1
|
Senuma W, Hayashi K, Tsuzuki M, Takemura C, Terazawa Y, Kiba A, Ohnishi K, Kai K, Hikichi Y. Contribution of the Sensor Histidine Kinases PhcS and VsrA to the Quorum Sensing of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:688-697. [PMID: 39295141 DOI: 10.1094/mpmi-05-24-0049-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The soilborne Gram-negative phytopathogenic beta-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) as the quorum sensing (QS) signal by the methyltransferase PhcB and senses the chemical, activating the LysR family transcriptional regulator PhcA, which regulates the QS-dependent genes responsible for QS-dependent phenotypes including virulence. The sensor histidine kinases PhcS and VsrA are reportedly involved in the regulation of QS-dependent genes. To elucidate the function of PhcS and VsrA in the active QS, we generated the phcS-deletion and vsrA-deletion mutants, which exhibited weak changes to their QS-dependent phenotypes including virulence. The phcS and vsrA-deletion mutant (ΔphcS/vsrA) had significant changes in its QS-dependent phenotypes and was nonvirulent, similar to the phcA-deletion mutant. The mutant (PhcS-H230Q) with a substitution of histidine to glutamine at amino acid position 230 in PhcS but not the mutant (VsrA-H256Q) with a substitution of histidine to glutamine at amino acid position 256 in VsrA exhibited significant changes in QS-dependent phenotypes and lost virulence. The transcriptome analysis with RNA-sequencing revealed significant alterations to the expression of QS-dependent genes in the ΔphcS/vsrA and PhcS-H230Q but not VsrA-H256Q, similar to the phcA-deletion mutant. The exogenous 3-OH MAME application led to a significantly enhanced QS-inducible major exopolysaccharide EPS I production of the strain OE1-1 and phcB-deletion mutant but not ΔphcS/vsrA and PhcS-H230Q. Collectively, results of the present genetic study suggested that PhcS contributes to QS along with VsrA and that histidine at amino acid position 230 of PhcS is required for 3-OH MAME sensing, thereby influencing QS-dependent phenotypes including virulence of the strain OE1-1. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
2
|
Li P, Bez C, Zhang Y, Deng Y, Venturi V. N-acyl homoserine lactone cell-cell diffusible signalling in the Ralstonia solanacearum species complex. MOLECULAR PLANT PATHOLOGY 2024; 25:e13467. [PMID: 39099210 PMCID: PMC11298618 DOI: 10.1111/mpp.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Yong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen University, Sun Yatsen UniversityShenzhenChina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome Center, University Mohammed VI Polytechnic (UM6P)Ben GuerirMorocco
| |
Collapse
|
3
|
Terazawa Y, Tsuzuki M, Nakajima H, Inoue K, Tateda S, Kiba A, Ohnishi K, Kai K, Hikichi Y. The Micacocidin Production-Related RSc1806 Deletion Alters the Quorum Sensing-Dependent Gene Regulation of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:467-476. [PMID: 38805410 DOI: 10.1094/mpmi-12-23-0203-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The soil-borne phytopathogenic gram-negative bacterium Ralstonia solanacearum species complex (RSSC) produces staphyloferrin B and micacocidin as siderophores that scavenge for trivalent iron (Fe3+) in the environment, depending on the intracellular divalent iron (Fe2+) concentration. The staphyloferrin B-deficient mutant reportedly retains its virulence, but the relationship between micacocidin and virulence remains unconfirmed. To elucidate the effect of micacocidin on RSSC virulence, we generated the micacocidin productivity-deficient mutant (ΔRSc1806) that lacks RSc1806, which encodes a putative polyketide synthase/non-ribosomal peptide synthetase, using the RSSC phylotype I Ralstonia pseudosolanacearum strain OE1-1. When incubated in the condition without Fe2+, ΔRSc1806 showed significantly lower Fe3+-scavenging activity, compared with OE1-1. Until 8 days after inoculation on tomato plants, ΔRSc1806 was not virulent, similar to the mutant (ΔphcA) missing phcA, which encodes the LysR-type transcriptional regulator PhcA that regulates the expression of the genes responsible for quorum sensing (QS)-dependent phenotypes including virulence. The transcriptome analysis revealed that RSc1806 deletion significantly altered the expression of more than 80% of the PhcA-regulated genes in the mutant grown in medium with or without Fe2+. Among the PhcA-regulated genes, the transcript levels of the genes whose expression was affected by the deletion of RSc1806 were strongly and positively correlated between the ΔRSc1806 and the phcA-deletion mutant. Furthermore, the deletion of RSc1806 significantly modified QS-dependent phenotypes, similar to the effects of the deletion of phcA. Collectively, our findings suggest that the deletion of micacocidin production-related RSc1806 alters the regulation of PhcA-regulated genes responsible for QS-dependent phenotypes including virulence as well as Fe3+-scavenging activity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Hiroto Nakajima
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Sora Tateda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
4
|
Huang J, Wang R, Zhang Q, Wang C, Liang T, Hikichi Y, Ohnishi K, Jiang G, Guo T, Zhang Y. Positive regulation of the PhcB neighbouring regulator PrhX on expression of the type III secretion system and pathogenesis in Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2024; 25:e13398. [PMID: 37877898 PMCID: PMC10788593 DOI: 10.1111/mpp.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Ralstonia solanacearum PhcB and PhcA control a quorum-sensing (QS) system that globally regulates expression of about one third of all genes, including pathogenesis genes. The PhcB-PhcA QS system positively regulates the production of exopolysaccharide (EPS) and negatively regulates hrp gene expression, which is crucial for the type III secretion system (T3SS). Both EPS and the T3SS are essential for pathogenicity. The gene rsc2734 is located upstream of a phcBSR operon and annotated as a response regulator of a two-component system. Here, we demonstrated that RSc2734, hereafter named PrhX, positively regulated hrp gene expression via a PrhA-PrhIR-PrhJ-HrpG signalling cascade. Moreover, PrhX was crucial for R. solanacearum to invade host roots and grow in planta naturally. prhX expression was independent of the PhcB-PhcA QS system. PrhX did not affect the expression of phcB and phcA and the QS-dependent phenotypes, such as EPS production and biofilm formation. Our results provide novel insights into the complex regulatory network of the T3SS and pathogenesis in R. solanacearum.
Collapse
Affiliation(s)
- Jiajun Huang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Rongsheng Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Qi Zhang
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Chunli Wang
- Chongqing Academy of Agricultural SciencesChongqingChina
| | - Tao Liang
- Chongqing Station of Agricultural Ecology and Resource ProtectionChongqingChina
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Gaofei Jiang
- National Engineering Research Center for Organic‐based FertilizersNanjing Agricultural UniversityNanjingChina
| | - Tao Guo
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSouthwest UniversityChongqingChina
| |
Collapse
|
5
|
Takemura C, Senuma W, Tsuzuki M, Terazawa Y, Inoue K, Sato M, Kiba A, Ohnishi K, Kai K, Hikichi Y. The transcription regulator ChpA affects the global transcriptome including quorum sensing-dependent genes in Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2023; 24:1370-1384. [PMID: 37452484 PMCID: PMC10576176 DOI: 10.1111/mpp.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The gram-negative plant-pathogenic β-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate as a quorum sensing (QS) signal through methyltransferase PhcB and senses the chemical via the sensor histidine kinase PhcS. This leads to activation of the LysR family transcription regulator PhcA, which regulates the genes (QS-dependent genes) responsible for QS-dependent phenotypes, including virulence. The transcription regulator ChpA, which possesses a response regulator receiver domain and also a hybrid sensor histidine kinase/response regulator phosphore-acceptor domain but lacks a DNA-binding domain, is reportedly involved in QS-dependent biofilm formation and virulence of R. pseudosolanacearum strain GMI1000. To explore the function of ChpA in QS of OE1-1, we generated a chpA-deletion mutant (ΔchpA) and revealed that the chpA deletion leads to significantly altered QS-dependent phenotypes. Furthermore, ΔchpA exhibited a loss in its infectivity in xylem vessels of tomato plant roots, losing virulence on tomato plants, similar to the phcA-deletion mutant (ΔphcA). Transcriptome analysis showed that the transcript levels of phcB, phcQ, phcR, and phcA in ΔchpA were comparable to those in OE1-1. However, the transcript levels of 89.9% and 88.9% of positively and negatively QS-dependent genes, respectively, were significantly altered in ΔchpA compared with OE1-1. Furthermore, the transcript levels of these genes in ΔchpA were positively correlated with those in ΔphcA. Together, our results suggest that ChpA is involved in the regulation of these QS-dependent genes, thereby contributing to the behaviour in host plant roots and virulence of OE1-1.
Collapse
Affiliation(s)
- Chika Takemura
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kochi Prefectural Agriculture Research CenterNankokuJapan
| | - Wakana Senuma
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Central Research Institute, Ishihara Sangyo Kaisha, Ltd.KusatsuJapan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
- Present address:
Kumamoto Experimental Station, Sumika Agrotech Co., Ltd.KikuchiJapan
| | - Kanako Inoue
- Research Center for Ultra‐High Voltage Electron MicroscopyOsaka UniversityIbarakiJapan
- Present address:
Division of Biological Sciences Plant Immunity, Nara Institute of Science and TechnologyIkomaJapan
| | - Masanao Sato
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Akinori Kiba
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| | - Kenji Kai
- Graduate School of AgricultureOsaka Metropolitan UniversitySakaiJapan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine ScienceKochi UniversityNankokuJapan
| |
Collapse
|
6
|
Liu Q, Li C, Zhang X, Ding M, Liao X, Yan J, Hu M, Yang L, Wang X, Liao L, Li P, Zhou X. PhcX Is a LqsR-family response regulator that contributes to Ralstonia solanacearum virulence and regulates multiple virulence factors. mBio 2023; 14:e0202823. [PMID: 37787568 PMCID: PMC10653808 DOI: 10.1128/mbio.02028-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE The bacterial wilt caused by the soil-borne phytopathogen Ralstonia solanacearum is one of the most destructive crop diseases. To achieve a successful infection, R. solanacearum has evolved an intricate regulatory network to orchestrate the expression of an arsenal of virulence factors and fine-tune the allocation of energy. However, despite the wealth of knowledge gained in the past decades, many players and connections are still missing from the network. The importance of our study lies in the identification of PhcX, a novel conserved global regulator with critical roles in modulating the virulence and metabolism of R. solanacearum. PhcX affects many well-characterized regulators and exhibits contrasting modes of regulation from the central regulator PhcA on a variety of virulence-associated traits and genes. Our findings add a valuable piece to the puzzle of how the pathogen regulates its proliferation and infection, which is critical for understanding its pathogenesis and developing disease control strategies.
Collapse
Affiliation(s)
- Qingmei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaohan Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Mengfan Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jinli Yan
- School of Agricultural Science, Xichang University, Xichang, China
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Leilei Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lisheng Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Abstract
Ralstonia solanacearum species complex (RSSC) strains are devastating plant pathogens distributed worldwide. The primary cell density-dependent gene expression system in RSSC strains is phc quorum sensing (QS). It regulates the expression of about 30% of all genes, including those related to cellular activity, primary and secondary metabolism, pathogenicity, and more. The phc regulatory elements encoded by the phcBSRQ operon and phcA gene play vital roles. RSSC strains use methyl 3-hydroxymyristate (3-OH MAME) or methyl 3-hydroxypalmitate (3-OH PAME) as the QS signal. Each type of RSSC strain has specificity in generating and receiving its QS signal, but their signaling pathways might not differ significantly. In this review, I describe the genetic and biochemical factors involved in QS signal input and the regulatory network and summarize control of the phc QS system, new cell-cell communications, and QS-dependent interactions with soil fungi.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan;
| |
Collapse
|
8
|
Tsumori C, Matsuo S, Murai Y, Kai K. Quorum Sensing-Dependent Invasion of Ralstonia solanacearum into Fusarium oxysporum Chlamydospores. Microbiol Spectr 2023; 11:e0003623. [PMID: 37367297 PMCID: PMC10433826 DOI: 10.1128/spectrum.00036-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Strains of the Ralstonia solanacearum species complex (RSSC), although known as the causative agent of bacterial wilt disease in plants, induce the chlamydospores of many fungal species and invade them through the spores. The lipopeptide ralstonins are the chlamydospore inducers produced by RSSC and are essential for this invasion. However, no mechanistic investigation of this interaction has been conducted. In this study, we report that quorum sensing (QS), which is a bacterial cell-cell communication, is important for RSSC to invade the fungus Fusarium oxysporum (Fo). ΔphcB, a deletion mutant of QS signal synthase, lost the ability to both produce ralstonins and invade Fo chlamydospores. The QS signal methyl 3-hydroxymyristate rescued these disabilities. In contrast, exogenous ralstonin A, while inducing Fo chlamydospores, failed to rescue the invasive ability. Gene-deletion and -complementation experiments revealed that the QS-dependent production of extracellular polysaccharide I (EPS I) is essential for this invasion. The RSSC cells adhered to Fo hyphae and formed biofilms there before inducing chlamydospores. This biofilm formation was not observed in the EPS I- or ralstonin-deficient mutant. Microscopic analysis showed that RSSC infection resulted in the death of Fo chlamydospores. Altogether, we report that the RSSC QS system is important for this lethal endoparasitism. Among the factors regulated by the QS system, ralstonins, EPS I, and biofilm are important parasitic factors. IMPORTANCE Ralstonia solanacearum species complex (RSSC) strains infect both plants and fungi. The phc quorum-sensing (QS) system of RSSC is important for parasitism on plants, because it allows them to invade and proliferate within the hosts by causing appropriate activation of the system at each infection step. In this study, we confirm that ralstonin A is important not only for Fusarium oxysporum (Fo) chlamydospore induction but also for RSSC biofilm formation on Fo hyphae. Extracellular polysaccharide I (EPS I) is also essential for biofilm formation, while the phc QS system controls these factors in terms of production. The present results advocate a new QS-dependent mechanism for the process by which a bacterium invades a fungus.
Collapse
Affiliation(s)
- Chiaki Tsumori
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Shoma Matsuo
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Yuta Murai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
9
|
Senuma W, Tsuzuki M, Takemura C, Terazawa Y, Inoue K, Kiba A, Ohnishi K, Kai K, Hikichi Y. β-1,4-Cellobiohydrolase is involved in full expression of phcA, contributing to the feedback loop in quorum sensing of Ralstonia pseudosolanacearum strain OE1-1. MOLECULAR PLANT PATHOLOGY 2023; 24:549-559. [PMID: 36912776 DOI: 10.1111/mpp.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 05/18/2023]
Abstract
After infecting roots of tomato plants, the gram-negative bacterium Ralstonia pseudosolanacearum strain OE1-1 activates quorum sensing (QS) to induce production of plant cell wall-degrading enzymes, such as β-1,4-endoglucanase (Egl) and β-1,4-cellobiohydrolase (CbhA), via the LysR family transcriptional regulator PhcA and then invades xylem vessels to exhibit virulence. The phcA-deletion mutant (ΔphcA) exhibits neither the ability to infect xylem vessels nor virulence. Compared with strain OE1-1, the egl-deletion mutant (Δegl) exhibits lower cellulose degradation activity, lower infectivity in xylem vessels, and reduced virulence. In this study, we analysed functions of CbhA other than cell wall degradation activity that are involved in the virulence of strain OE1-1. The cbhA-deletion mutant (ΔcbhA) lacked the ability to infect xylem vessels and displayed loss of virulence, similar to ΔphcA, but exhibited less reduced cellulose degradation activity compared with Δegl. Transcriptome analysis revealed that the phcA expression levels in ΔcbhA were significantly lower than in OE1-1, with significantly altered expression of more than 50% of PhcA-regulated genes. Deletion of cbhA led to a significant change in QS-dependent phenotypes, similar to the effects of phcA deletion. Complementation of ΔcbhA with native cbhA or transformation of this mutant with phcA controlled by a constitutive promoter recovered its QS-dependent phenotypes. The expression level of phcA in ΔcbhA-inoculated tomato plants was significantly lower than in strain OE1-1-inoculated plants. Our results collectively suggest that CbhA is involved in the full expression of phcA, thereby contributing to the QS feedback loop and virulence of strain OE1-1.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
10
|
Inoue K, Takemura C, Senuma W, Maeda H, Kai K, Kiba A, Ohnishi K, Tsuzuki M, Hikichi Y. The behavior of Ralstonia pseudosolanacearum strain OE1-1 and morphological changes of cells in tomato roots. JOURNAL OF PLANT RESEARCH 2023; 136:19-31. [PMID: 36427093 DOI: 10.1007/s10265-022-01427-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The soil-borne Gram-negative β-proteobacterium Ralstonia solanacearum species complex (RSSC) infects tomato roots through the wounds where secondary roots emerge, infecting xylem vessels. Because it is difficult to observe the behavior of RSSC by a fluorescence-based microscopic approach at high magnification, we have little information on its behavior at the root apexes in tomato roots. To analyze the infection route of a strain of phylotype I of RSSC, R. pseudosolanacearum strain OE1-1, which invades tomato roots through the root apexes, we first developed an in vitro pathosystem using 4 day-old-tomato seedlings without secondary roots co-incubated with the strain OE1-1. The microscopic observation of toluidine blue-stained longitudinal semi-thin resin sections of tomato roots allowed to detect attachment of the strain OE1-1 to surfaces of the meristematic and elongation zones in tomato roots. We then observed colonization of OE1-1 in intercellular spaces between epidermis and cortex in the elongation zone, and a detached epidermis in the elongation zone. Furthermore, we observed cortical and endodermal cells without a nucleus and with the cell membrane pulling away from the cell wall. The strain OE1-1 next invaded cell wall-degenerated cortical cells and formed mushroom-shaped biofilms to progress through intercellular spaces of the cortex and endodermis, infecting pericycle cells and xylem vessels. The deletion of egl encoding β-1,4-endoglucanase, which is one of quorum sensing (QS)-inducible plant cell wall-degrading enzymes (PCDWEs) secreted via the type II secretion system (T2SS) led to a reduced infectivity in cortical cells. Furthermore, the QS-deficient and T2SS-deficient mutants lost their infectivity in cortical cells and the following infection in xylem vessels. Taking together, infection of OE1-1, which attaches to surfaces of the meristematic and elongation zones, in cortical cells of the elongation zone in tomato roots, dependently on QS-inducible PCDWEs secreted via the T2SS, leads to its subsequent infection in xylem vessels.
Collapse
Affiliation(s)
- Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Hidefumi Maeda
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, 783-8502, Nankoku, Kochi, Japan.
| |
Collapse
|
11
|
Rivera-Zuluaga K, Hiles R, Barua P, Caldwell D, Iyer-Pascuzzi AS. Getting to the root of Ralstonia invasion. Semin Cell Dev Biol 2022; 148-149:3-12. [PMID: 36526528 DOI: 10.1016/j.semcdb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/16/2022]
Abstract
Plant diseases caused by soilborne pathogens are a major limiting factor in crop production. Bacterial wilt disease, caused by soilborne bacteria in the Ralstonia solanacearum Species Complex (Ralstonia), results in significant crop loss throughout the world. Ralstonia invades root systems and colonizes plant xylem, changing plant physiology and ultimately causing plant wilting in susceptible varieties. Elucidating how Ralstonia invades and colonizes plants is central to developing strategies for crop protection. Here we review Ralstonia pathogenesis from root detection and attachment, early root colonization, xylem invasion and subsequent wilting. We focus primarily on studies in tomato from the last 5-10 years. Recent work has identified elegant mechanisms Ralstonia uses to adapt to the plant xylem, and has discovered new genes that function in Ralstonia fitness in planta. A picture is emerging of an amazingly versatile pathogen that uses multiple strategies to make its surrounding environment more hospitable and can adapt to new environments.
Collapse
|
12
|
Yan J, Lin N, Wang X, Chen X, Wang H, Lin Q, Zhou X, Zhang L, Liao L. Markerless gene deletion in Ralstonia solanacearum based on its natural transformation competence. Front Microbiol 2022; 13:977580. [PMID: 36177460 PMCID: PMC9512648 DOI: 10.3389/fmicb.2022.977580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Ralstonia solanacearum species complex (RSSC) is a group of Gram-negative bacterial pathogen capable of infecting numerous plants and crops, causing severe vascular wilt diseases. Functional analysis of the genes associated with bacterial virulence is critical for elucidating the molecular mechanisms that govern the bacterial pathogenicity. To this end, an efficient gene deletion method would be of great help. In this study, we set to develop an efficient and simple markerless gene deletion method by exploiting its natural transformation competence and the FLP/FRT recombination system. We found that natural transformation using PCR products provided much higher transformation frequency than the plasmid-based triparental mating and electroporation. We thus generated the gene deletion fusion PCR fragments by incorporating the upstream and downstream DNA fragments of the target gene and an antibiotic resistance gene flanked by FRT sites, and delivered the PCR products into R. solanacearum cells through natural transformation. Using this method, we knocked out the epsB and phcA genes, which are associated with exopolysaccharide (EPS) biosynthesis and regulation, respectively, in several R. solanacearum strains isolated from different host plants at a frequency from 5 (1E-08) to 45 (1E-08). To remove the antibiotic marker gene, the plasmid expressing the FLP enzyme was introduced into the above knockout mutants, which enabled removal of the marker gene. The effective combination of natural transformation and the FLP/FRT recombination system thus offers a simple and efficient method for functional study of putative virulence genes and for elucidation of R. solanacearum pathogenic mechanisms.
Collapse
Affiliation(s)
- Jinli Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Nuoqiao Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xuemei Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Huishan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Lianhui Zhang,
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Lisheng Liao,
| |
Collapse
|
13
|
Li P, Cao X, Zhang L, Lv M, Zhang LH. PhcA and PhcR Regulate Ralsolamycin Biosynthesis Oppositely in Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2022; 13:903310. [PMID: 35712573 PMCID: PMC9197120 DOI: 10.3389/fpls.2022.903310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Ralsolamycin, one of secondary metabolites in Ralstonia solanacearum, is known to be involved in crosstalk between R. solanacearum and fungi. Ralsolamycin formation is catalyzed by two-hybrid synthetases of RmyA (non-ribosomal peptide synthetase) and RmyB (polyketide synthase). A methyltransferase PhcB catalyzes formation of 3-OH MAME or 3-OH PAME, signals for the quorum sensing (QS) in R. solanacearum, while PhcB positively modulates ralsolamycin biosynthesis. A two-component system of PhcS and PhcR can response these QS signals and activate phcA expression. Here, we experimentally demonstrated that deletion of phcA (ΔphcA) substantially impaired the ralsolamycin production and expression of rmyA and rmyB in R. solanacearum strain EP1, and failed to induce chlamydospore formation of plant fungal pathogen Fusarium oxysporum f. cubense (stran FOC4). However, deletion of phcR significantly increased ralsolamycin production and expression of rmyA and rmyB, and phcR mutants exhibited enhanced ability to induce chlamydospore formation of FOC4. Results of the electrophoretic mobility shift assay suggested that both PhcA and PhcR bind to promoter of rmy operon. Taken together, these results demonstrated that both PhcA and PhcR bind to promoter of rmy operon, but regulate ralsolamycin biosynthesis in an opposite way. It could extend our knowledge on the sophisticated regulatory networks of ralsolamycin biosynthesis in R. solanacearum.
Collapse
Affiliation(s)
- Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiulan Cao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Kumar S, Ahmad K, Behera SK, Nagrale DT, Chaurasia A, Yadav MK, Murmu S, Jha Y, Rajawat MVS, Malviya D, Singh UB, Shankar R, Tripathy M, Singh HV. Biocomputational Assessment of Natural Compounds as a Potent Inhibitor to Quorum Sensors in Ralstonia solanacearum. Molecules 2022; 27:molecules27093034. [PMID: 35566383 PMCID: PMC9102662 DOI: 10.3390/molecules27093034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Ralstonia solanacearum is among the most damaging bacterial phytopathogens with a wide number of hosts and a broad geographic distribution worldwide. The pathway of phenotype conversion (Phc) is operated by quorum-sensing signals and modulated through the (R)-methyl 3-hydroxypalmitate (3-OH PAME) in R. solanacearum. However, the molecular structures of the Phc pathway components are not yet established, and the structural consequences of 3-OH PAME on quorum sensing are not well studied. In this study, 3D structures of quorum-sensing proteins of the Phc pathway (PhcA and PhcR) were computationally modeled, followed by the virtual screening of the natural compounds library against the predicted active site residues of PhcA and PhcR proteins that could be employed in limiting signaling through 3-OH PAME. Two of the best scoring common ligands ZINC000014762512 and ZINC000011865192 for PhcA and PhcR were further analyzed utilizing orbital energies such as HOMO and LUMO, followed by molecular dynamics simulations of the complexes for 100 ns to determine the ligands binding stability. The findings indicate that ZINC000014762512 and ZINC000011865192 may be capable of inhibiting both PhcA and PhcR. We believe that, after further validation, these compounds may have the potential to disrupt bacterial quorum sensing and thus control this devastating phytopathogenic bacterial pathogen.
Collapse
Affiliation(s)
- Sunil Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India;
- Correspondence: (S.K.); (H.V.S.)
| | - Khurshid Ahmad
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Santosh Kumar Behera
- National Institute of Pharmaceutical Education and Research, Ahmedabad 382355, India;
| | - Dipak T. Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur 440010, India;
| | - Anurag Chaurasia
- ICAR-Indian Institute of Vegetable Research, Varanasi 221305, India;
| | - Manoj Kumar Yadav
- Department of Bioinformatics, SRM University, Sonepat 131029, India;
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India;
| | - Yachana Jha
- N. V. Patel College of Pure and Applied Sciences, S.P. University, Anand 388315, India;
| | - Mahendra Vikram Singh Rajawat
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Deepti Malviya
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Udai B. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
| | - Raja Shankar
- ICAR-IIHR, Hessaraghatta Lake Post, Bengaluru 560089, India;
| | - Minaketan Tripathy
- Department of Pharmacy, Sitaram Kashyap College of Pharmacy, Rahod 495556, India;
| | - Harsh Vardhan Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Mau 275103, India; (K.A.); (M.V.S.R.); (D.M.); (U.B.S.)
- Correspondence: (S.K.); (H.V.S.)
| |
Collapse
|