1
|
Nascimento Pires G, Pereira Laurindo R, Dos Santos Heringer L, Calixto da Silva S, Magalhães Portela D, Cardoso R, de Pádua AC, Miranda De Sá AB, Alves Da Cruz SA, Espírito Santo Araújo S, Blanco Martinez AM, Batista Carneiro M, Rocha Mendonça H. Therapeutic potential of pranlukast against cuprizone-induced inflammatory demyelination and sensory impairment in mice: Comparison with fingolimod. Neurotoxicology 2025; 107:37-52. [PMID: 39894255 DOI: 10.1016/j.neuro.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Inflammatory demyelination is present in debilitating diseases such as Multiple Sclerosis (MS). Several drugs are available for MS treatment, with fingolimod as a first-line oral option in the United States. However, a cure has yet to be established, and therapeutic failures are common, highlighting the need for continued research into new pharmacological targets. Pranlukast has shown positive effects on myelination in cell cultures and after LPC-induced demyelination in mice, but it is not yet part of the therapeutic arsenal for this disease. This study investigates pranlukast's effect on demyelination protection in an MS animal model, compared to fingolimod. For this purpose, young adult Swiss mice were treated for five weeks with a 0.2 % cuprizone diet and received daily intraperitoneal injections of pranlukast (0.1 mg/kg), fingolimod (1 mg/kg), or vehicle. Pranlukast treatment, like fingolimod, partially preserved sensory function in the tactile sensitivity test. Both treatments partially preserved myelin basic protein (MBP) levels, but only fingolimod preserved lipids and myelinated fibers in the corpus callosum (CC) at all g-ratio ranges. Cuprizone and Pranlukast groups presented more microglia/macrophages in the CC, but fewer presenting reactive microglia/macrophages and less NOS2 staining in pranlukast-treated when compared to the cuprizone group, while fingolimod treatment prevented the increase in Iba1 in the CC. In summary, this study demonstrated that pranlukast is a good candidate as a novel drug for use in conditions of inflammatory demyelination, such as MS, by restoring function through modulation of the inflammatory environment.
Collapse
Affiliation(s)
- Greice Nascimento Pires
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Renata Pereira Laurindo
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Luiza Dos Santos Heringer
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Stefanny Calixto da Silva
- Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Débora Magalhães Portela
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil
| | - Ricardo Cardoso
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Souza Marques School of Medicine, Avenue Ernani Cardoso, 335 - Campinho, Rio de Janeiro, RJ 21310-310, Brazil
| | - Ana Carolina de Pádua
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ana Beatriz Miranda De Sá
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Saulo Augusto Alves Da Cruz
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Sheila Espírito Santo Araújo
- Tissue Biology Lab, Biosciences and Biotechnology Center, Postgraduate Program in Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Avenue Alberto Lamego, 2000 - Parque California, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Ana Maria Blanco Martinez
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil
| | - Milena Batista Carneiro
- Physiopathology Lab LAFISP - IMCT. Federal University of Rio de Janeiro, Street Alcides da Conceição, 159 - Granja dos Cavaleiros, Macaé, RJ 27930-480, Brazil
| | - Henrique Rocha Mendonça
- Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Street Prof. Rodolpho Paulo Rocco 255 - Universitary City of the Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617, Brazil; Integrated Lab of Morphology, Institute of Biodiversity and Sustainability NUPEM, Multicentric Postgraduate Program in Physiological Sciences - SBFis, Federal University of Rio de Janeiro, Avenue Amaro Reinaldo dos Santos Silva, 764 - São José do Barreto, Macaé, RJ 27965-045, Brazil.
| |
Collapse
|
2
|
Poon MM, Lorrain KI, Stebbins KJ, Edu GC, Broadhead AR, Lorenzana AO, Paulson BE, Baccei CS, Roppe JR, Schrader TO, Valdez LJ, Xiong Y, Chen AC, Lorrain DS. Discovery of a brain penetrant small molecule antagonist targeting LPA1 receptors to reduce neuroinflammation and promote remyelination in multiple sclerosis. Sci Rep 2024; 14:10573. [PMID: 38719983 PMCID: PMC11079064 DOI: 10.1038/s41598-024-61369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF). LPA activates the LPA1 receptor, resulting in elevated CNS cytokine and chemokine levels, infiltration of immune cells, and microglial/astrocyte activation. This results in a neuroinflammatory response leading to demyelination and suppressed remyelination. A medicinal chemistry effort identified PIPE-791, an oral, brain-penetrant, LPA1 antagonist. PIPE-791 was characterized in vitro and in vivo and was found to be a potent, selective LPA1 antagonist with slow receptor off-rate kinetics. In vitro, PIPE-791 induced OPC differentiation and promoted remyelination following a demyelinating insult. PIPE-791 further mitigated the macrophage-mediated inhibition of OPC differentiation and inhibited microglial and fibroblast activation. In vivo, the compound readily crossed the blood-brain barrier and blocked LPA1 in the CNS after oral dosing. Direct dosing of PIPE-791 in vivo increased oligodendrocyte number, and in the mouse experimental autoimmune encephalomyelitis (EAE) model of MS, we observed that PIPE-791 promoted myelination, reduced neuroinflammation, and restored visual evoked potential latencies (VEP). These findings support targeting LPA1 for remyelination and encourage development of PIPE-791 for treating MS patients with advantages not seen with current immunosuppressive disease modifying therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yifeng Xiong
- Contineum Therapeutics, San Diego, CA, 92121, USA
| | | | | |
Collapse
|
3
|
Peris M, Benseny-Cases N, Manich G, Zerpa O, Almolda B, Perálvarez-Marín À, González B, Castellano B. Roadmap for Postnatal Brain Maturation: Changes in Gray and White Matter Composition during Development Measured by Fourier Transformed Infrared Microspectroscopy. ACS Chem Neurosci 2023; 14:3088-3102. [PMID: 37540627 PMCID: PMC10485886 DOI: 10.1021/acschemneuro.3c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Key events in postnatal brain development, such as neuronal migration, synaptogenesis, and myelination, shape the adult brain. These events are reflected in changes in gray and white matter (GM and WM) occurring during this period. Therefore, precise knowledge of GM and WM composition in perinatal brain development is crucial to characterizing brain formation as well as the neurodevelopmental disruption observed in diseases such as autism and schizophrenia. In this study, we combined histochemical and immunohistochemical staining with biochemical and biophysical analyses using Fourier transform infrared (IR) microspectroscopy (μFTIR) to better understand the chemical changes during postnatal developmental myelination. For this purpose, we analyzed the GM and WM in the mouse brain and cerebellum (strain C57BL/6) from postnatal day 0 (P0) to day P28 and established presumed correlations between staining and IR data. IR spectra allowed the (i) quantification of lipid and protein content through the CH2/amide I ratio, (ii) determination of chemical characteristics of lipids, such as the presence of unsaturated bonds in the carbonate chain or carbonyls from ester groups in the polar head, and (iii) determination of the protein secondary structure (α-helix and intramolecular β-sheets). The results indicate that the increase in the CH2/amide I ratio calculated from the μFTIR data correlates well with lipid histochemical staining. IR data indicated a change in the lipid composition in WM since carbonyl and unsaturated olefinic groups do not increase when lipids accumulate during myelination. Our correlation analysis between IR data and immunohistochemical staining of myelin-associated proteins revealed that myelin oligodendrocyte protein correlated well with lipid accumulation, while myelin basic protein appeared before lipid modifications, which indicated that myelin-associated proteins and lipid deposition were not synchronic. These events were related to a decrease in the intramolecular β/α protein ratio. Our results indicate that lipids and proteins in WM substantially change their composition due to primary myelination, and according to results obtained from staining, these modifications are better described by lipid histochemical staining than by immunohistochemistry against myelin-related proteins. In conclusion, μFTIR can be a useful technique to study WM during perinatal development and provide detailed information about alterations in the chemical composition related to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Marta Peris
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Núria Benseny-Cases
- Biophysics
Unit. Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Gemma Manich
- Department
of Morphological Sciences, Universitat Autònoma
de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Oriana Zerpa
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Àlex Perálvarez-Marín
- Biophysics
Unit. Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Berta González
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Department
of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Awogbindin IO, Ikeji CN, Adedara IA, Farombi EO. Neurotoxicity of furan in juvenile Wistar rats involves behavioral defects, microgliosis, astrogliosis and oxidative stress. Food Chem Toxicol 2023:113934. [PMID: 37423315 DOI: 10.1016/j.fct.2023.113934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Evidence suggests that furan, a widespread environmental and food contaminant, causes liver toxicity and cancer, but its implications in the brain are not well defined. We measured behavioral, glial, and biochemical responses in male juvenile rats exposed orally to 2.5, 5 and 10 mg/kg furan and vitamin E after 28 days. Furan-mediated hyperactivity peaked at 5 mg/kg and did not exacerbate at 10 mg/kg. Enhanced motor defect was also observed at 10 mg/kg. Furan-treated rats elicited inquisitive exploration but showed impaired working memory. Without compromising the blood-brain barrier, furan induced glial reactivity with enhanced phagocytic activity, characterized by parenchyma-wide microglial aggregation and proliferation, which switched from hyper-ramified to rod-like morphology with increasing doses. Furan altered the glutathione-S-transferase-driven enzymatic and non-enzymatic antioxidant defence systems differentially and dose-dependently across brain regions. Redox homeostasis was most perturbed in the striatum and least disrupted in hippocampus/cerebellum. Vitamin E supplementation attenuated exploratory hyperactivity and glial reactivity but did not affect impaired working memory and oxidative imbalance. Overall, sub-chronic exposure of juvenile rats to furan triggered glial reactivity and behavioral defects suggesting the brain's vulnerability during juvenile development to furan toxicity. It remains to be determined whether environmentally relevant furan concentrations interfere with critical brain developmental milestones.
Collapse
Affiliation(s)
- Ifeoluwa O Awogbindin
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Cynthia N Ikeji
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria; Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Molecular Drug Metabolism and Toxicology Research Laboratories, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
5
|
A Redundant Cortical Code for Speech Envelope. J Neurosci 2023; 43:93-112. [PMID: 36379706 PMCID: PMC9838705 DOI: 10.1523/jneurosci.1616-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/19/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Animal communication sounds exhibit complex temporal structure because of the amplitude fluctuations that comprise the sound envelope. In human speech, envelope modulations drive synchronized activity in auditory cortex (AC), which correlates strongly with comprehension (Giraud and Poeppel, 2012; Peelle and Davis, 2012; Haegens and Zion Golumbic, 2018). Studies of envelope coding in single neurons, performed in nonhuman animals, have focused on periodic amplitude modulation (AM) stimuli and use response metrics that are not easy to juxtapose with data from humans. In this study, we sought to bridge these fields. Specifically, we looked directly at the temporal relationship between stimulus envelope and spiking, and we assessed whether the apparent diversity across neurons' AM responses contributes to the population representation of speech-like sound envelopes. We gathered responses from single neurons to vocoded speech stimuli and compared them to sinusoidal AM responses in auditory cortex (AC) of alert, freely moving Mongolian gerbils of both sexes. While AC neurons displayed heterogeneous tuning to AM rate, their temporal dynamics were stereotyped. Preferred response phases accumulated near the onsets of sinusoidal AM periods for slower rates (<8 Hz), and an over-representation of amplitude edges was apparent in population responses to both sinusoidal AM and vocoded speech envelopes. Crucially, this encoding bias imparted a decoding benefit: a classifier could discriminate vocoded speech stimuli using summed population activity, while higher frequency modulations required a more sophisticated decoder that tracked spiking responses from individual cells. Together, our results imply that the envelope structure relevant to parsing an acoustic stream could be read-out from a distributed, redundant population code.SIGNIFICANCE STATEMENT Animal communication sounds have rich temporal structure and are often produced in extended sequences, including the syllabic structure of human speech. Although the auditory cortex (AC) is known to play a crucial role in representing speech syllables, the contribution of individual neurons remains uncertain. Here, we characterized the representations of both simple, amplitude-modulated sounds and complex, speech-like stimuli within a broad population of cortical neurons, and we found an overrepresentation of amplitude edges. Thus, a phasic, redundant code in auditory cortex can provide a mechanistic explanation for segmenting acoustic streams like human speech.
Collapse
|
6
|
Preclinical model of multiple sclerosis: Focal, chemical or viral demyelination. Methods Cell Biol 2022; 168:87-102. [DOI: 10.1016/bs.mcb.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Uccelli NA, Codagnone MG, Traetta ME, Levanovich N, Rosato Siri MV, Urrutia L, Falasco G, Vázquez S, Pasquini JM, Reinés AG. Neurobiological substrates underlying corpus callosum hypoconnectivity and brain metabolic patterns in the valproic acid rat model of autism spectrum disorder. J Neurochem 2021; 159:128-144. [PMID: 34081798 DOI: 10.1111/jnc.15444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Atypical connectivity between brain regions and altered structure of the corpus callosum (CC) in imaging studies supports the long-distance hypoconnectivity hypothesis proposed for autism spectrum disorder (ASD). The aim of this study was to unveil the CC ultrastructural and cellular changes employing the valproic acid (VPA) rat model of ASD. Male Wistar rats were exposed to VPA (450 mg/kg i.p.) or saline (control) during gestation (embryonic day 10.5), and maturation, exploration, and social behavior were subsequently tested. Myelin content, ultrastructure, and oligodendroglial lineage were studied in the CC at post-natal days 15 (infant) and 36 (juvenile). As a functional outcome, brain metabolic activity was determined by positron emission tomography. Concomitantly with behavioral deficits in juvenile VPA rats, the CC showed reduced myelin basic protein, conserved total number of axons, reduced percentage of myelinated axons, and aberrant and less compact arrangements of myelin sheath ultrastructure. Mature oligodendrocytes decreased and oligodendrocyte precursors increased in the absence of astrogliosis or microgliosis. In medial prefrontal and somatosensory cortices of juvenile VPA rats, myelin ultrastructure and oligodendroglial lineage were preserved. VPA animals exhibited global brain hypometabolism and local hypermetabolism in brain regions relevant for ASD. In turn, the CC of infant VPA rats showed reduced myelin content but preserved oligodendroglial lineage. Our findings indicate that CC hypomyelination is established during infancy and prior to oligodendroglial pattern alterations, which suggests that axon-oligodendroglia communication could be compromised in VPA animals. Thus, CC hypomyelination may underlie white matter alterations and contribute to atypical patterns of connectivity and metabolism found in ASD.
Collapse
Affiliation(s)
- Nonthué Alejandra Uccelli
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Gabriel Codagnone
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Evelyn Traetta
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nadia Levanovich
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - María Victoria Rosato Siri
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB) Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Urrutia
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - Germán Falasco
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - Silvia Vázquez
- Fundación para la lucha contra las enfermedades neurológicas de la infancia (FLENI), Centro de Imágenes Moleculares (CIM), Escobar, Argentina
| | - Juana María Pasquini
- CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB) Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Gabriela Reinés
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN) Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Morgan ML, Brideau C, Teo W, Caprariello AV, Stys PK. Label-free assessment of myelin status using birefringence microscopy. J Neurosci Methods 2021; 360:109226. [PMID: 34052286 DOI: 10.1016/j.jneumeth.2021.109226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Label-free methods for quantifying myelination can reduce expense, time, and variability in results when examining tissue white matter pathology. NEW METHOD We sought to determine whether the optical birefringent properties of myelin could be exploited to determine myelination status of white matter in tissue sections. Sections of forebrains of mice (normal, and treated with cuprizone to cause demyelination) were examined by birefringence using a birefringence imaging system (Thorlabs LCC7201), and results compared with sections stained using Luxol Fast Blue. RESULTS Quantitative birefringence analysis of myelin was not only reliable in detecting demyelination, but also showed abnormalities that preceded myelin loss in cuprizone-treated mice. COMPARISON WITH EXISTING METHODS Subtle myelin pathology visible with electron microscopy but not with conventional histopathological staining was readily detected with birefringence microscopy. CONCLUSIONS Birefringence imaging provides a rapid, label-free method of analyzing the myelin content and nanostructural status in longitudinal white matter structures, being sensitive to subtle myelin changes that precede overt pathological damage.
Collapse
Affiliation(s)
- Megan Lynn Morgan
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Craig Brideau
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Wulin Teo
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Andrew Vincent Caprariello
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Peter K Stys
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
9
|
Bathini P, Mottas A, Jaquet M, Brai E, Alberi L. Progressive signaling changes in the olfactory nerve of patients with Alzheimer's disease. Neurobiol Aging 2019; 76:80-95. [DOI: 10.1016/j.neurobiolaging.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/08/2023]
|
10
|
Remyelination promoting therapies in multiple sclerosis animal models: a systematic review and meta-analysis. Sci Rep 2019; 9:822. [PMID: 30696832 PMCID: PMC6351564 DOI: 10.1038/s41598-018-35734-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
An unmet but urgent medical need is the development of myelin repair promoting therapies for Multiple Sclerosis (MS). Many such therapies have been pre-clinically tested using different models of toxic demyelination such as cuprizone, ethidium bromide, or lysolecithin and some of the therapies already entered clinical trials. However, keeping track on all these possible new therapies and their efficacy has become difficult with the increasing number of studies. In this study, we aimed at summarizing the current evidence on such therapies through a systematic review and at providing an estimate of the effects of tested interventions by a meta-analysis. We show that 88 different therapies have been pre-clinically tested for remyelination. 25 of them (28%) entered clinical trials. Our meta-analysis also identifies 16 promising therapies which did not enter a clinical trial for MS so far, among them Pigment epithelium-derived factor, Plateled derived growth factor, and Tocopherol derivate TFA-12.We also show that failure in bench to bedside translation from certain therapies may in part be attributable to poor study quality. By addressing these problems, clinical translation might be smoother and possibly animal numbers could be reduced.
Collapse
|
11
|
Leicaj ML, Pasquini LA, Lima A, Gonzalez Deniselle MC, Pasquini JM, De Nicola AF, Garay LI. Changes in neurosteroidogenesis during demyelination and remyelination in cuprizone-treated mice. J Neuroendocrinol 2018; 30:e12649. [PMID: 30303567 DOI: 10.1111/jne.12649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/28/2022]
Abstract
Changes of neurosteroids may be involved in the pathophysiology of multiple sclerosis (MS). The present study investigated whether changes of neurosteroidogenesis also occurred in the grey and white matter regions of the brain in mice subjected to cuprizone-induced demyelination. Accordingly, we compared the expression of neurosteroidogenic proteins, including steroidogenic acute regulatory protein (StAR), voltage-dependent anion channel (VDAC) and 18 kDa translocator protein (TSPO), as well as neurosteroidogenic enzymes, including the side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase/isomerase and 5α-reductase (5α-R), during the demyelination and remyelination periods. Using immunohistochemistry and a quantitative polymerase chain reaction, we demonstrated a decreased expression of StAR, P450scc and 5α-R with respect to an increase astrocytic and microglial reaction and elevated levels of tumor necrosis factor (TNF)α during the cuprizone demyelination period in the hippocampus, cortex and corpus callosum. These parameters, as well as the glial reaction, were normalised after 2 weeks of spontaneous remyelination in regions containing grey matter. Conversely, persistent elevated levels of TNFα and low levels of StAR and P450scc were observed during remyelination in corpus callosum white matter. We conclude that neurosteroidogenesis/myelination status and glial reactivity are inversely related in the hippocampus and neocortex. Establishing a cause and effect relationship for the measured variables remains a future challenge for understanding the pathophysiology of MS.
Collapse
Affiliation(s)
- María L Leicaj
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura A Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
| | - Maria C Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Physiological Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Juana M Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental and National Research Council (CONICET), Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Ineichen BV, Kapitza S, Bleul C, Good N, Plattner PS, Seyedsadr MS, Kaiser J, Schneider MP, Zörner B, Martin R, Linnebank M, Schwab ME. Nogo-A antibodies enhance axonal repair and remyelination in neuro-inflammatory and demyelinating pathology. Acta Neuropathol 2017. [PMID: 28646336 DOI: 10.1007/s00401-017-1745-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Two hallmarks of chronic multiple sclerosis lesions are the absence of significant spontaneous remyelination and primary as well as secondary neurodegeneration. Both characteristics may be influenced by the presence of inhibitory factors preventing myelin and neuronal repair. We investigated the potential of antibodies against Nogo-A, a well-known inhibitory protein for neuronal growth and plasticity, to enhance neuronal regeneration and remyelination in two animal models of multiple sclerosis. We induced a targeted experimental autoimmune encephalomyelitis (EAE) lesion in the dorsal funiculus of the cervical spinal cord of adult rats resulting in a large drop of skilled forelimb motor functions. We subsequently observed improved recovery of forelimb function after anti-Nogo-A treatment. Anterograde tracing of the corticospinal tract revealed enhanced axonal sprouting and arborisation within the spinal cord gray matter preferentially targeting pre-motor and motor spinal cord laminae on lesion level and above in the anti-Nogo-A-treated animals. An important additional effect of Nogo-A-neutralization was enhanced remyelination observed after lysolecithin-induced demyelination of spinal tracts. Whereas remyelinated fiber numbers in the lesion site were increased several fold, no effect of Nogo-A-inhibition was observed on oligodendrocyte precursor proliferation, migration, or differentiation. Enhancing remyelination and promoting axonal regeneration and plasticity represent important unmet medical needs in multiple sclerosis. Anti-Nogo-A antibodies hold promise as a potential new therapy for multiple sclerosis, in particular during the chronic phase of the disease when neurodegeneration and remyelination failure determine disability evolution.
Collapse
Affiliation(s)
- Benjamin V Ineichen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland.
| | - Sandra Kapitza
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Christiane Bleul
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicolas Good
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Patricia S Plattner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Maryam S Seyedsadr
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Marc P Schneider
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Björn Zörner
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Roland Martin
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Department of Neurorehabilitation, School of Medicine, HELIOS Klinik Hagen-Ambrock, Witten/Herdecke University Faculty of Health, Ambrocker Weg 60, 58091, Hagen, Germany
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
13
|
Nyamoya S, Schweiger F, Kipp M, Hochstrasser T. Cuprizone as a model of myelin and axonal damage. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.ddmod.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|