1
|
Wu J, Yu J, Li H, Wang Y, Xu R. Fatal invasive Aspergillus infection in an elderly patient with hepatitis E: A case report and literature review. Medicine (Baltimore) 2024; 103:e40103. [PMID: 39470540 PMCID: PMC11521067 DOI: 10.1097/md.0000000000040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
RATIONALE Elderly patients with acute liver failure are highly susceptible to severe complications, such as invasive fungal infections, due to weakened immune systems and altered gut microbiota. A thorough understanding of liver failure and opportunistic infections is crucial for effective management. PATIENT CONCERNS An 84-year-old male with acute liver failure from hepatitis E experienced worsening jaundice despite standard treatments. He also developed respiratory symptoms, including blood-streaked sputum, raising concerns about a potential fungal infection. DIAGNOSES The patient was diagnosed with acute liver failure secondary to hepatitis E and an invasive fungal infection caused by Aspergillus fumigatus. Initial treatments included artificial liver plasma exchange and antifungal prophylaxis. Further diagnostics, including bronchoscopy and next-generation sequencing of alveolar lavage fluid, confirmed the Aspergillus infection. LESSONS Elderly liver failure patients are particularly prone to opportunistic infections, underscoring the need for vigilant monitoring and early intervention. Despite aggressive treatments, including antifungal therapy and artificial liver support, prognosis remains poor, highlighting the importance of prompt diagnosis and comprehensive management to enhance patient outcomes.
Collapse
Affiliation(s)
- Junjun Wu
- Department of Gastroenterology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Jin Yu
- Department of Gastroenterology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Huaming Li
- Department of Gastroenterology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Yufang Wang
- Department of Gastroenterology, Hangzhou Third People’s Hospital, Hangzhou, China
| | - Rong Xu
- Department of Gastroenterology, Hangzhou Third People’s Hospital, Hangzhou, China
| |
Collapse
|
2
|
Thompson GR, Chen SCA, Alfouzan WA, Izumikawa K, Colombo AL, Maertens J. A global perspective of the changing epidemiology of invasive fungal disease and real-world experience with the use of isavuconazole. Med Mycol 2024; 62:myae083. [PMID: 39138063 PMCID: PMC11382804 DOI: 10.1093/mmy/myae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024] Open
Abstract
Global epidemiological data show that the incidence of invasive fungal disease (IFD) has increased in recent decades, with the rising frequency of infections caused by Aspergillus and Mucorales order species. The number and variety of patients at risk of IFD has also expanded, owing in part to advances in the treatment of hematologic malignancies and other serious diseases, including hematopoietic stem cell transplantation (HCT) and other therapies causing immune suppression. Isavuconazonium sulfate (active moiety: isavuconazole) is an advanced-generation triazole antifungal approved for the treatment of invasive aspergillosis and mucormycosis that has demonstrated activity against a variety of yeasts, moulds, and dimorphic fungi. While real-world clinical experience with isavuconazole is sparse in some geographic regions, it has been shown to be effective and well tolerated in diverse patient populations, including those with multiple comorbidities who may have failed to respond to prior triazole antifungal therapy. Isavuconazole may be suitable for patients with IFD receiving concurrent QTc-prolonging therapy, as well as those on venetoclax or ruxolitinib. Data from clinical trials are not available to support the use of isavuconazole prophylactically for the prevention of IFD or for the treatment of endemic IFD, such as those caused by Histoplasma spp., but real-world evidence from case studies suggests that it has clinical utility in these settings. Isavuconazole is an option for patients at risk of IFD, particularly when the use of alternative antifungal therapies is not possible because of toxicities, pharmacokinetics, or drug interactions.
Collapse
Affiliation(s)
- George R Thompson
- Department of Internal Medicine, Division of Infectious Disease, UC Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, and the Department of Infectious Diseases, Westmead Hospital, School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Wadha Ahmed Alfouzan
- Department of Laboratories, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Arnaldo L Colombo
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo, São Paulo, Brazil
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Dibos M, Mayr U, Triebelhorn J, Schmid RM, Lahmer T. [Infections and liver cirrhosis]. Med Klin Intensivmed Notfmed 2024; 119:465-469. [PMID: 39120610 DOI: 10.1007/s00063-024-01168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
End-stage liver disease is a life-threatening clinical syndrome combined with a state of immune dysfunction. In this constellation patients are prone to bacterial, fungal and viral infections associated with markedly increased morbidity and mortality rates. Bacterial infections are the most prevalent kind of infection in patients with end-stage liver disease accounting for nearly 30%. The evolving rates of multidrug resistant organisms present enormous challenges in treatment strategies. Therefore, the urgent needs for prevention, early detection strategies and widespread treatment options are a necessity to handle the rising incidence of infection complications in end-stage liver disease.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Lahmer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Deutschland.
| |
Collapse
|
4
|
Yuan M, Han N, Lv D, Huang W, Zhou M, Yan L, Tang H. Invasive Pulmonary Aspergillosis in Patients with HBV-Related Acute on Chronic Liver Failure. J Fungi (Basel) 2024; 10:571. [PMID: 39194897 DOI: 10.3390/jof10080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND We aim to investigate the characteristics of invasive pulmonary aspergillosis (IPA) in patients with HBV-related acute on chronic liver failure (HBV-ACLF). METHODS A total of 44 patients with probable IPA were selected as the case group, and another 88 patients without lung infections were chosen as the control group. RESULTS HBV-ACLF patients with probable IPA had more significant 90-day mortality (38.6% vs. 15.9%, p = 0.0022) than those without. The white blood cell (WBC) count was the independent factor attributed to the IPA development [odds ratio (OR) 1.468, p = 0.027]. Respiratory failure was associated with the mortality of HBV-ACLF patients with IPA [OR 26, p = 0.000]. Twenty-seven patients received voriconazole or voriconazole plus as an antifungal treatment. Plasma voriconazole concentration measurements were performed as therapeutic drug monitoring in 55.6% (15/27) of the patients. The drug concentrations exceeded the safe range with a reduced dosage. CONCLUSIONS The WBC count might be used to monitor patients' progress with HBV-ACLF and IPA. The presence of IPA increases the 90-day mortality of HBV-ACLF patients mainly due to respiratory failure. An optimal voriconazole regimen is needed for such critical patients, and voriconazole should be assessed by closely monitoring blood levels.
Collapse
Affiliation(s)
- Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Mengjie Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Lim J, Scott AM, Wig R, Tan RV, Harnois ER, Zangeneh TT, Al-Obaidi MM. Clinical Characteristics and Mortality Risks Among Patients With Culture-Proven Coccidioidomycosis Who Are Critically Ill: A Multicenter Study in an Endemic Region. Open Forum Infect Dis 2024; 11:ofae454. [PMID: 39189034 PMCID: PMC11346353 DOI: 10.1093/ofid/ofae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
Background Coccidioidomycosis is an endemic mycosis in the southwestern United States. While most infections are mild, severe cases can be devastating. We aimed to describe the clinical characteristics and mortality risks of patients in the intensive care unit (ICU) with culture-proven coccidioidomycosis. Methods We performed a retrospective chart review of patients in the ICU with positive Coccidioides spp culture in a large health care system in Arizona between 1 October 2017 and 1 July 2022. All data were entered into REDCap. Results An overall 145 patients were identified and included. The median age was 51 years, with the majority male (69%) and non-Hispanic White (39%). Most patients (n = 104, 72%) had pulmonary coccidioidomycosis, and 41 had extrapulmonary disease (17 meningitis, 13 fungemia, 10 musculoskeletal disease, and 4 pericardial or aortic involvement). Seventy patients (48%) died during hospitalization, and most (91%) received antifungal therapy during hospitalization. In the multivariate logistic regression model, age ≥60 years (odds ratio [OR], 7.0; 95% CI, 2.6-18.8), cirrhosis (OR, 13.1; 95% CI, 1.6-108.8), and mechanical ventilation or vasopressor support (OR, 15.4; 95% CI, 3.9-59.6) were independently associated with increased all-cause mortality, but pre-ICU antifungal use had a statistically insignificant mortality risk association (OR, 0.5; 95% CI, .2-1.2). Conclusions In our study of patients in the ICU with coccidioidomycosis and multiple comorbidities, the mortality rate was high. Older age, cirrhosis, and mechanical ventilation or vasopressor support were significantly associated with high mortality. Future studies are recommended to evaluate those risk factors and the efficacy of rapid diagnosis and early therapy in patients at high risk.
Collapse
Affiliation(s)
- James Lim
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
- Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Ashley M Scott
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Rebecca Wig
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Rachel V Tan
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Emily R Harnois
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Tirdad T Zangeneh
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
- Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Mohanad M Al-Obaidi
- Department of Internal Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
- Division of Infectious Diseases, University of Arizona College of Medicine, Tucson, Arizona, USA
- Valley Fever Center for Excellence, University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
6
|
Cao Y, Li Y, Wang M, Wang L, Fang Y, Wu Y, Liu Y, Liu Y, Hao Z, Kang H, Gao H. INTERPRETABLE MACHINE LEARNING FOR PREDICTING RISK OF INVASIVE FUNGAL INFECTION IN CRITICALLY ILL PATIENTS IN THE INTENSIVE CARE UNIT: A RETROSPECTIVE COHORT STUDY BASED ON MIMIC-IV DATABASE. Shock 2024; 61:817-827. [PMID: 38407989 DOI: 10.1097/shk.0000000000002312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
ABSTRACT The delayed diagnosis of invasive fungal infection (IFI) is highly correlated with poor prognosis in patients. Early identification of high-risk patients with invasive fungal infections and timely implementation of targeted measures is beneficial for patients. The objective of this study was to develop a machine learning-based predictive model for invasive fungal infection in patients during their intensive care unit (ICU) stay. Retrospective data was extracted from adult patients in the MIMIC-IV database who spent a minimum of 48 h in the ICU. Feature selection was performed using LASSO regression, and the dataset was balanced using the BL-SMOTE approach. Predictive models were built using six machine learning algorithms. The Shapley additive explanation algorithm was used to assess the impact of various clinical features in the optimal model, enhancing interpretability. The study included 26,346 ICU patients, of whom 379 (1.44%) were diagnosed with invasive fungal infection. The predictive model was developed using 20 risk factors, and the dataset was balanced using the borderline-SMOTE (BL-SMOTE) algorithm. The BL-SMOTE random forest model demonstrated the highest predictive performance (area under curve = 0.88, 95% CI = 0.84-0.91). Shapley additive explanation analysis revealed that the three most influential clinical features in the BL-SMOTE random forest model were dialysis treatment, APSIII scores, and liver disease. The machine learning model provides a reliable tool for predicting the occurrence of IFI in ICU patients. The BL-SMOTE random forest model, based on 20 risk factors, exhibited superior predictive performance and can assist clinicians in early assessment of IFI occurrence in ICU patients. Importance: Invasive fungal infections are characterized by high incidence and high mortality rates characteristics. In this study, we developed a clinical prediction model for invasive fungal infections in critically ill patients based on machine learning algorithms. The results show that the machine learning model based on 20 clinical features has good predictive value.
Collapse
Affiliation(s)
- Yuan Cao
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | - Yuan Fang
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | | | | | - Yixuan Liu
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ziqian Hao
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjun Kang
- Department of Critical Care Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hengbo Gao
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Yu W, Xiao Y, Luo Y, Hu Y, Ji R, Wang W, Wu Z, Qi Z, Guo T, Wang Y, Zhao C. Risk factors for short-term prognosis of end-stage liver disease complicated by invasive pulmonary aspergillosis. Eur J Clin Microbiol Infect Dis 2024; 43:713-721. [PMID: 38347245 DOI: 10.1007/s10096-024-04775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND AND AIM Patients with end-stage liver disease (ESLD) are susceptible to invasive pulmonary aspergillosis (IPA). This study aimed to investigate the risk factors affecting the occurrence and short-term prognosis of ESLD complicated by IPA. METHODS This retrospective case-control study included 110 patients with ESLD. Of them, 27 ESLD-IPA received antifungal therapy with amphotericin B (AmB); 27 AmB-free-treated ESLD-IPA patients were enrolled through 1:1 propensity score matching. Fifty-six ESLD patients with other comorbid pulmonary infections were enrolled as controls. The basic features of groups were compared, while the possible risk factors affecting the occurrence and short-term outcomes of IPA were analyzed. RESULTS Data analysis revealed invasive procedures, glucocorticoid exposure, and broad-spectrum antibiotic use were independent risk factors for IPA. The 54 patients with ESLD-IPA exhibited an overall treatment effectiveness and 28-d mortality rate of 50.00% and 20.37%, respectively, in whom patients treated with AmB-containing showed higher treatment efficacy than patients treated with AmB-free antifungal regimens (66.7% vs. 33.3%, respectively, χ2 = 6.000, P = 0.014). Multivariate logistic regression analysis revealed that the treatment regimen was the only predictor affecting patient outcomes, with AmB-containing regimens were 4.893 times more effective than AmB-free regimens (95% CI, 1.367-17.515; P = 0.015). The only independent predictors affecting the 28-d mortality rate were neutrophil-to-lymphocyte ratio and IPA diagnosis (OR = 1.140 and 10.037, P = 0.046 and 0.025, respectively). CONCLUSIONS Glucocorticoid exposure, invasive procedures, and broad-spectrum antibiotic exposure increased the risk of IPA in ESLD patients. AmB alone or combined with other antifungals may serve as an economical, safe, and effective treatment option for ESLD-IPA.
Collapse
Affiliation(s)
- Weiyan Yu
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
- Hebei Clinical Medical Research Center of Infectious Diseases, Shijiazhuang, 050051, China
| | - Ying Xiao
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Yue Luo
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
- Public Health Clinical Center of Chengdu, Chengdu, 610011, China
| | - Yangyang Hu
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Ru Ji
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
- Hebei Clinical Medical Research Center of Infectious Diseases, Shijiazhuang, 050051, China
| | - Wei Wang
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
- Hebei Clinical Medical Research Center of Infectious Diseases, Shijiazhuang, 050051, China
| | - Zhinian Wu
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Zeqiang Qi
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Tingyu Guo
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Yadong Wang
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Clinical Medical Research Center of Infectious Diseases, Shijiazhuang, 050051, China.
| | - Caiyan Zhao
- Department of Infectious Disease, the Hebei Medical University Third Hospital, No. 139, Ziqiang Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Clinical Medical Research Center of Infectious Diseases, Shijiazhuang, 050051, China.
| |
Collapse
|
8
|
Heylen J, Vanbiervliet Y, Maertens J, Rijnders B, Wauters J. Acute Invasive Pulmonary Aspergillosis: Clinical Presentation and Treatment. Semin Respir Crit Care Med 2024; 45:69-87. [PMID: 38211628 DOI: 10.1055/s-0043-1777769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Among all clinical manifestations of pulmonary aspergillosis, invasive pulmonary aspergillosis (IPA) is the most acute presentation. IPA is caused by Aspergillus hyphae invading the pulmonary tissue, causing either tracheobronchitis and/or bronchopneumonia. The degree of fungal invasion into the respiratory tissue can be seen as a spectrum, going from colonization to deep tissue penetration with angio-invasion, and largely depends on the host's immune status. Patients with prolonged, severe neutropenia and patients with graft-versus-host disease are at particularly high risk. However, IPA also occurs in other groups of immunocompromised and nonimmunocompromised patients, like solid organ transplant recipients or critically ill patients with severe viral disease. While a diagnosis of proven IPA is challenging and often warranted by safety and feasibility, physicians must rely on a combination of clinical, radiological, and mycological features to assess the likelihood for the presence of IPA. Triazoles are the first-choice regimen, and the choice of the drug should be made on an individual basis. Adjunctive therapy such as immunomodulatory treatment should also be taken into account. Despite an improving and evolving diagnostic and therapeutic armamentarium, the burden and mortality of IPA still remains high. This review aims to give a comprehensive and didactic overview of the current knowledge and best practices regarding the epidemiology, clinical presentation, diagnosis, and treatment of acute IPA.
Collapse
Affiliation(s)
- Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Yuri Vanbiervliet
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Zhao Y, Liu H, Xiao C, Hou J, Zhang B, Li J, Zhang M, Jiang Y, Sandaradura I, Ding X, Yan M. Enhancing voriconazole therapy in liver dysfunction: exploring administration schemes and predictive factors for trough concentration and efficacy. Front Pharmacol 2024; 14:1323755. [PMID: 38239188 PMCID: PMC10794455 DOI: 10.3389/fphar.2023.1323755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The application of voriconazole in patients with liver dysfunction lacks pharmacokinetic data. In previous study, we proposed to develop voriconazole dosing regimens for these patients according to their total bilirubin, but the regimens are based on Monte Carlo simulation and has not been further verified in clinical practice. Besides, there are few reported factors that significantly affect the efficacy of voriconazole. Methods: We collected the information of patients with liver dysfunction hospitalized in our hospital from January 2018 to May 2022 retrospectively, including their baseline information and laboratory data. We mainly evaluated the efficacy of voriconazole and the target attainment of voriconazole trough concentration. Results: A total of 157 patients with liver dysfunction were included, from whom 145 initial and 139 final voriconazole trough concentrations were measured. 60.5% (95/157) of patients experienced the adjustment of dose or frequency. The initial voriconazole trough concentrations were significantly higher than the final (mean, 4.47 versus 3.90 μg/mL, p = 0.0297). Furthermore, daily dose, direct bilirubin, lymphocyte counts and percentage, platelet, blood urea nitrogen and creatinine seven covariates were identified as the factors significantly affect the voriconazole trough concentration. Binary logistic regression analysis revealed that the lymphocyte percentage significantly affected the efficacy of voriconazole (OR 1.138, 95% CI 1.016-1.273), which was further validated by the receiver operating characteristic curve. Conclusion: The significant variation in voriconazole trough concentrations observed in patients with liver dysfunction necessitates caution when prescribing this drug. Clinicians should consider the identified factors, particularly lymphocyte percentage, when dosing voriconazole in this population.
Collapse
Affiliation(s)
- Yichang Zhao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Huaiyuan Liu
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenlin Xiao
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jingjing Hou
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiakai Li
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Min Zhang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongfang Jiang
- Department of Infectious Disease, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Indy Sandaradura
- School of Medicine, University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao Yan
- Department of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
10
|
Li G, Li Q, Zhang C, Yu Q, Li Q, Zhou X, Yang R, Yang X, Liu H, Yang Y. The impact of gene polymorphism and hepatic insufficiency on voriconazole dose adjustment in invasive fungal infection individuals. Front Genet 2023; 14:1242711. [PMID: 37693307 PMCID: PMC10484623 DOI: 10.3389/fgene.2023.1242711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to treat invasive fungal infections (IFI). The administration dosage and blood concentration of VRZ are influenced by various factors, posing challenges for standardization and individualization of dose adjustments. On the one hand, VRZ is primarily metabolized by the liver, predominantly mediated by the cytochrome P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly impacts the blood concentration of VRZ, particularly the trough concentration (Ctrough), thereby influencing the drug's efficacy and potentially causing adverse drug reactions (ADRs). Recent research has demonstrated that pharmacogenomics-based VRZ dose adjustments offer more accurate and individualized treatment strategies for individuals with hepatic insufficiency, with the possibility to enhance therapeutic outcomes and reduce ADRs. On the other hand, the security, pharmacokinetics, and dosing of VRZ in individuals with hepatic insufficiency remain unclear, making it challenging to attain optimal Ctrough in individuals with both hepatic insufficiency and IFI, resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using VRZ to treat IFI, drug dosage adjustment based on individuals' genotypes and hepatic function is necessary. This review summarizes the research progress on the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in IFI individuals, compares current international guidelines, elucidates the current application status of VRZ in individuals with hepatic insufficiency, and discusses the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms on VRZ dose adjustments and Ctrough at the pharmacogenomic level. Additionally, a comprehensive summary and analysis of existing studies' recommendations on VRZ dose adjustments based on CYP2C19 genetic polymorphisms and hepatic insufficiency are provided, offering a more comprehensive reference for dose selection and adjustments of VRZ in this patient population.
Collapse
Affiliation(s)
- Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qin Yu
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailin Liu
- Department of Pharmacy, The People’s Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Criscuolo M, Fracchiolla N, Farina F, Verga L, Pagano L, Busca A. A review of prophylactic regimens to prevent invasive fungal infections in hematology patients undergoing chemotherapy or stem cell transplantation. Expert Rev Hematol 2023; 16:963-980. [PMID: 38044878 DOI: 10.1080/17474086.2023.2290639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION The recent introduction of targeted therapies, including monoclonal antibodies, tyrosine-kinase inhibitors, and immunotherapies has improved the cure rate of hematologic patients. The implication of personalized treatment on primary antifungal prophylaxis will be discussed. AREAS COVERED We reviewed the literature for clinical trials reporting the rate of invasive fungal infections during targeted and cellular therapies and stem cell transplant, and the most recent international guidelines for primary antifungal prophylaxis. EXPERT OPINION As the use of personalized therapies is growing, the risk of invasive fungal infection has emerged in various clinical settings. Therefore, it is possible that the use of mold-active antifungal prophylaxis would spread in the next years and the risk of breakthrough infections would increase. The introduction of new antifungal agents in the clinical armamentarium is expected to reduce clinical unmet needs concerning the management of primary antifungal prophylaxis and improve outcome of patients.
Collapse
Affiliation(s)
- Marianna Criscuolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Nicola Fracchiolla
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | | | | | - Livio Pagano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alessandro Busca
- Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Department of Oncology, SSCVD Trapianto di Cellule Staminali Torino, Torino, Italy
| |
Collapse
|