1
|
Zhu X, Xie M, Fan J, Geng B, Fei G, Zhou Q, Wu H, Liu X, Jiang X. Clinical characteristics and risk factors for late-onset pneumocystis jirovecii pneumonia in kidney transplantation recipients. Mycoses 2024; 67:e13688. [PMID: 38214337 DOI: 10.1111/myc.13688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PJP) is a common and troublesome complication of kidney transplantation. In the era of prophylaxis, the peak incidence of PJP after kidney transplantation and specific characteristics of late-onset PJP have always been debated. METHODS We performed a retrospective study by analysing the data of post-transplantation pneumonia in adult kidney transplantation recipients between March 2014 and December 2021 in The Affiliated First Hospital of University of Science and Technology of China (USTC). A total of 361 patients were included and divided into early-onset PJP, late-onset PJP and non-PJP groups. The characteristics of each group and related risk factors for the late-onset patients were investigated. RESULTS Some patients developed PJP 9 months later with a second higher occurrence between month 10 and 15 after transplantation. Compared with non-PJP, ABO-incompatible and cytomegalovirus (CMV) viremia were significantly associated with late onset of PJP in multivariate analysis. The use of tacrolimus, CMV viremia, elevated CD8(+) T cell percent and hypoalbuminemia were risk factors for late PJP. Receiver operating characteristic curve analysis demonstrated that a combination of those factors could increase the sensitivity of prediction remarkably, with an area under the curve of 0.82, a sensitivity of 80% and a specificity of 83%. CONCLUSIONS PJP could occur months after kidney transplantation. ABO-incompatible transplant recipients are at high risk of PJP. In the later stages of transplantation, CMV viremia, T lymphocyte subsets percentage and serum albumin levels should be monitored in patients using tacrolimus.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Pulmonary Medicine, School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Mengshu Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Pulmonary Medicine, School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Jiaqi Fan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bei Geng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guangru Fei
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qianqian Zhou
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huimei Wu
- Anhui Geriatric Institute, Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuehan Liu
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC, Hefei, China
| | - Xuqin Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Xue T, Kong X, Ma L. Trends in the Epidemiology of Pneumocystis Pneumonia in Immunocompromised Patients without HIV Infection. J Fungi (Basel) 2023; 9:812. [PMID: 37623583 PMCID: PMC10455156 DOI: 10.3390/jof9080812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
The increasing morbidity and mortality of life-threatening Pneumocystis pneumonia (PCP) in immunocompromised people poses a global concern, prompting the World Health Organization to list it as one of the 19 priority invasive fungal diseases, calling for increased research and public health action. In response to this initiative, we provide this review on the epidemiology of PCP in non-HIV patients with various immunodeficient conditions, including the use of immunosuppressive agents, cancer therapies, solid organ and stem cell transplantation, autoimmune and inflammatory diseases, inherited or primary immunodeficiencies, and COVID-19. Special attention is given to the molecular epidemiology of PCP outbreaks in solid organ transplant recipients; the risk of PCP associated with the increasing use of immunodepleting monoclonal antibodies and a wide range of genetic defects causing primary immunodeficiency; the trend of concurrent infection of PCP in COVID-19; the prevalence of colonization; and the rising evidence supporting de novo infection rather than reactivation of latent infection in the pathogenesis of PCP. Additionally, we provide a concise discussion of the varying effects of different immunodeficient conditions on distinct components of the immune system. The objective of this review is to increase awareness and knowledge of PCP in non-HIV patients, thereby improving the early identification and treatment of patients susceptible to PCP.
Collapse
Affiliation(s)
- Ting Xue
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomei Kong
- NHC Key Laboratory of Pneumoconiosis, Key Laboratory of Prophylaxis and Treatment and Basic Research of Respiratory Diseases of Shanxi Province, Shanxi Province Key Laboratory of Respiratory, Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Friaza V, de Armas Y, Capó V, Morilla R, Plascencia-Hernández A, Pérez-Gómez HR, Iglesias E, Fonte L, de la Horra C, Calderón EJ. Multilocus Genotyping of Pneumocystis jirovecii from Deceased Cuban AIDS Patients Using Formalin-Fixed and Paraffin-Embedded Tissues. J Fungi (Basel) 2021; 7:jof7121042. [PMID: 34947024 PMCID: PMC8706017 DOI: 10.3390/jof7121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The results of the genotypic characterization of Pneumocystis jirovecii are described in lung tissue samples from 41 Cubans who died of AIDS with pneumocystosis between 1995 and 2008. Histological sections of the lung preserved as formalin-fixed and paraffin-embedded tissue were examined. PCR amplification and nucleotide sequencing of the two mitochondrial genes (large and small) of the pathogen allowed verification of a predominance of genotype 3 (85T/248C) of the large mitochondrial gene and genotype 3 (160A/196T) of the small mitochondrial gene over a period of 14 years (1995–2008). These results suggest that the 85T/248C//160A/196T genotype circulates with the highest frequency (81.3%) among AIDS patients in Cuba. Multilocus analysis indicates a limited circulation of pathogen genotypes on the island with the existence of a clonal genotype with an epidemic structure. Furthermore, it appears that circulating strains of P. jirovecii have not developed mutations related to sulfonamide resistance. Taken together, the data in this study revealed important elements about pneumocystosis in Cuban patients dying of AIDS and the usefulness of formalin-fixed and paraffin-embedded samples to carry out molecular epidemiology studies of P. jirovecii.
Collapse
Affiliation(s)
- Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
| | - Virginia Capó
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
| | - Arturo Plascencia-Hernández
- Centro Universitario de Ciencias para la Salud, Universidad de Guadalajara, 44100 Guadalajara, Mexico; (A.P.-H.); (H.R.P.-G.)
| | - Héctor R. Pérez-Gómez
- Centro Universitario de Ciencias para la Salud, Universidad de Guadalajara, 44100 Guadalajara, Mexico; (A.P.-H.); (H.R.P.-G.)
| | - Enrique Iglesias
- Centro de Ingeniería Genética y Biotecnología, Departamento de Vacunas, 10600 Havana, Cuba;
| | - Luis Fonte
- Parasitology Department, Institute of Tropical Medicine “Pedro Kourí”, 11400 Havana, Cuba;
| | - Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
- Correspondence:
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (V.F.); (R.M.); (E.J.C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
4
|
de la Horra C, Friaza V, Morilla R, Delgado J, Medrano FJ, Miller RF, de Armas Y, Calderón EJ. Update on Dihydropteroate Synthase (DHPS) Mutations in Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7100856. [PMID: 34682277 PMCID: PMC8540849 DOI: 10.3390/jof7100856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
A Pneumocystis jirovecii is one of the most important microorganisms that cause pneumonia in immunosupressed individuals. The guideline for treatment and prophylaxis of Pneumocystis pneumonia (PcP) is the use of a combination of sulfa drug-containing trimethroprim and sulfamethoxazole. In the absence of a reliable method to culture Pneumocystis, molecular techniques have been developed to detect mutations in the dihydropteroate synthase gene, the target of sulfa drugs, where mutations are related to sulfa resistance in other microorganisms. The presence of dihydropteroate synthase (DHPS) mutations has been described at codon 55 and 57 and found almost around the world. In the current work, we analyzed the most common methods to identify these mutations, their geographical distribution around the world, and their clinical implications. In addition, we describe new emerging DHPS mutations. Other aspects, such as the possibility of transmitting Pneumocystis mutated organisms between susceptible patients is also described, as well as a brief summary of approaches to study these mutations in a heterologous expression system.
Collapse
Affiliation(s)
- Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Delgado
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Robert F. Miller
- Institute for Global Health, University College London, London WC1E 6JB, UK;
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí,” Havana 11400, Cuba
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| |
Collapse
|
5
|
Pinheiro BG, Pôssa AP, Della Terra PP, de Carvalho JA, Ricci G, Nishikaku AS, Hahn RC, de Camargo ZP, Rodrigues AM. A New Duplex PCR-Assay for the Detection and Identification of Paracoccidioides Species. J Fungi (Basel) 2021; 7:169. [PMID: 33652623 PMCID: PMC7996757 DOI: 10.3390/jof7030169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic fungal infection caused by members of the Paracoccidioides brasiliensis complex and P. lutzii. Routine diagnoses of PCM down to the species level using classical mycological approaches are unspecific due to overlapping phenotypes. There is an urgent need for specific, sensitive, and cost-effective molecular tools to diagnose PCM. Variation among the exon-2 of the gp43 gene was exploited to design species-specific primer pairs to discriminate between members of the P. brasiliensis complex and P. lutzii in a duplex PCR assay. Primer-BLAST searches revealed highly species-specific primers, and no significant region of homology was found against DNA databases except for Paracoccidioides species. Primers PbraCx-F and PbraCx-R targeting P. brasiliensis DNA produced an amplicon of 308 bp, while primers Plu-F and Plu-R targeting P. lutzii DNA generated an amplicon of 142 bp. The lower limit of detection for our duplex PCR assay was 1 pg of gDNA. A panel of 62 Paracoccidioides revealed 100% specificity (AUC = 1.000, 95%CI 0.972-1.000, p < 0.0001) without cross-reacting with other medically relevant fungi or human DNA. As a proof of concept, we demonstrated the accurate identification of the P. brasiliensis complex (n = 7) or P. lutzii (n = 6) from a broad range of formalin-fixed, paraffin-embedded (FFPE) tissues of PCM patient's organs. In four cases, FFPE PCR results confirmed, for the first time, co-infection due to P. brasiliensis (S1) and P. lutzii in the same biopsy. Our duplex PCR assay is useful to detect and differentiate members of the P. brasiliensis complex and P. lutzii, providing clinical laboratories with an important tool to be applied routinely, especially in atypical cases such as those featuring negative serology and positive mycological examination of clinical specimens as well as for the investigation of putative co-infection cases. This will likely benefit thousands of infected patients every year in a wide area of the Americas.
Collapse
Affiliation(s)
- Breno Gonçalves Pinheiro
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (A.P.P.); (P.P.D.T.); (J.A.d.C.); (Z.P.d.C.)
| | - Ana Paula Pôssa
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (A.P.P.); (P.P.D.T.); (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Paula Portella Della Terra
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (A.P.P.); (P.P.D.T.); (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Jamile Ambrósio de Carvalho
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (A.P.P.); (P.P.D.T.); (J.A.d.C.); (Z.P.d.C.)
| | - Giannina Ricci
- Centro de Diagnóstico e Pesquisa em Biologia Molecular Dr. Ivo Ricci, São Paulo 13561020, Brazil; (G.R.); (A.S.N.)
| | - Angela Satie Nishikaku
- Centro de Diagnóstico e Pesquisa em Biologia Molecular Dr. Ivo Ricci, São Paulo 13561020, Brazil; (G.R.); (A.S.N.)
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá 78060900, Brazil;
- Júlio Muller University Hospital, Federal University of Mato Grosso, Cuiabá 78048902, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (A.P.P.); (P.P.D.T.); (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil; (B.G.P.); (A.P.P.); (P.P.D.T.); (J.A.d.C.); (Z.P.d.C.)
- Department of Medicine, Discipline of infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo 04023062, Brazil
| |
Collapse
|
6
|
Yang P, Zhu X, Liang W, Cai R. The risk factor analysis and treatment experience in pneumocystis jirovecii pneumonia after kidney transplantation. Mycoses 2021; 64:495-502. [PMID: 33368732 DOI: 10.1111/myc.13235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Pneumocystis jirovecii pneumonia (PJP) is an opportunistic infection among solid organ transplantation. The occurrence of PJP is dangerous and fatal if there is no early identification and sufficient treatment. OBJECTIVE The aim of this study was to evaluate the risk factors and provide appropriate strategies of prophylaxis and treatment for PJP after kidney transplantation in our centre. PATIENTS/METHODS From January 2009 to December 2018, a total of 167 kidney transplantation recipients with pneumonia were enrolled, including 47 PJP patients as PJP group and 120 non-PJP patients as control group. The clinical characteristics of the two groups were analysed retrospectively. RESULTS Multivariate analysis showed that high total dosage of ATG [OR, 2.03; 95% CI, 1.12-3.68] and cytomegalovirus (CMV) infection were independent risk factors for PJP. Trimethoprim-sulfamethoxazole (TMP-SMX) (1.44 g q6h)-based treatment was used for 2 weeks, and its dosage and course were adjusted according to the therapeutic effect and side effects. Forty-five cases were recovered after 3 months of follow-up, and two patients died of respiratory failure. TMP-SMX (0.48 g/day) prophylaxis was used for 3-6 months and prolonged to 7-8 months after treatment for acute rejection, which reduced the incidence of PJP compared with those without prophylaxis. CONCLUSION Our study suggests that the high total dosage of ATG and CMV infection indicate the increased risk of PJP. The strategies of prophylaxis and treatment for PJP after kidney transplantation in our centre were effective.
Collapse
Affiliation(s)
- Pengfeng Yang
- Department of Ultrasound Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiu Zhu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixiang Liang
- Department of Ultrasound Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiming Cai
- Department of Renal Transplantation, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Consensus Multilocus Sequence Typing Scheme for Pneumocystis jirovecii. J Fungi (Basel) 2020; 6:jof6040259. [PMID: 33143112 PMCID: PMC7711988 DOI: 10.3390/jof6040259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 12/26/2022] Open
Abstract
Pneumocystis jirovecii is an opportunistic human pathogenic fungus causing severe pneumonia mainly in immunocompromised hosts. Multilocus sequence typing (MLST) remains the gold standard for genotyping of this unculturable fungus. However, the lack of a consensus scheme impedes a global comparison, large scale population studies and the development of a global MLST database. To overcome this problem this study compared all genetic regions (19 loci) currently used in 31 different published Pneumocystis MLST schemes. The most diverse/commonly used eight loci, β-TUB, CYB, DHPS, ITS1, ITS1/2, mt26S and SOD, were further assess for their ability to be successfully amplified and sequenced, and for their discriminatory power. The most successful loci were tested to identify genetically related and unrelated cases. A new consensus MLST scheme consisting of four genetically independent loci: β-TUB, CYB, mt26S and SOD, is herein proposed for standardised P. jirovecii typing, successfully amplifying low and high fungal burden specimens, showing adequate discriminatory power, and correctly identifying suspected related and unrelated isolates. The new consensus MLST scheme, if accepted, will for the first time provide a powerful tool to investigate outbreak settings and undertake global epidemiological studies shedding light on the spread of this important human fungal pathogen.
Collapse
|
8
|
Cervera C, Yaskina M, Kabbani D. Targeted Prophylaxis to Prevent Late-Onset Pneumocystis jirovecii Pneumonia in Kidney Transplantation: Are We There Yet? Clin Infect Dis 2020; 73:e1464-e1466. [DOI: 10.1093/cid/ciaa1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Carlos Cervera
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Maryna Yaskina
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Dima Kabbani
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|