1
|
Xu L, Meng Y, Li P, Xiao S, Zhang B, Hou L, Cao Z, Hao Z, Dong J, Zeng F. Identifying substrate triggers for appressorium development in Setosphaeria turcica and functional characterization of Zn(II)2Cys6 transcription factors StTF1 and StTF2. Int J Biol Macromol 2024; 281:136585. [PMID: 39414211 DOI: 10.1016/j.ijbiomac.2024.136585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Northern corn leaf blight is a devastating disease caused by Setosphaeria turcica (S. turcica), leading to significant yield losses in maize. S. turcica initiates infection through a specialized structure known as the appressorium, which only forms on conducive substrates. In this study, we introduce a semi‑silicone water polyurethane resin (Si-PUD) that induces only germ tube formation from S. turcica conidia. A mixed coating of Si-PUD and polytetrafluoroethylene successfully triggers appressorium formation. Both coatings maintain optical transparency, chemical resistance, and thermal stability, which facilitate microscopic observations and the development of high-throughput systems. These coatings also demonstrate similar effects on Bipolaris maydis (B. maydis), suggesting their potential universal applicability. Utilizing coating-induced synchronous appressorium formation and proteomic analyses, we identified five genes essential for S. turcica appressorium development. Functional analyses of two zinc binuclear cluster domain-containing transcription factors, StTF1 and StTF2, revealed their critical roles in appressorium development and pathogenicity. This study not only develops a novel method for inducing appressorium formation but also lays the groundwork for rapid screening of environmentally-friendly fungicides that inhibit appressorium development.
Collapse
Affiliation(s)
- Lu Xu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China
| | - Yanan Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China; College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shenglin Xiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China
| | - Bowen Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China; College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China; College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China; College of Plant Protection, Hebei Agricultural University, Baoding, China.
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, China.
| |
Collapse
|
2
|
Cui Q, Li X, Hu S, Yang D, Abozeid A, Yang Z, Jiang J, Ren Z, Li D, Li D, Zheng L, Qin A. The Critical Role of Phenylpropanoid Biosynthesis Pathway in Lily Resistance Against Gray Mold. Int J Mol Sci 2024; 25:11068. [PMID: 39456848 PMCID: PMC11507431 DOI: 10.3390/ijms252011068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Gray mold caused by Botrytis elliptica is one of the most determinative factors of lily growth and has become a major threat to lily productivity. However, the nature of the lily B. elliptica interaction remains largely unknown. Here, comparative transcriptomic and metabolomic were used to investigate the defense responses of resistant ('Sorbonne') and susceptible ('Tresor') lily cultivars to B. elliptica infection at 24 hpi. In total, 1326 metabolites were identified in 'Sorbonne' and 'Tresor' after infection, including a large number of phenylpropanoids. Specifically, the accumulation of four phenylpropanes, including eriodictyol, hesperetin, ferulic acid, and sinapyl alcohol, was significantly upregulated in the B. elliptica-infected 'Sorbonne' compared with the infected 'Tresor', and these phenylpropanes could significantly inhibit B. elliptica growth. At the transcript level, higher expression levels of F3'M, COMT, and CAD led to a higher content of resistance-related phenylpropanes (eriodictyol, ferulic acid, and sinapyl alcohol) in 'Sorbonne' following B. elliptica infection. It can be assumed that these phenylpropanes cause the resistance difference between 'Sorbonne' and 'Tresor', and could be the potential marker metabolites for gray mold resistance in the lily. Further transcriptional regulatory network analysis suggested that members of the AP2/ERF, WRKY, Trihelix, and MADS-M-type families positively regulated the biosynthesis of resistance-related phenylpropanes. Additionally, the expression patterns of genes involved in phenylpropanoid biosynthesis were confirmed using qRT-PCR. Therefore, we speculate that the degree of gray mold resistance in the lily is closely related to the contents of phenylpropanes and the transcript levels of the genes in the phenylpropanoid biosynthesis pathway. Our results not only improve our understanding of the lily's resistance mechanisms against B. elliptica, but also facilitate the genetic improvement of lily cultivars with gray mold resistance.
Collapse
Affiliation(s)
- Qi Cui
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Xinran Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Shanshan Hu
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Ann Abozeid
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Zongqi Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (D.Y.); (A.A.); (Z.Y.)
| | - Junhao Jiang
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Ziming Ren
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Danqing Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Dongze Li
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Liqun Zheng
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| | - Anhua Qin
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.L.); (S.H.); (J.J.); (Z.R.); (D.L.); (D.L.); (L.Z.); (A.Q.)
| |
Collapse
|
3
|
Deng J, Che X, Gu Y, Qu Y, Liu D. Integrated multi-omics investigation revealed the importance of phenylpropanoid metabolism in the defense response of Lilium regale Wilson to fusarium wilt. HORTICULTURE RESEARCH 2024; 11:uhae140. [PMID: 38988612 PMCID: PMC11233880 DOI: 10.1093/hr/uhae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Lilies (genus Lilium) play a significant role in the global cut-flower industry, but they are highly susceptible to fusarium wilt caused by Fusarium oxysporum. However, Lilium regale, a wild lily species, exhibits remarkable resistance to F. oxysporum. To investigate the quantitative resistance of L. regale to fusarium wilt, a comprehensive multi-omics analysis was conducted. Upon inoculation with F. oxysporum, L. regale roots showed a significant accumulation of phenylpropane metabolites, including lignin precursors, flavonoids, and hydroxycinnamic acids. These findings were consistent with the upregulated expression of phenylpropanoid biosynthesis-related genes encoding various enzymes, as revealed by transcriptomics and proteomics analyses. Furthermore, metabolomics and proteomics data demonstrated differential activation of monoterpenoid and isoquinoline alkaloid biosynthesis. Colorimetry and high-performance liquid chromatography analyses revealed significantly higher levels of total flavonoids, lignin, ferulic acid, phlorizin, and quercetin contents in L. regale scales compared with susceptible lily 'Siberia' scales during F. oxysporum infection. These phenylpropanes exhibited inhibitory effects on F. oxysporum growth and suppressed the expression of pathogenicity-related genes. Transcriptional regulatory network analysis suggested that ethylene-responsive transcription factors (ERFs) may positively regulate phenylpropanoid biosynthesis. Therefore, LrERF4 was cloned and transiently overexpressed in the fusarium wilt-susceptible Oriental hybrid lily 'Siberia'. The overexpression of LrERF4 resulted in increased levels of total flavonoids, lignin, ferulic acid, phlorizin, and quercetin, while the silencing of LrERF4 in L. regale through RNAi had the opposite effect. In conclusion, phenylpropanoid metabolism plays a crucial role in the defense response of L. regale against fusarium wilt, with LrERF4 acting as a positive regulator of phenylpropane biosynthesis.
Collapse
|
4
|
Sun J, Wang Y, Zhang X, Cheng Z, Song Y, Li H, Wang N, Liu S, Cao Z, Li H, Zheng W, Duan C, Cao Y. Transcriptomic and Metabolomic Analyses Reveal the Role of Phenylalanine Metabolism in the Maize Response to Stalk Rot Caused by Fusarium proliferatum. Int J Mol Sci 2024; 25:1492. [PMID: 38338769 PMCID: PMC10855574 DOI: 10.3390/ijms25031492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Stalk rot is a prevalent disease of maize (Zea mays L.) that severely affects maize yield and quality worldwide. The ascomycete fungus Fusarium spp. is the most common pathogen of maize stalk rot. At present, the molecular mechanism of Fusarium proliferation during the maize stalk infection that causes maize stalk rot has rarely been reported. In this study, we investigated the response of maize to F. proliferatum infestation by analyzing the phenotypic, transcriptomic, and metabolomic data of inbred lines ZC17 (resistant) and CH72 (susceptible) with different levels of resistance to stalk rot. Physiological and phenotypic results showed that the infection CH72 was significantly more severe than ZC17 after inoculation. Transcriptome analysis showed that after inoculation, the number of differentially expressed genes (DEGs) was higher in CH72 than in ZC17. Nearly half of these DEGs showed the same expression trend in the two inbred lines. Functional annotation and enrichment analyses indicated that the major pathways enriched for DEGs and DEMs included the biosynthesis of plant secondary metabolites, phenylalanine metabolism, biosynthesis of plant hormones, and plant-pathogen interactions. The comprehensive analysis of transcriptome and metabolome data indicated that phenylalanine metabolism and the phenylalanine, tyrosine, and tryptophan biosynthesis pathways played a crucial role in maize resistance to F. proliferatum infection. In addition, a transcription factor (TF) analysis of the DEGs showed that several TF families, including MYB, bHLH, NAC, and WRKY, were significantly activated after inoculation, suggesting that these TFs play important roles in the molecular regulatory network of maize disease resistance. The findings of this study provide valuable insights into the molecular basis of the response of maize to Fusarium proliferatum infection and highlight the importance of combining multiple approaches, such as phenotyping, transcriptomics, and metabolomics, to gain a comprehensive understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Jianjun Sun
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yanzhao Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xingrui Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yinghui Song
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Huimin Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Na Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shen Liu
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zijia Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongxia Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wanying Zheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Canxing Duan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| |
Collapse
|
5
|
Li P, Zhu H, Wang C, Zeng F, Jia J, Feng S, Han X, Shen S, Wang Y, Hao Z, Dong J. StRAB4 gene is required for filamentous growth, conidial development, and pathogenicity in Setosphaeria turcica. Front Microbiol 2024; 14:1302081. [PMID: 38264490 PMCID: PMC10804457 DOI: 10.3389/fmicb.2023.1302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
Setosphaeria turcica, the fungal pathogen responsible for northern corn leaf blight in maize, forms specialized infectious structures called appressoria that are critical for fungal penetration of maize epidermal cells. The Rab family of proteins play a crucial role in the growth, development, and pathogenesis of many eukaryotic species. Rab4, in particular, is a key regulator of endocytosis and vesicle trafficking, essential for filamentous growth and successful infection by other fungal pathogens. In this study, we silenced StRAB4 in S. turcica to gain a better understanding the function of Rab4 in this plant pathogen. Phenotypically, the mutants exhibited a reduced growth rate, a significant decline in conidia production, and an abnormal conidial morphology. These phenotypes indicate that StRab4 plays an instrumental role in regulating mycelial growth and conidial development in S. turcica. Further investigations revealed that StRab4 is a positive regulator of cell wall integrity and melanin secretion. Functional enrichment analysis of differentially expressed genes highlighted primary enrichments in peroxisome pathways, oxidoreductase and catalytic activities, membrane components, and cell wall organization processes. Collectively, our findings emphasize the significant role of StRab4 in S. turcica infection and pathogenicity in maize and provide valuable insights into fungal behavior and disease mechanisms.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Hang Zhu
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Chengze Wang
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Fanli Zeng
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingzhe Jia
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shang Feng
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xinpeng Han
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shen Shen
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yanhui Wang
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Key Laboratory of Plant Physiology and Molecular Pathology, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement, Hebei Agricultural University, Baoding, China
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
6
|
Wang M, Zhu L, Zhang C, Zhou H, Tang Y, Cao S, Chen J, Zhang J. Transcriptomic-Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. Int J Mol Sci 2024; 25:619. [PMID: 38203792 PMCID: PMC10779420 DOI: 10.3390/ijms25010619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Peanut Fusarium rot, which is widely observed in the main peanut-producing areas in China, has become a significant factor that has limited the yield and quality in recent years. It is highly urgent and significant to clarify the regulatory mechanism of peanuts in response to Fusarium oxysporum. In this study, transcriptome and proteome profiling were combined to provide new insights into the molecular mechanisms of peanut stems after F. oxysporums infection. A total of 3746 differentially expressed genes (DEGs) and 305 differentially expressed proteins (DEPs) were screened. The upregulated DEGs and DEPs were primarily enriched in flavonoid biosynthesis, circadian rhythm-plant, and plant-pathogen interaction pathways. Then, qRT-PCR analysis revealed that the expression levels of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and cinnamic acid-4-hydroxylase (C4H) genes increased after F. oxysporums infection. Moreover, the expressions of these genes varied in different peanut tissues. All the results revealed that many metabolic pathways in peanut were activated by improving key gene expressions and the contents of key enzymes, which play critical roles in preventing fungi infection. Importantly, this research provides the foundation of biological and chemical analysis for peanut disease resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiancheng Zhang
- Shandong Peanut Research Institute, Qingdao 266100, China; (M.W.); (L.Z.); (C.Z.); (H.Z.); (Y.T.); (S.C.); (J.C.)
| |
Collapse
|
7
|
Sharma A, Choudhary P, Chakdar H, Shukla P. Molecular insights and omics-based understanding of plant-microbe interactions under drought stress. World J Microbiol Biotechnol 2023; 40:42. [PMID: 38105277 DOI: 10.1007/s11274-023-03837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/19/2023]
Abstract
The detrimental effects of adverse environmental conditions are always challenging and remain a major concern for plant development and production worldwide. Plants deal with such constraints by physiological, biochemical, and morphological adaptations as well as acquiring mutual support of beneficial microorganisms. As many stress-responsive traits of plants are influenced by microbial activities, plants have developed a sophisticated interaction with microbes to cope with adverse environmental conditions. The production of numerous bioactive metabolites by rhizospheric, endo-, or epiphytic microorganisms can directly or indirectly alter the root system architecture, foliage production, and defense responses. Although plant-microbe interactions have been shown to improve nutrient uptake and stress resilience in plants, the underlying mechanisms are not fully understood. "Multi-omics" application supported by genomics, transcriptomics, and metabolomics has been quite useful to investigate and understand the biochemical, physiological, and molecular aspects of plant-microbe interactions under drought stress conditions. The present review explores various microbe-mediated mechanisms for drought stress resilience in plants. In addition, plant adaptation to drought stress is discussed, and insights into the latest molecular techniques and approaches available to improve drought-stress resilience are provided.
Collapse
Affiliation(s)
- Aditya Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prassan Choudhary
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Hillol Chakdar
- Microbial Technology Unit II, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
8
|
Zhao S, Tan M, Zhu Y, Zhang Y, Zhang C, Jiao J, Wu P, Feng K, Li L. Combined analysis of microRNA and mRNA profiles provides insights into the pathogenic resistant mechanisms of the lotus rhizome rot. PHYSIOLOGIA PLANTARUM 2023; 175:e14045. [PMID: 37882296 DOI: 10.1111/ppl.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Lotus rhizome rot caused by Fusarium oxysporum is a common vascular fungal disease in plants that significantly impacts the yield. However, only a few studies have studied the mechanism of Nelumbo nucifera responding to lotus rhizome rot. Here, we investigated the pathogenic genes and miRNAs in lotus rhizome rot to uncover the pathogenic resistant mechanisms by transcriptome and small RNA sequencing of lotus roots after inoculation with Fusarium oxysporum. GO and KEGG functional enrichment analysis showed that differential miRNAs were mostly enriched in starch and sucrose metabolism, biosynthesis of secondary metabolites, glutathione metabolism, brassinosteroid biosynthesis and flavonoid biosynthesis pathways. Twenty-seven upregulated miRNAs, 19 downregulated miRNAs and their target genes were identified. Correlation analysis found that miRNAs negatively regulate target genes, which were also enriched in starch and sucrose metabolism and glutathione metabolism pathways. Their expression was measured by reverse transcription quantitative PCR (qRT-PCR), and the results were consistent with the transcriptome analysis, thus verifying the reliability of transcriptome data. We selected three miRNAs (miRNA858-y, miRNA171-z and a novel miRNA novel-m0005-5p) to test the relationship between miRNAs and their target genes. The activity of the GUS testing assay indicated that miRNA could decrease the GUS activity by inhibiting the expression of their target genes. Collectively, this study provides a comprehensive analysis of transcriptome and small RNA sequencing of lotus root after inoculation with Fusarium oxysporum, and we identified candidate miRNAs and their target genes for breeding strategies of Nelumbo nucifera.
Collapse
Affiliation(s)
- Shuping Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Mengying Tan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yamei Zhu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Yao Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Chuyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Jiao Jiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Kai Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Hou M, Cao Y, Zhang X, Zhang S, Jia T, Yang J, Han S, Wang L, Li J, Wang H, Zhang L, Wu X, Duan C, Li H. Genome-wide association study of maize resistance to Pythium aristosporum stalk rot. FRONTIERS IN PLANT SCIENCE 2023; 14:1239635. [PMID: 37662167 PMCID: PMC10470045 DOI: 10.3389/fpls.2023.1239635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023]
Abstract
Stalk rot, a severe and widespread soil-borne disease in maize, globally reduces yield and quality. Recent documentation reveals that Pythium aristosporum has emerged as one of the dominant causal agents of maize stalk rot. However, a previous study of maize stalk rot disease resistance mechanisms and breeding had mainly focused on other pathogens, neglecting P. aristosporum. To mitigate crop loss, resistance breeding is the most economical and effective strategy against this disease. This study involved characterizing resistance in 295 inbred lines using the drilling inoculation method and genotyping them via sequencing. By combining with population structure, disease resistance phenotype, and genome-wide association study (GWAS), we identified 39 significant single-nucleotide polymorphisms (SNPs) associated with P. aristosporum stalk rot resistance by utilizing six statistical methods. Bioinformatics analysis of these SNPs revealed 69 potential resistance genes, among which Zm00001d051313 was finally evaluated for its roles in host defense response to P. aristosporum infection. Through virus-induced gene silencing (VIGS) verification and physiological index determination, we found that transient silencing of Zm00001d051313 promoted P. aristosporum infection, indicating a positive regulatory role of this gene in maize's antifungal defense mechanism. Therefore, these findings will help advance our current understanding of the underlying mechanisms of maize defense to Pythium stalk rot.
Collapse
Affiliation(s)
- Mengwei Hou
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xingrui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Tengjiao Jia
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiwei Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shengbo Han
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lifeng Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jingjing Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hao Wang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lili Zhang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaolin Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiyong Li
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|