission of either or both the coexisting synergistic viral partners. Although plants elicit a robust antiviral immune reaction, including gene silencing, to limit these infamous invaders, viruses counter it by encoding viral suppressors of RNA silencing (VSRs). Growing evidence also suggests that VSRs play a driving role in mediating the plant viral synergism. This review briefly discusses the evil impacts of mixed infections, especially synergism, and then comprehensively describes the emerging roles of VSRs in mediating the synergistic association of plant viruses. KEY POINTS: • Synergistic associations of plant viruses have devastating impacts on global agriculture. • Viral suppressors of RNA silencing (VSRs) play key roles in driving plant viral synergism.
Collapse
Affiliation(s)
- Dibyendu Ghosh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Malavika M
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
The Versatile Roles of Sulfur-Containing Biomolecules in Plant Defense-A Road to Disease Resistance. PLANTS 2020; 9:plants9121705. [PMID: 33287437 PMCID: PMC7761819 DOI: 10.3390/plants9121705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 01/03/2023]
Abstract
Sulfur (S) is an essential plant macronutrient and the pivotal role of sulfur compounds in plant disease resistance has become obvious in recent decades. This review attempts to recapitulate results on the various functions of sulfur-containing defense compounds (SDCs) in plant defense responses to pathogens. These compounds include sulfur containing amino acids such as cysteine and methionine, the tripeptide glutathione, thionins and defensins, glucosinolates and phytoalexins and, last but not least, reactive sulfur species and hydrogen sulfide. SDCs play versatile roles both in pathogen perception and initiating signal transduction pathways that are interconnected with various defense processes regulated by plant hormones (salicylic acid, jasmonic acid and ethylene) and reactive oxygen species (ROS). Importantly, ROS-mediated reversible oxidation of cysteine residues on plant proteins have profound effects on protein functions like signal transduction of plant defense responses during pathogen infections. Indeed, the multifaceted plant defense responses initiated by SDCs should provide novel tools for plant breeding to endow crops with efficient defense responses to invading pathogens.
Collapse
|
14
|
De S, Pollari M, Varjosalo M, Mäkinen K. Association of host protein VARICOSE with HCPro within a multiprotein complex is crucial for RNA silencing suppression, translation, encapsidation and systemic spread of potato virus A infection. PLoS Pathog 2020; 16:e1008956. [PMID: 33045020 PMCID: PMC7581364 DOI: 10.1371/journal.ppat.1008956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/22/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, we investigated the significance of a conserved five-amino acid motif 'AELPR' in the C-terminal region of helper component-proteinase (HCPro) for potato virus A (PVA; genus Potyvirus) infection. This motif is a putative interaction site for WD40 domain-containing proteins, including VARICOSE (VCS). We abolished the interaction site in HCPro by replacing glutamic acid (E) and arginine (R) with alanines (A) to generate HCProWD. These mutations partially eliminated HCPro-VCS co-localization in cells. We have earlier described potyvirus-induced RNA granules (PGs) in which HCPro and VCS co-localize and proposed that they have a role in RNA silencing suppression. We now demonstrate that the ability of HCProWD to induce PGs, introduce VCS into PGs, and suppress RNA silencing was impaired. Accordingly, PVA carrying HCProWD (PVAWD) infected Nicotiana benthamiana less efficiently than wild-type PVA (PVAWT) and HCProWD complemented the lack of HCPro in PVA gene expression only partially. HCPro was purified from PVA-infected leaves as part of high molecular weight (HMW) ribonucleoprotein (RNP) complexes. These complexes were more stable when associated with wild-type HCPro than with HCProWD. Moreover, VCS and two viral components of the HMW-complexes, viral protein genome-linked and cylindrical inclusion protein were specifically decreased in HCProWD-containing HMW-complexes. A VPg-mediated boost in translation of replication-deficient PVA (PVAΔGDD) was observed only if viral RNA expressed wild-type HCPro. The role of VCS-VPg-HCPro coordination in PVA translation was further supported by results from VCS silencing and overexpression experiments and by significantly elevated PVA-derived Renilla luciferase vs PVA RNA ratio upon VPg-VCS co-expression. Finally, we found that PVAWD was unable to form virus particles or to spread systemically in the infected plant. We highlight the role of HCPro-VCS containing multiprotein assemblies associated with PVA RNA in protecting it from degradation, ensuring efficient translation, formation of stable virions and establishment of systemic infection.
Collapse
Affiliation(s)
- Swarnalok De
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | - Maija Pollari
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| | | | - Kristiina Mäkinen
- University of Helsinki, Department of Microbiology and Viikki Plant Science Centre, Finland
| |
Collapse
|
15
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
16
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
17
|
Künstler A, Kátay G, Gullner G, Király L. Artificial elevation of glutathione contents in salicylic acid-deficient tobacco (Nicotiana tabacum cv. Xanthi NahG) reduces susceptibility to the powdery mildew pathogen Euoidium longipes. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:70-80. [PMID: 31283085 DOI: 10.1111/plb.13030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 06/09/2023]
Abstract
The effects of elevated glutathione levels on defence responses to powdery mildew (Euoidium longipes) were investigated in a salicylic acid-deficient tobacco (Nicotiana tabacum cv. Xanthi NahG) and wild-type cv. Xanthi plants, where salicylic acid (SA) contents are normal. Aqueous solutions of reduced glutathione (GSH) and its synthetic precursor R-2-oxothiazolidine-4-carboxylic acid (OTC) were injected into leaves of tobacco plants 3 h before powdery mildew inoculation. SA-deficient NahG tobacco was hyper-susceptible to E. longipes, as judged by significantly more severe powdery mildew symptoms and enhanced pathogen accumulation. Strikingly, elevation of GSH levels in SA-deficient NahG tobacco restored susceptibility to E. longipes to the extent seen in wild-type plants (i.e. enhanced basal resistance). However, expression of the SA-mediated pathogenesis-related gene (NtPR-1a) did not increase significantly in GSH or OTC-pretreated and powdery mildew-inoculated NahG tobacco, suggesting that the induction of this PR gene may not be directly involved in the defence responses induced by GSH. Our results demonstrate that artificial elevation of glutathione content can significantly reduce susceptibility to powdery mildew in SA-deficient tobacco.
Collapse
Affiliation(s)
- A Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - G Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - G Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - L Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
18
|
Künstler A, Király L, Kátay G, Enyedi AJ, Gullner G. Glutathione Can Compensate for Salicylic Acid Deficiency in Tobacco to Maintain Resistance to Tobacco Mosaic Virus. FRONTIERS IN PLANT SCIENCE 2019; 10:1115. [PMID: 31608082 PMCID: PMC6769422 DOI: 10.3389/fpls.2019.01115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/14/2019] [Indexed: 05/12/2023]
Abstract
Earlier studies showed that the artificial elevation of endogenous glutathione (GSH) contents can markedly increase the resistance of plants against different viruses. On the other hand, salicylic acid (SA)-deficient NahG plants display enhanced susceptibility to viral infections. In the present study, the biochemical mechanisms underlying GSH-induced resistance were investigated in various tobacco biotypes displaying markedly different GSH and SA levels. The endogenous GSH levels of Nicotiana tabacum cv. Xanthi NN and N. tabacum cv. Xanthi NN NahG tobacco leaves were increased by infiltration of exogenous GSH or its synthetic precursor R-2-oxo-4-thiazolidine-carboxylic acid (OTC). Alternatively, we also used tobacco lines containing high GSH levels due to transgenes encoding critical enzymes for cysteine and GSH biosynthesis. We crossed Xanthi NN and NahG tobaccos with the GSH overproducer transgenic tobacco lines in order to obtain F1 progenies with increased levels of GSH and decreased levels of SA. We demonstrated that in SA-deficient NahG tobacco the elevation of in planta GSH and GSSG levels either by exogenous GSH or by crossing with glutathione overproducing plants confers enhanced resistance to Tobacco mosaic virus (TMV) manifested as both reduced symptoms (i.e. suppression of hypersensitive-type localized necrosis) and lower virus titers. The beneficial effects of elevated GSH on TMV resistance was markedly stronger in NahG than in Xanthi NN leaves. Infiltration of exogenous GSH and OTC or crossing with GSH overproducer tobacco lines resulted in a substantial rise of bound SA and to a lesser extent of free SA levels in tobacco, especially following TMV infection. Significant increases in expression of pathogenesis related (NtPR-1a, and NtPRB-1b), and glutathione S-transferase (NtGSTtau, and NtGSTphi) genes were evident in TMV-inoculated leaves in later stages of pathogenesis. However, the highest levels of defense gene expression were associated with SA-deficiency, rather than enhanced TMV resistance. In summary, elevated levels of glutathione in TMV-infected tobacco can compensate for SA deficiency to maintain virus resistance. Our results suggest that glutathione-induced redox changes are important components of antiviral signaling in tobacco.
Collapse
Affiliation(s)
- András Künstler
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - György Kátay
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexander J Enyedi
- Office of Academic Affairs, Humboldt State University, Arcata, CA, United States
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
19
|
Mäkinen K, De S. The significance of methionine cycle enzymes in plant virus infections. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:67-75. [PMID: 30959442 DOI: 10.1016/j.pbi.2019.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 05/22/2023]
Abstract
Both biotic and abiotic stresses cause changes in the activities of plant methionine cycle (MTC) enzymes. These changes contribute to the ability of the plant to manage stress. On the other hand, viruses utilize MTC enzymes to promote infection. Here, we review the growing but still limited knowledge of the interactions between plant viral proteins and MTC enzymes. Virus-induced changes in S-adenosyl methionine synthetase and S-adenosyl homocysteine hydrolase activities debilitate transcriptional and post-transcriptional RNA silencing and affect antiviral defense reactions connected to ethylene and polyamine biosynthesis pathways. Viral perturbations of host methionine homeostasis couple trans-sulfuration and gluthathione biosynthesis pathways to MTC functions. Large multiprotein complexes, which contain viral proteins and MTC enzymes, may represent metabolons assembled for specific viral functions or host defense responses. Proper understanding of the MTC-associated metabolic and regulatory interactions will reveal those with potential to create virus resistance in plants.
Collapse
Affiliation(s)
- Kristiina Mäkinen
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, P.O. Box 56, University of Helsinki, Finland.
| | - Swarnalok De
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, P.O. Box 56, University of Helsinki, Finland
| |
Collapse
|
20
|
Yang X, Guo W, Li F, Sunter G, Zhou X. Geminivirus-Associated Betasatellites: Exploiting Chinks in the Antiviral Arsenal of Plants. TRENDS IN PLANT SCIENCE 2019; 24:519-529. [PMID: 31003895 DOI: 10.1016/j.tplants.2019.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Betasatellites are a diverse group of circular single-stranded DNA satellites frequently associated with begomoviruses belonging to the family Geminiviridae. Challenged with a geminivirus-betasatellite infection, plants have employed sophisticated defense mechanisms to protect themselves. Betasatellites, in turn, employ mechanisms to antagonize these plant antiviral pathways. In this review, we focus on the anti-geminiviral immune pathways present both in plants and whiteflies. We also outline the counter-defensive strategies deployed by betasatellites to overcome the host defenses and initiate a successful infection. Finally, we discuss the outcomes of the opposing forces of plant immunity and betasatellite-mediated antagonism in the context of an evolutionary arms race. Understanding of the molecular dialog between plants and betasatellites will likely allow for the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Garry Sunter
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Aguilar E, del Toro FJ, Brosseau C, Moffett P, Canto T, Tenllado F. Cell death triggered by the P25 protein in Potato virus X-associated synergisms results from endoplasmic reticulum stress in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2019; 20:194-210. [PMID: 30192053 PMCID: PMC6637867 DOI: 10.1111/mpp.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synergistic interaction of Potato virus X (PVX) with a number of potyviruses results in systemic necrosis in Nicotiana spp. Previous investigations have indicated that the viral suppressor of RNA silencing (VSR) protein P25 of PVX triggers systemic necrosis in PVX-associated synergisms in a threshold-dependent manner. However, little is still known about the cellular processes that lead to this necrosis, and whether the VSR activity of P25 is involved in its elicitation. Here, we show that transient expression of P25 in the presence of VSRs from different viruses, including the helper component-proteinase (HC-Pro) of potyviruses, induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which ultimately lead to ER collapse. However, the host RNA silencing pathway was dispensable for the elicitation of cell death by P25. Confocal microscopy studies in leaf patches co-expressing P25 and HC-Pro showed dramatic alterations in ER membrane structures, which correlated with the up-regulation of bZIP60 and several ER-resident chaperones, including the ER luminal binding protein (BiP). Overexpression of BiP alleviated the cell death induced by the potexviral P25 protein when expressed together with VSRs derived from different viruses. Conversely, silencing of the UPR master regulator, bZIP60, led to an increase in cell death elicited by the P25/HC-Pro combination as well as by PVX-associated synergism. In addition to its role as a negative regulator of P25-induced cell death, UPR partially restricted PVX infection. Thus, systemic necrosis caused by PVX-associated synergistic infections is probably the effect of an unmitigated ER stress following the overaccumulation of a viral protein, P25, with ER remodelling activity.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco J. del Toro
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Chantal Brosseau
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Peter Moffett
- Centre SÈVE, Département de BiologieUniversité de SherbrookeSherbrookeQCJ1K 2R1Canada
| | - Tomás Canto
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de PlantasCentro de Investigaciones Biológicas, CSICMadrid28040Spain
| |
Collapse
|