1
|
Bagsby K, Hans K. Lucilia silvarum Meigen (Diptera: Calliphoridae) Is a Primary Colonizer of Domestic Cats ( Felis catus). INSECTS 2024; 15:32. [PMID: 38249038 PMCID: PMC10815950 DOI: 10.3390/insects15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Lucilia silvarum Meigen (Diptera: Calliphoridae) is widespread throughout North America and Europe. Described in 1826, this blow fly was quickly associated with myiasis in amphibians, and to date has rarely been reported in carrion. There is limited data regarding the time of colonization of animals with fur and the interpretation of this data is difficult due to variation in the animal models used. During an examination of initial insect colonization of cats (Felis catus) with light and dark fur, twelve domestic short-haired cats were placed in cages 15.2 m apart in a grassy field in West Lafayette, Indiana, USA. Eggs from initial oviposition events were collected and reared to identify the colonizing species. Three species of Lucilia (Diptera: Calliphoridae), including L. silvarum, colonized the cats on the initial day of placement. In this study, L. silvarum was the primary colonizer of cats, and this may be the first study where a large number of L. silvarum were collected. Further studies should include development studies on L. silvarum to understand its life history and aid in time of colonization estimations. More work regarding the colonization of furred mammals is needed to further examine L. silvarum as a primary colonizer.
Collapse
Affiliation(s)
- Kelly Bagsby
- Department of Entomology, Purdue University, 901 W State St., West Lafayette, IN 47907, USA;
- College of Veterinary Medicine and College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Krystal Hans
- Department of Entomology, Purdue University, 901 W State St., West Lafayette, IN 47907, USA;
| |
Collapse
|
2
|
Szentivanyi T, Vincze O. Tracking wildlife diseases using community science: an example through toad myiasis. EUR J WILDLIFE RES 2022. [DOI: 10.1007/s10344-022-01623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractParasite and pathogen surveillance is crucial for understanding trends in their distributions and host spectra, as well as to document changes in their population dynamics. Nevertheless, continuous surveillance is time-consuming, underfunded due to the non-charismatic nature of parasites/pathogens, and research infrastructure is usually limited to short-term surveillance efforts. Species observation data provided by the public can contribute to long-term surveillance of parasites using photographic evidence of infections shared on community science platforms. Here, we used public photo repositories to document the occurrence across space and time of Lucilia spp. (Diptera: Calliphoridae), a parasite inducing nasal toad myiasis in the European toad Bufo bufo (Anura: Bufonidae). We found a total of 262 toad myiasis observations on iNaturalist (n = 132), on GBIF (n = 86), on Flickr (n = 41), and on observation.org (n = 3). Our results indicate that the distribution of toad myiasis is regionally limited, despite its host being widely distributed and abundant across a wide region in Europe. Observations were found in 12 countries with relatively low prevalence, including Belgium (3.90%, CI 2.44–6.18), Denmark (1.26%, CI 0.89–1.80), France (0.45%, CI 0.14–1.38), Germany (1.27%, CI 0.92–1.75), Lithuania (0.50%, CI 0.13–1.98), Luxembourg (1.30%, CI 0.42–3.95), the Netherlands (2.71%, CI 1.61–4.52), Poland (0.89%, CI 0.34–2.35), Russia (Kaliningrad Oblast) (4.76%, CI 0.67–27.14), Switzerland (NA), Ukraine (0.87%, CI 0.12–5.91), and in the UK (0.45%, CI 0.28–0.72). Nevertheless, the number of uploaded observations of both parasite infection and host presence indicates a stable increase likely due to the growing popularity of community science websites. Overall, community science is a useful tool to detect and monitor certain wildlife diseases and to recognize potential changes in disease dynamics through time and space.
Collapse
|
3
|
Whitworth TL, Bolek MG, Arias-Robledo G. Lucilia bufonivora, Not Lucilia silvarum (Diptera: Calliphoridae), Causes Myiasis in Anurans in North America With Notes About Lucilia elongata and Lucilia thatuna. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:88-92. [PMID: 32692364 DOI: 10.1093/jme/tjaa143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 06/11/2023]
Abstract
In North America, until recently, all cases of anuran myiasis were attributed to Lucilia silvarum (Meigen) or Lucilia elongata Shannon. The latter species is exceedingly rare and its life history is unknown, but L. silvarum is common and was thought to be capable of being either parasitic or saprophytic in North America. Until recently, the anuran parasite Lucilia bufonivora Moniez was thought to be strictly Palearctic, but a study in 2014 has determined this species is established throughout southern Canada. In 2019, a study demonstrated, with molecular and morphological evidence, that two adult flies formerly identified as L. silvarum and reared from amphibian myiasis cases from Canada, are actually L. bufonivora. Although the mentioned study detected relatively high genetic distances with European L. bufonivora, the lack of evident morphological differentiation suggest that they are the same species. The current study examined 12 adult males and eleven adult females morphologically from three additional North American studies. Specimens were examined which had been identified as L. silvarum or L. elongata, and they all proved to be L. bufonivora. We now suspect L. silvarum is strictly saprophagous in North America like they are in the Palearctic Region. We also provide evidence that the pattern of myiasis differs between European and North American specimens.
Collapse
Affiliation(s)
- T L Whitworth
- Department of Entomology, Washington State University, Tacoma, WA
| | - Matthew G Bolek
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK
| | - G Arias-Robledo
- Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Fuentes-López A, Rebelo MT, Romera E, López-López A, Galián J. Genetic diversity of Calliphora vicina (Diptera: Calliphoridae) in the Iberian Peninsula based on cox1, 16S and ITS2 sequences. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The study of Diptera at the scene of a crime can provide essential information for the interpretation of evidence. Phylogeographic reconstruction could help differentiate haplotypes of a dipteran species in a geographical area, clarifying, for example, the details of a possible relocation of a corpse. In addition, inferring the ancestral areas of distribution helps to understand the current status of the species and its biogeographic history. One of the most important species in forensic entomology is Calliphora vicina Rovineau-Desvoidy, 1830 (Diptera: Calliphoridae). The aim of this work is to increase our knowledge of this species in the Iberian Peninsula using 464 specimens from Spain and Portugal. These samples were identified using morphological keys and by molecular methods using fragments of the cox1, 16S and ITS2 genes. The phylogeographic history of these populations was inferred from haplotype networks and the reconstruction of ancestral areas of distribution. The molecular results corroborated the morphological identifications of the samples. Phylogeographic networks showed no geographical structure, as haplotypes are shared among almost all populations. reconstruct ancestral state in phylogenies analyses showed a high rate of movement among populations, possibly related to human activity. These results suggest that this species had a very rapid and recent spatial and demographic expansion throughout the Iberian Peninsula.
Collapse
Affiliation(s)
- Alberto Fuentes-López
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
| | - María Teresa Rebelo
- Departamento de Biología Animal/Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Elena Romera
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
| | - Alejandro López-López
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
- Área de Zoología, Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández de Elche, Elche, Spain
| | - José Galián
- Departamento de Zoología y Antropología Física (Área de Biología Animal), Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain
| |
Collapse
|
5
|
Arias-Robledo G, Wall R, Szpila K, Shpeley D, Whitworth T, Stark T, King R, Stevens J. Ecological and geographical speciation in Lucilia bufonivora: The evolution of amphibian obligate parasitism. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:218-230. [PMID: 31667085 PMCID: PMC6812060 DOI: 10.1016/j.ijppaw.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022]
Abstract
Lucilia (Diptera: Calliphoridae) is a genus of blowflies comprised largely of saprophagous and facultative parasites of livestock. Lucilia bufonivora, however, exhibits a unique form of obligate parasitism of amphibians, typically affecting wild hosts. The evolutionary route by which amphibian myiasis arose, however, is not well understood due to the low phylogenetic resolution in existing nuclear DNA phylogenies. Furthermore, the timing of when specificity for amphibian hosts arose in L. bufonivora is also unknown. In addition, this species was recently reported for the first time in North America (Canada) and, to date, no molecular studies have analysed the evolutionary relationships between individuals from Eastern and Western hemispheres. To provide broader insights into the evolution of the amphibian parasitic life history trait and to estimate when the trait first arose, a time-scaled phylogeny was inferred from a concatenated data set comprising mtDNA, nDNA and non-coding rDNA (COX1, per and ITS2 respectively). Specimens from Canada, the UK, Poland, Switzerland, the Netherlands and Germany were analysed, as well as individuals from its sister taxa, the saprophage Lucilia silvarum and a Nearctic species also implicated in amphibian myiasis, Lucilia elongata. Obligate amphibian parasitism appears to have arisen ~4 mya, likely as a result of niche displacement of a saprophagous/facultative parasite ancestor. Consistent paraphyly of L. bufonivora with respect to L. elongata across single-gene phylogenies and high mtDNA genetic distances between Nearctic and Palearctic individuals suggest on-going cryptic speciation facilitated by geographical isolation. These findings suggest that recent reports of L. bufonivora in the Nearctic do not constitute a recent introduction, but instead suggest that it remained unrecorded due to taxonomic confusion and low abundance. This is the first study to confirm the involvement of L. bufonivora in amphibian myiasis in Canada using DNA-based identification methods. Within Lucilia, a small genus of blowflies mostly comprised of carrion-breeding species, obligate parasitism for amphibians evolved around 4 mya. Geographic isolation between Nearctic and Palearctic lineages is facilitating on-going cryptic speciation of Lucilia bufonivora. First positive identification of L. bufonivora from two confirmed cases of amphibian myiasis in North America.
Collapse
Affiliation(s)
- G. Arias-Robledo
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
- School of Biological Sciences, University of Bristol, UK
- Corresponding author. College of Life and Environmental Sciences, University of Exeter, Prince of Wales Rd, Exeter, EX4 4PS, UK.
| | - R. Wall
- School of Biological Sciences, University of Bristol, UK
| | - K. Szpila
- Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - D. Shpeley
- E.H. Strickland Entomological Museum, Department of Biological Sciences, University of Alberta, Canada
| | - T. Whitworth
- Department of Entomology, Washington State University, Pullman, USA
| | - T. Stark
- Reptile, Amphibian and Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
| | - R.A. King
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - J.R. Stevens
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
6
|
Arias-Robledo G, Stevens JR, Wall R. Spatial and temporal habitat partitioning by calliphorid blowflies. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:228-237. [PMID: 30569542 DOI: 10.1111/mve.12354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Calliphorid blowflies perform an essential ecosystem service in the consumption, recycling and dispersion of carrion nutrients and are considered amongst the most important functional groups in an ecosystem. Some species are of economic importance as facultative agents of livestock myiasis. The interspecific ecological differences that facilitate coexistence within the blowfly community are not fully understood. The aim of this work was to quantify differences in habitat use by calliphorid species. Thirty traps were distributed among three habitats at two sites in southwest England for collections made during March-August 2016. A total of 17 246 specimens were caught, of which 2427 were Lucilia sericata, 51 Lucilia richardsi, 6580 Lucilia caesar, 307 Lucilia ampullacea, 4881 Calliphora vicina and 2959 Calliphora vomitoria (all: Diptera: Calliphoridae). Lucilia sericata was the dominant species in open habitats, whereas L. caesar was the most abundant species in shaded habitats. Calliphora specimens were more abundant in the cooler months. These findings suggest that Calliphora and Lucilia species show strong temporal segregation mediated by temperature, and that species of the genus Lucilia show differences in the use of habitats that are likely to be driven by differences in humidity tolerance and light intensity. These factors in combination result in effective niche partitioning.
Collapse
Affiliation(s)
- G Arias-Robledo
- School of Biological Sciences, University of Bristol, Bristol, U.K
| | - J R Stevens
- Department of Biosciences, University of Exeter, Exeter, U.K
| | - R Wall
- School of Biological Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|