1
|
Tashiro M, Nakano Y, Shirahige T, Kakiuchi S, Fujita A, Tanaka T, Takazono T, Izumikawa K. Comprehensive Review of Environmental Surveillance for Azole-Resistant Aspergillus fumigatus: A Practical Roadmap for Hospital Clinicians and Infection Control Teams. J Fungi (Basel) 2025; 11:96. [PMID: 39997390 PMCID: PMC11856238 DOI: 10.3390/jof11020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
As azole-resistant Aspergillus fumigatus emerges globally, healthcare facilities face mounting challenges in managing invasive aspergillosis. This review synthesizes worldwide azole resistance data to reveal profound regional variability, demonstrating that findings from other regions cannot be directly extrapolated to local settings. Consequently, hospital-level environmental surveillance is crucial for tailoring interventions to local epidemiology and detecting resistant strains in real-time. We outline practical approaches-encompassing sampling site prioritization, diagnostic workflows (culture-based and molecular), and PDCA-driven continuous improvement-so that even resource-limited facilities can manage resistant isolates more effectively. By linking real-time surveillance findings with clinical decisions, hospitals can tailor antifungal stewardship programs and swiftly adjust prophylaxis or treatment regimens. Our approach aims to enable accurate, ongoing evaluations of emerging resistance patterns, ensuring that institutions maintain efficient and adaptive programs. Ultimately, we advocate for sustained, collaborative efforts worldwide, where facilities adapt protocols to local conditions, share data through international networks, and contribute to a global knowledge base on resistance mechanisms. Through consistent application of these recommendations, healthcare systems can better preserve azole efficacy, safeguard immunocompromised populations, and refine infection control practices in the face of evolving challenges.
Collapse
Affiliation(s)
- Masato Tashiro
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Yuichiro Nakano
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
| | - Tomoyuki Shirahige
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
| | - Satoshi Kakiuchi
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Ayumi Fujita
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Takeshi Tanaka
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| | - Takahiro Takazono
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan; (Y.N.); (T.S.); (T.T.); (K.I.)
- Infection Control and Education Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan; (S.K.); (A.F.); (T.T.)
| |
Collapse
|
2
|
Keng LT, Lin CC, Wu CW, Liu CJ, Chang LY, Lee MR, Chen JY, Wang JY. Clinical applications of immunoglobulin G against different individual Aspergillus species for the diagnosis of chronic pulmonary aspergillosis among at-risk populations. Pathog Glob Health 2024:1-8. [PMID: 39504999 DOI: 10.1080/20477724.2024.2424489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Aspergillus fumigatus-specific IgG is often used as a diagnostic test for chronic pulmonary aspergillosis (CPA), but few studies have evaluated the performance and serology of IgGs from species other than A. fumigatus. In this study, we evaluated the serology and performance of different Aspergillus species-specific IgG antibodies in patients with CPA and at-risk populations and whether different Aspergillus species-specific IgGs could be of clinical utility and aid in the diagnosis of CPA caused by all Aspergillus species. A total of 187 participants were included between 2020 and 2022 (12 with CPA, 75 with old tuberculosis [TB], 45 with active TB and 55 with bronchiectasis). We measured the serum Aspergillus fumigatus, flavus, terreus, niger-specific, and mixed Aspergillus IgG levels (Phadia ImmunoCap). The correlation was the strongest between A. fumigatus and A. niger (Spearman's rank: 0.940), followed by A. niger and A. flavus (Spearman's rank: 0.915). A. terreus-specific IgG was less strongly correlated with the other three Aspergillus species-specific IgG (Spearman's rank: 0.828-0.849). A. flavus (4 of 6, 67%) was the dominant species. Using the at-least-one-positive approach, the highest performance was obtained when A. fumigatus and A. flavus IgGs were used (sensitivity, 0.75; specificity, 0.84). Significant cross-reactivity exists among different Aspergillus-species IgGs although the correlation may be less significant for A. terreus. In addition to the commonly used A. fumigatus IgG test, IgGs specific to local prevalent Aspergillus species may provide additional clinical utility.
Collapse
Affiliation(s)
- Li-Ta Keng
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chen-Chieh Lin
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chang-Wei Wu
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Chia-Jung Liu
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Lih-Yu Chang
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yueh Chen
- Department of Internal Medicine, E-DA Hospital, Kaohsiung, Taiwan
- College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Ghazanfari M, Abastabar M, Haghani I, Kermani F, Keikha N, Kholoujini M, Minooeianhaghighi MH, Jeddi SA, Shokri A, Ghojoghi A, Amirizad K, Azish M, Nasirzadeh Y, Roohi B, Nosratabadi M, Hedayati S, Ghanbari S, Valadan R, Hedayati MT. Electronic equipment and appliances in special wards of hospitals as a source of azole-resistant Aspergillus fumigatus: a multi-centre study from Iran. J Hosp Infect 2024; 145:65-76. [PMID: 38199436 DOI: 10.1016/j.jhin.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Azole-resistant Aspergillus fumigatus (ARAf), reported as a global public health concern, has been unexpectedly observed in different countries. AIM To identify ARAf and detect azole resistance related to the CYP51A mutation in different hospital environmental samples. METHODS In this multi-centre study from Iran, surfaces of electronic equipment and appliances from different hospitals in Iran were sampled using cotton swabs. All samples were cultured using azole-containing agar plates (ACAPs). Recovered Aspergillus isolates were identified at the species level using partial DNA sequencing of the β-tubulin gene. The azole susceptibility testing of A. fumigatus isolates was performed using the Clinical and Laboratory Standards Institute M38-A3 guideline. The sequencing of the CYP51A gene was also performed to detect mutations related to resistance. FINDINGS Out of the 693 collected samples, 89 (12.8%) Aspergillus species were recovered from ACAPs. Aspergillus fumigatus (41.6%) was the most prevalent, followed by A. tubingensis (23.6%) and A. niger (15.6%). Among 37 isolates of A. fumigatus, 19 (51.3%) showed high minimum inhibitory concentration (MIC) values to at least one of the three azoles, voriconazole, itraconazole, and posaconazole. CYP51A polymorphisms were detected in all 19 isolates, of which 52.6% showed the TR34/L98H mutation. Other detected mutations were G432C, G448S, G54E/G138C, F46Y, and Y121F/M220I/D255E. T289F and G432C were the first reported mutations in ARAf. CONCLUSION There was a considerable level of azole resistance in hospital environmental samples, a serious warning for patients vulnerable to aspergillosis. Our findings have also revealed a different mutation pattern in the CYP51A gene.
Collapse
Affiliation(s)
- M Ghazanfari
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Abastabar
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - I Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - F Kermani
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - N Keikha
- Infectious Disease and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - M Kholoujini
- Beheshti Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - M H Minooeianhaghighi
- Department of Medical Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - S A Jeddi
- Department of Laboratory Sciences, School of Allied Sciences, Abadan University of Medical Sciences, Abadan, Iran
| | - A Shokri
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - A Ghojoghi
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - K Amirizad
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - M Azish
- Department of Medical Parasitology and Mycology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Y Nasirzadeh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - B Roohi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M Nosratabadi
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Laboratory Sciences, Sirjan Faculty of Medical Sciences, Sirjan, Iran
| | - S Hedayati
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - S Ghanbari
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - R Valadan
- Department of Immunology/Molecular and Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari, Iran
| | - M T Hedayati
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran; Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Pontes L, Arai T, Gualtieri Beraquet CA, Giordano ALPL, Reichert-Lima F, da Luz EA, Fernanda de Sá C, Ortolan Levy L, Tararam CA, Watanabe A, Moretti ML, Zaninelli Schreiber A. Uncovering a Novel cyp51A Mutation and Antifungal Resistance in Aspergillus fumigatus through Culture Collection Screening. J Fungi (Basel) 2024; 10:122. [PMID: 38392794 PMCID: PMC10890095 DOI: 10.3390/jof10020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Aspergillus fumigatus is an important concern for immunocompromised individuals, often resulting in severe infections. With the emergence of resistance to azoles, which has been the therapeutic choice for Aspergillus infections, monitoring the resistance of these microorganisms becomes important, including the search for mutations in the cyp51A gene, which is the gene responsible for the mechanism of action of azoles. We conducted a retrospective analysis covering 478 A. fumigatus isolates. METHODS This comprehensive dataset comprised 415 clinical isolates and 63 isolates from hospital environmental sources. For clinical isolates, they were evaluated in two different periods, from 1998 to 2004 and 2014 to 2021; for environmental strains, one strain was isolated in 1998, and 62 isolates were evaluated in 2015. Our primary objectives were to assess the epidemiological antifungal susceptibility profile; trace the evolution of resistance to azoles, Amphotericin B (AMB), and echinocandins; and monitor cyp51A mutations in resistant strains. We utilized the broth microdilution assay for susceptibility testing, coupled with cyp51A gene sequencing and microsatellite genotyping to evaluate genetic variability among resistant strains. RESULTS Our findings reveal a progressive increase in Minimum Inhibitory Concentrations (MICs) for azoles and AMB over time. Notably, a discernible trend in cyp51A gene mutations emerged in clinical isolates starting in 2014. Moreover, our study marks a significant discovery as we detected, for the first time, an A. fumigatus isolate carrying the recently identified TR46/F495I mutation within a sample obtained from a hospital environment. The observed cyp51A mutations underscore the ongoing necessity for surveillance, particularly as MICs for various antifungal classes continue to rise. CONCLUSIONS By conducting resistance surveillance within our institution's culture collection, we successfully identified a novel TR46/F495I mutation in an isolate retrieved from the hospital environment which had been preserved since 1998. Moreover, clinical isolates were found to exhibit TR34/L98H/S297T/F495I mutations. In addition, we observed an increase in MIC patterns for Amphotericin B and azoles, signaling a change in the resistance pattern, emphasizing the urgent need for the development of new antifungal drugs. Our study highlights the importance of continued monitoring and research in understanding the evolving challenges in managing A. fumigatus infections.
Collapse
Affiliation(s)
- Laís Pontes
- School of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | - Teppei Arai
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba 260-8670, Japan
| | | | | | - Franqueline Reichert-Lima
- Department of Medicine, School of Medical Sciences in São José dos Campos-Humanitas, São José dos Campos 12220-061, São Paulo, Brazil
| | - Edson Aparecido da Luz
- Division of Clinical Pathology, Microbiology Laboratory, University of Campinas Clinical Hospital, Campinas 13083-888, São Paulo, Brazil
| | - Camila Fernanda de Sá
- Division of Clinical Pathology, Microbiology Laboratory, University of Campinas Clinical Hospital, Campinas 13083-888, São Paulo, Brazil
| | - Larissa Ortolan Levy
- School of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | | | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba 260-8670, Japan
| | - Maria Luiza Moretti
- School of Medical Sciences, University of Campinas, Campinas 13083-970, São Paulo, Brazil
| | | |
Collapse
|
5
|
Recommendations and guidelines for the diagnosis and management of Coronavirus Disease-19 (COVID-19) associated bacterial and fungal infections in Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:207-235. [PMID: 36586743 PMCID: PMC9767873 DOI: 10.1016/j.jmii.2022.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is an emerging infectious disease caused by SARS-CoV-2 that has rapidly evolved into a pandemic to cause over 600 million infections and more than 6.6 million deaths up to Nov 25, 2022. COVID-19 carries a high mortality rate in severe cases. Co-infections and secondary infections with other micro-organisms, such as bacterial and fungus, further increases the mortality and complicates the diagnosis and management of COVID-19. The current guideline provides guidance to physicians for the management and treatment of patients with COVID-19 associated bacterial and fungal infections, including COVID-19 associated bacterial infections (CABI), pulmonary aspergillosis (CAPA), candidiasis (CAC) and mucormycosis (CAM). Recommendations were drafted by the 7th Guidelines Recommendations for Evidence-based Antimicrobial agents use Taiwan (GREAT) working group after review of the current evidence, using the grading of recommendations assessment, development, and evaluation (GRADE) methodology. A nationwide expert panel reviewed the recommendations in March 2022, and the guideline was endorsed by the Infectious Diseases Society of Taiwan (IDST). This guideline includes the epidemiology, diagnostic methods and treatment recommendations for COVID-19 associated infections. The aim of this guideline is to provide guidance to physicians who are involved in the medical care for patients with COVID-19 during the ongoing COVID-19 pandemic.
Collapse
|
6
|
Hsu TH, Huang PY, Fan YC, Sun PL. Azole Resistance and cyp51A Mutation of Aspergillus fumigatus in a Tertiary Referral Hospital in Taiwan. J Fungi (Basel) 2022; 8:jof8090908. [PMID: 36135633 PMCID: PMC9504549 DOI: 10.3390/jof8090908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/30/2023] Open
Abstract
Azole resistance in Aspergillus fumigatus has increasingly been reported worldwide. Its major mechanism of resistance is mediated by mutations in cyp51A. The objective of this study was to test the antifungal susceptibilities of A. fumigatus isolates from Chang Gung Memorial Hospital (CGMH), the largest tertiary referral hospital in Taiwan, and to investigate cyp51A mutations in azole-resistant strains. A. fumigatus isolates preserved in the Research Laboratory of Medical Mycology of CGMH from 2015 to 2021 were used. Antifungal susceptibility testing was performed using the YeastOneTM method. Isolates with high minimal inhibitory concentrations (MICs) against antifungals were further tested using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Mutations in the cyp51A in azole-resistant strains were detected by Sanger sequencing. The overall prevalence of azole-resistant isolates was 1.77% (two out of 113 isolates). The two azole-resistant strains had tandem repeats (TR) in the promoter region and mutations in the cyp51A gene (TR34/L98H and TR34/L98H/S297T/F495I). One strain showed intermediate susceptibility to voriconazole, and its Cyp51A protein had five amino acid substitutions (F46Y/M172V/N248T/D255E/E427K). TR34/L98H and TR34/L98H/S297T/F495I are the most prevalent cyp51A mutations in Taiwan, mediating azole resistance based on current publications and our results. YeastOneTM was validated as a rapid tool for the antifungal susceptibility test; however, further confirmation by CLSI should be considered when MIC values of voriconazole, posaconazole, and amphotericin B are close to the clinical breakpoints or ecological cutoff values.
Collapse
Affiliation(s)
- Tsun-Hao Hsu
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Po-Yen Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Yun-Chen Fan
- Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333423, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8778)
| |
Collapse
|
7
|
Daloh M, Wisessombat S, Pinchai N, Santajit S, Bhoopong P, Soaart A, Chueajeen K, Jitlang A, Sama‐ae I. High prevalence and genetic diversity of a single ancestral origin Azole‐resistant
Aspergillus fumigatus
in indoor environments at Walailak University, Southern Thailand. Environ Microbiol 2022; 24:4641-4651. [DOI: 10.1111/1462-2920.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/31/2022] [Indexed: 12/01/2022]
Affiliation(s)
| | - Sueptrakool Wisessombat
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM) Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Nadthanan Pinchai
- Department of Microbiology, Faculty of Medicine Siriraj Hospital Mahidol University, Bangkoknoi Bangkok Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
- Research Center in Tropical Pathobiology Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Phuangthip Bhoopong
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Areeya Soaart
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Kuntida Chueajeen
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Anucha Jitlang
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
| | - Imran Sama‐ae
- Department of Medical Technology, School of Allied Health Sciences Walailak University, Thasala District, Nakhonsithammarat Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM) Walailak University, Thasala District, Nakhonsithammarat Thailand
| |
Collapse
|
8
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
9
|
Takahashi H, Oiki S, Kusuya Y, Urayama S, Hagiwara D. Intimate genetic relationships and fungicide resistance in multiple strains of Aspergillus fumigatus isolated from a plant bulb. Environ Microbiol 2021; 23:5621-5638. [PMID: 34464008 PMCID: PMC9292267 DOI: 10.1111/1462-2920.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Fungal infections are increasingly dangerous because of environmentally dispersed resistance to antifungal drugs. Azoles are commonly used antifungal drugs, but they are also used as fungicides in agriculture, which may enable enrichment of azole-resistant strains of the human pathogen Aspergillus fumigatus in the environment. Understanding of environmental dissemination and enrichment of genetic variation associated with azole resistance in A. fumigatus is required to suppress resistant strains. Here, we focused on eight strains of azole-resistant A. fumigatus isolated from a single tulip bulb for sale in Japan. This set includes strains with TR34 /L98H/T289A/I364V/G448S and TR46 /Y121F/T289A/S363P/I364V/G448S mutations in the cyp51A gene, which showed higher tolerance to several azoles than strains harbouring TR46 /Y121F/T289A mutation. The strains were typed by microsatellite typing, single nucleotide polymorphism profiles, and mitochondrial and nuclear genome analyses. The strains grouped differently using each typing method, suggesting historical genetic recombination among the strains. Our data also revealed that some strains isolated from the tulip bulb showed tolerance to other classes of fungicides, such as QoI and carbendazim, followed by related amino acid alterations in the target proteins. Considering spatial-temporal factors, plant bulbs are an excellent environmental niche for fungal strains to encounter partners, and to obtain and spread resistance-associated mutations.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
- Molecular Chirality Research CenterChiba University, 1‐33 Yayoi‐choInage‐kuChiba263‐8522Japan
- Plant Molecular Science CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8675Japan
| | - Sayoko Oiki
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Yoko Kusuya
- Medical Mycology Research CenterChiba University, 1‐8‐1 InohanaChuo‐kuChiba260‐8673Japan
| | - Syun‐ichi Urayama
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| | - Daisuke Hagiwara
- Faculty of Life and Environmental SciencesUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
- Microbiology Research Center for SustainabilityUniversity of Tsukuba, 1‐1‐1 TennodaiTsukubaIbaraki305‐8577Japan
| |
Collapse
|
10
|
Azole-Resistant Aspergillus fumigatus Clinical Isolate Screening in Azole-Containing Agar Plates (EUCAST E.Def 10.1): Low Impact of Plastic Trays Used and Poor Performance in Cryptic Species. Antimicrob Agents Chemother 2021; 65:e0048221. [PMID: 34252311 DOI: 10.1128/aac.00482-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Azole-containing agar is used in routine Aspergillus fumigatus azole resistance screening. We evaluated the impact of the type of plastic used to prepare in-house agar plates on the procedure's performance against A. fumigatus sensu stricto and cryptic species. A. fumigatus sensu stricto (n = 91) and cryptic species (n = 52) were classified as susceptible or resistant (EUCAST E.Def 9.3.2; clinical breakpoints v10). In-house azole-containing agar plates were prepared following EUCAST E.Def 10.1 on three types of multidish plates. We assessed the sensitivity, specificity, and agreement values of the agar plates to screen for azole resistance. Overall, sensitivity and specificity values of the agar screening method were 100% and 93.3%, respectively. The type of tray used did not affect these values. All isolates harboring TR34-L98H substitutions were classified as resistant to itraconazole and voriconazole by the agar method; however, false susceptibility (very major error) to posaconazole was not uncommon and happened in isolates with posaconazole MICs of 0.25 mg/liter. Isolates harboring G54R and TR46-Y121F-T289A substitutions were correctly classified by the agar method as itraconazole/posaconazole resistant and voriconazole resistant, respectively. False resistance (major error) occurred in isolates showing tiny fungal growth. Finally, agreements between both procedures against cryptic species were much lower. Azole-containing agar plates are a convenient and reliable tool to screen for resistance in A. fumigatus sensu stricto; the type of plastic tray used minimally affects the method. On the contrary, the performance against cryptic species is rather poor.
Collapse
|
11
|
Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus fumigatus in the environment: Identifying key reservoirs and hotspots of antifungal resistance. PLoS Pathog 2021; 17:e1009711. [PMID: 34324607 PMCID: PMC8321103 DOI: 10.1371/journal.ppat.1009711] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen that causes aspergillosis, a spectrum of environmentally acquired respiratory illnesses. It has a cosmopolitan distribution and exists in the environment as a saprotroph on decaying plant matter. Azoles, which target Cyp51A in the ergosterol synthesis pathway, are the primary class of drugs used to treat aspergillosis. Azoles are also used to combat plant pathogenic fungi. Recently, an increasing number of azole-naive patients have presented with pan-azole-resistant strains of A. fumigatus. The TR34/L98H and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones conferring pan-azole resistance. There is evidence that these mutations arose in agricultural settings; therefore, numerous studies have been conducted to identify azole resistance in environmental A. fumigatus and to determine where resistance is developing in the environment. Here, we summarize the global occurrence of azole-resistant A. fumigatus in the environment based on available literature. Additionally, we have created an interactive world map showing where resistant isolates have been detected and include information on the specific alleles identified, environmental settings, and azole fungicide use. Azole-resistant A. fumigatus has been found on every continent, except for Antarctica, with the highest number of reports from Europe. Developed environments, specifically hospitals and gardens, were the most common settings where azole-resistant A. fumigatus was detected, followed by soils sampled from agricultural settings. The TR34/L98H resistance allele was the most common in all regions except South America where the TR46/Y121F/T289A allele was the most common. A major consideration in interpreting this survey of the literature is sampling bias; regions and environments that have been extensively sampled are more likely to show greater azole resistance even though resistance could be more prevalent in areas that are under-sampled or not sampled at all. Increased surveillance to pinpoint reservoirs, as well as antifungal stewardship, is needed to preserve this class of antifungals for crop protection and human health.
Collapse
Affiliation(s)
- Caroline Burks
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Alexandria Darby
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Luisa Gómez Londoño
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Plant Biology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| | - Marin T. Brewer
- Plant Pathology Department and Fungal Biology Group, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
12
|
van der Torre MH, Shen H, Rautemaa-Richardson R, Richardson MD, Novak-Frazer L. Molecular Epidemiology of Aspergillus fumigatus in Chronic Pulmonary Aspergillosis Patients. J Fungi (Basel) 2021; 7:jof7020152. [PMID: 33672698 PMCID: PMC7924367 DOI: 10.3390/jof7020152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular fungal genotyping techniques developed and employed for epidemiological studies have understandably concentrated on establishing the genetic diversity of Aspergillus fumigatus in invasive aspergillosis due to its severity, the urgency for treatment, and the need to demonstrate possible sources. Some early studies suggested that these strains were phenotypically, if not genotypically, different from others. However, with improved discrimination and evaluations, incorporating environmental as well as clinical isolates from other Aspergillus conditions (e.g., chronic pulmonary aspergillosis and cystic fibrosis), this premise is no longer upheld. Moreover, with the onset of increased global triazole resistance, there has been a concerted effort to incorporate resistance profiling into genotyping studies and the realisation that the wider population of non-immunocompromised aspergillosis patients are at risk. This review summarises the developments in molecular genotyping studies that incorporate resistance profiling with attention to chronic pulmonary aspergillosis and an example of our UK experience.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Hongwei Shen
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Infectious Diseases, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Malcolm D. Richardson
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Lilyann Novak-Frazer
- Mycology Reference Centre Manchester, ECMM Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (R.R.-R.); (M.D.R.)
- Division of Infection, Inflammation and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: ; Tel.: +44-161-2915856
| |
Collapse
|
13
|
Arastehfar A, Gabaldón T, Garcia-Rubio R, Jenks JD, Hoenigl M, Salzer HJF, Ilkit M, Lass-Flörl C, Perlin DS. Drug-Resistant Fungi: An Emerging Challenge Threatening Our Limited Antifungal Armamentarium. Antibiotics (Basel) 2020; 9:antibiotics9120877. [PMID: 33302565 PMCID: PMC7764418 DOI: 10.3390/antibiotics9120877] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
The high clinical mortality and economic burden posed by invasive fungal infections (IFIs), along with significant agricultural crop loss caused by various fungal species, has resulted in the widespread use of antifungal agents. Selective drug pressure, fungal attributes, and host- and drug-related factors have counteracted the efficacy of the limited systemic antifungal drugs and changed the epidemiological landscape of IFIs. Species belonging to Candida, Aspergillus, Cryptococcus, and Pneumocystis are among the fungal pathogens showing notable rates of antifungal resistance. Drug-resistant fungi from the environment are increasingly identified in clinical settings. Furthermore, we have a limited understanding of drug class-specific resistance mechanisms in emerging Candida species. The establishment of antifungal stewardship programs in both clinical and agricultural fields and the inclusion of species identification, antifungal susceptibility testing, and therapeutic drug monitoring practices in the clinic can minimize the emergence of drug-resistant fungi. New antifungal drugs featuring promising therapeutic profiles have great promise to treat drug-resistant fungi in the clinical setting. Mitigating antifungal tolerance, a prelude to the emergence of resistance, also requires the development of effective and fungal-specific adjuvants to be used in combination with systemic antifungals.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, 08034 Barcelona, Spain;
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), 08024 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies. Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Rocio Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
| | - Jeffrey D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA 92103, USA;
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Hoenigl
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | - Macit Ilkit
- Division of Mycology, University of Çukurova, 01330 Adana, Turkey
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (A.A.); (R.G.-R.)
- Correspondence: (M.I.); (D.S.P.); Tel.: +90-532-286-0099 (M.I.); +1-201-880-3100 (D.S.P.)
| |
Collapse
|
14
|
Assessment of Children’s Potential Exposure to Bioburden in Indoor Environments. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090993] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The exposure to particles and bioaerosols has been associated with the increase in health effects in children. The objective of this study was to assess the indoor exposure to bioburden in the indoor microenvironments more frequented by children. Air particulate matter (PM) and settled dust were sampled in 33 dwellings and four schools with a medium volume sampler and with a passive method using electrostatic dust collectors (EDC), respectively. Settled dust collected by EDC was analyzed by culture-based methods (including azole resistance profile) and using qPCR. Results showed that the PM2.5 and PM10 concentrations in classrooms (31.15 μg/m3 and 57.83 μg/m3, respectively) were higher than in homes (15.26 μg/m3 and 18.95 μg/m3, respectively) and highly exceeded the limit values established by the Portuguese legislation for indoor air quality. The fungal species most commonly found in bedrooms was Penicillium sp. (91.79%), whereas, in living rooms, it was Rhizopus sp. (37.95%). Aspergillus sections with toxigenic potential were found in bedrooms and living rooms and were able to grow on VOR. Although not correlated with PM, EDC provided information regarding the bioburden. Future studies, applying EDC coupled with PM assessment, should be implemented to allow for a long-term integrated sample of organic dust.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Although clinical outcomes in the treatment of aspergillosis have markedly improved with the availability of newer triazoles, the development of resistance to these antifungals, especially in Aspergillus fumigatus, is a growing concern. The purpose of this review is to provide an update on azole resistance mechanisms and their epidemiology in A. fumigatus, the clinical implications of azole resistance, and to discuss future treatment options against azole-resistant aspergillosis. RECENT FINDINGS Resistance may develop through either patient or environmental azole exposure. Environmental exposure is the most prevalent means of resistance development, and these isolates can cause disease in various at-risk groups, which now include those with influenza, and potentially COVID-19. Although current treatment options are limited, newer therapies are in clinical development. These include agents with novel mechanisms of action which have in vitro and in vivo activity against azole-resistant A. fumigatus. SUMMARY Azole-resistant A. fumigatus is an emerging threat that hampers our ability to successfully treat patients with aspergillosis. Certain geographic regions and patient populations appear to be at increased risk for this pathogen. As new patient groups are increasingly recognized to be at increased risk for invasive aspergillosis, studies to define the epidemiology and management of azole-resistant A. fumigatus are critically needed. While treatment options are currently limited, new agents under clinical development may offer hope.
Collapse
|
16
|
Ahangarkani F, Puts Y, Nabili M, Khodavaisy S, Moazeni M, Salehi Z, Laal Kargar M, Badali H, Meis JF. First azole-resistant Aspergillus fumigatus isolates with the environmental TR 46 /Y121F/T289A mutation in Iran. Mycoses 2020; 63:430-436. [PMID: 32056319 PMCID: PMC7217147 DOI: 10.1111/myc.13064] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Background Azole resistance in Aspergillus fumigatus is an emerging problem and reported from all continents. As triazole antifungals are the mainstay of therapy in the management of invasive aspergillosis, azole‐resistant A fumigatus has become a major medical concern and with complicated clinical management. Objective Screening of environmental presence of azole‐resistant A fumigatus in Iran. Methods Compost from Northern Iran, collected between 2017 and 2018, was screened for the presence of azole‐resistant A fumigatus with azole‐containing agar. Phenotypic MICs were obtained from selected, molecularly confirmed isolates. cyp51A gene sequencing and genotyping of azole‐resistant isolates were done. Results Among 300 compost samples, three A fumigatus isolates had high voriconazole MICs (≥16 mg/L) and harboured the TR46/Y121F/T289A mutation in the cyp51A gene. Microsatellite typing of these isolates showed that two strains had the same allele across all nine examined microsatellite loci and were genotypically related to Indian azole‐resistant strains. The other isolate had a different genotype. Conclusion This is the first report of A fumigatus with TR46/Y121F/T289A mutation from the region. Monitoring and surveillance of antifungal susceptibility of clinical A fumigatus is warranted in Iran and elsewhere in the region.
Collapse
Affiliation(s)
- Fatemeh Ahangarkani
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Ynze Puts
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Mojtaba Nabili
- Department of Medical Sciences, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Moazeni
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Salehi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Melika Laal Kargar
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamid Badali
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.,ECMM Excellence Center for Medical Mycology, Centre of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Aspergillus fumigatus Clinical Isolates Carrying CYP51A with TR34/L98H/S297T/F495I Substitutions Detected after Four-Year Retrospective Azole Resistance Screening in Brazil. Antimicrob Agents Chemother 2020; 64:AAC.02059-19. [PMID: 31871090 DOI: 10.1128/aac.02059-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Azole antifungal resistance in Aspergillus fumigatus is a worldwide concern. As in most public hospitals in Brazil, antifungal susceptibility tests are not routinely performed for filamentous fungi at our institution. A 4-year retrospective azole antifungal resistance screening revealed two azole-resistant A. fumigatus clinical isolates carrying the CYP51A TR34 (34-bp tandem repeat)/L98H (change of L to H at position 98)/S297T/F495I resistance mechanism mutations, obtained from two unrelated patients. Broth microdilution antifungal susceptibility testing showed high MICs for itraconazole, posaconazole, and miconazole. Short tandem repeat (STR) typing analysis presented high levels of similarity between these two isolates and clinical isolates with the same mutations reported from the Netherlands, Denmark, and China, as well as environmental isolates from Taiwan. Our findings might indicate that active searching for resistant A. fumigatus is necessary. They also represent a concern considering that our hospital provides tertiary care assistance to immunocompromised patients who may be exposed to resistant environmental isolates. We also serve patients who receive prophylactic antifungal therapy or treatment for invasive fungal infections for years. In these two situations, isolates resistant to the antifungal in use may be selected within the patients themselves. We do not know the potential of this azole-resistant A. fumigatus strain to spread throughout our country. In this scenario, the impact on the epidemiology and use of antifungal drugs will significantly alter patient care, as in other parts of the world. In summary, this finding is an important contribution to alert hospital laboratories conducting routine microbiological testing to perform azole resistance surveillance and antifungal susceptibility tests of A. fumigatus isolates causing infection or colonization in patients at high risk for systemic aspergillosis.
Collapse
|