1
|
Jiang H, Wang X, Chen X, Zhang S, Ren Q, Li M, Li M, Ren X, Lin S, Cui Y. Unraveling the heterogeneity of WHO grade 4 gliomas: insights from clinical, imaging, and molecular characterization. Discov Oncol 2025; 16:111. [PMID: 39899184 PMCID: PMC11790548 DOI: 10.1007/s12672-025-01811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
PURPOSE The 2021 WHO classification of central nervous system tumors introduced molecular criteria to stratify Grade 4 gliomas, which remain heterogeneous. This study aims to elucidate the clinical, radiological, and molecular characteristics of WHO Grade 4 gliomas, focusing on their prognostic implications and the development of a predictive model for astrocytoma IDH-mutant WHO Grade 4 (A4). METHODS A retrospective cohort of 223 patients from Beijing Tiantan Hospital was analyzed. Clinical, radiological, and histopathological data were combined with molecular profiling, focusing on IDH mutations, TERT promoter mutations, and MGMT methylation. A predictive model was developed using LASSO regression to distinguish A4 from glioblastomas and validated with an external dataset from UCSF. RESULTS The cohort included 201 glioblastomas (90.1%) and 22 A4 cases (9.9%). A4 tumors were associated with younger age, higher MGMT promoter methylation, lower rates of TERT mutations, and distinct radiological features, such as cortical non-enhancing tumor infiltration (CnCE). Patients with A4 demonstrated significantly better survival outcomes compared to glioblastoma patients (p < 0.001). The predictive model for A4, incorporating age, tumor margin, and CnCE, achieved an AUC of 0.890 in the training set and 0.951 in the validation set. CONCLUSION Integrating molecular and clinical criteria improves prognostication in Grade 4 gliomas. The predictive model developed in this study effectively identifies A4 tumors, facilitating more personalized therapeutic strategies.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Chen
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Qingsen Ren
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China.
| |
Collapse
|
2
|
Bauchet L, Rigau V, Mathon B, Darlix A. Epidemiological analysis of adult-type diffuse lower-grade gliomas and incidence and prevalence estimates of diffuse IDH-mutant gliomas in France. Neurochirurgie 2024; 71:101627. [PMID: 39710298 DOI: 10.1016/j.neuchi.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND The recent advent of anti-IDH therapies and changes in the WHO classification of gliomas implies estimating the number of patients who could benefit (or not) from anti-IDH treatment. As published data on the current incidence of different subtypes of IDH-mutant gliomas (based on the latest histomolecular WHO classification) are lacking in many countries. The present analysis aims to review the main factors impacting the incidence of gliomas and lower-grade gliomas and to estimate the incidence and prevalence of IDH-mutant gliomas in France. METHODS Our analysis was based on data from the French Brain Tumor DataBase and literature. RESULTS Case definition, recording methods, histological classifications, age, sex, ethnicity, ancestry, environment, genetics, etc., impact the incidence of gliomas overall and lower-grade gliomas. In France, for the year 2024, the incidence estimates of all gliomas and all adult-type diffuse IDH-mutant gliomas are 6.6/100,000 and 1/100,000 person-years, respectively. The incidence estimates of grades 2, 3, and 4 diffuse IDH-mutant gliomas are 0.5, 0.3, 0.2 per 100,000 person-years, respectively. Of note, the incidence estimate of grade 3 diffuse IDH-mutant glioma versus grade 2 or 4 is slightly more difficult to assess due to the possible variability in histological criteria to define tumor grade. The prevalence of diffuse IDH-mutant grade 2 glioma would be more than 6.57/100,000 persons. DISCUSSION/CONCLUSION Our epidemiological analysis provides estimates of potential number of patients, but large prospective real-world studies are required to determine the positioning of anti-IDH treatments among all therapeutic strategies [surgery(ies), chemotherapy(ies), radiotherapy(ies), clinical/radiological follow-up, etc.].
Collapse
Affiliation(s)
- Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital-CHU Montpellier, Montpellier University Medical Center, Montpellier, France; Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France; French Brain Tumor DataBase (Recensement national histologique des Tumeurs Primitives du SNC), CHU/ICM Montpellier, Montpellier, France.
| | - Valérie Rigau
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France; French Brain Tumor DataBase (Recensement national histologique des Tumeurs Primitives du SNC), CHU/ICM Montpellier, Montpellier, France; Department of Neuropathology, Gui de Chauliac Hospital-CHU Montpellier, Montpellier University Medical Center, Montpellier, France
| | - Bertrand Mathon
- Department of Neurosurgery, AP-HP, La Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France; Paris Brain Institute, ICM, INSERM U 1127, CNRS, UMR 7225, UMRS 1127, Sorbonne Université, Paris, France
| | - Amélie Darlix
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France; French Brain Tumor DataBase (Recensement national histologique des Tumeurs Primitives du SNC), CHU/ICM Montpellier, Montpellier, France; Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), University of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Noack D, Wach J, Barrantes-Freer A, Nicolay NH, Güresir E, Seidel C. Homozygous CDKN2A/B deletions in low- and high-grade glioma: a meta-analysis of individual patient data and predictive values of p16 immunohistochemistry testing. Acta Neuropathol Commun 2024; 12:180. [PMID: 39593128 PMCID: PMC11590270 DOI: 10.1186/s40478-024-01889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
CDKN2A/B deletions are prognostically relevant in low- and high-grade gliomas. Data on this is derived from heterogeneous series, an accurate estimation of survival risk from homozygous CDKN2A/B deletion is missing. Besides genetic testing, p16-immunohistochemistry (IHC) as a less cost intensive means for indirect detection of CDKN2A/B alterations is possible but not validated in larger datasets. The present meta-analysis aimed to (1) reconstruct individual patient data (IPD) and estimate overall survival (OS) stratified by CDKN2A/B status from all literature and to (2) determine accuracy of p16 testing for CDKNA2/B detection from published studies. For survival analysis according to CDKN2A/B status 460 records were screened, four articles with 714 participants were included. In IDH-wildtype (IDH-wt) gliomas, 57.07% harbored the deletion compared to 9.76% in IDH-mutant (IDH-mut) gliomas. Median OS of patients with IDH-wt gliomas and homozygous CDKN2A/B deletion was 13.0 months compared to 18.0 months with non-deleted CDKN2A/B (p = 0.014, Log-Rank). With homozygous deletion of CDKN2A/B the risk of death was increased by 1.5 (95%-CI 1.1-2.1). Median OS in patients with IDH-mut gliomas without CDKN2A/B deletion was 92.0 months compared to 40.0 months with CDKN2A/B deletion (p < 0.001, Log-Rank). CDKN2A/B deletions were associated with a significantly shorter OS (HR = 3.2; 95%-CI 2.2-5.5). For p16 IHC analysis, 10 eligible studies with 1087 examined samples were included. The cut-off for retention differed between the studies. In 588/662 p16 retained cases CDKN2A/B deletions was not detected, implying a negative predictive value (NPV) of p16 staining of 88.8%. Conversely, 279/425 p16 absent cases showed a CDKN2A/B deletion resulting in a positive predictive value (PPV) of 65.6%. Sensitivity of p16 staining for CDKN2A/B detection was 79.0%, specificity 80.1%. Highest diagnostic accuracy of p16 IHC was reached with a cut-off of > 5% and within IDH-mut glioma.
Collapse
Affiliation(s)
- Darius Noack
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Johannes Wach
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Alonso Barrantes-Freer
- Paul-Flechsig Institute of Neuropathology, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University Leipzig Medical Center, 04103, Leipzig, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Leipzig Medical Center, Stephanstraße 9a, 04103, Leipzig, Germany.
- Comprehensive Cancer Center Central Germany (CCCG), 04103, Leipzig, Germany.
| |
Collapse
|
4
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Dipasquale A, Franceschi E, Giordano L, Maccari M, Barigazzi C, Di Nunno V, Losurdo A, Persico P, Di Muzio A, Navarria P, Pessina F, Padovan M, Santoro A, Lombardi G, Simonelli M. Dissecting the prognostic signature of patients with astrocytoma isocitrate dehydrogenase-mutant grade 4: a large multicenter, retrospective study. ESMO Open 2024; 9:103485. [PMID: 38833969 PMCID: PMC11179079 DOI: 10.1016/j.esmoop.2024.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The World Health Organization (WHO) 2021 classification of central nervous system (CNS) tumors classified astrocytoma isocitrate dehydrogenase-mutant (A IDHm) with either microvascular proliferation and/or necrosis or homozygous deletion of CDKN2A/B as CNS grade 4 (CNS WHO G4), introducing a distinct entity and posing new challenges to physicians for appropriate management and prognostication. PATIENTS AND METHODS We retrospectively collected information about patients diagnosed with A IDHm CNS WHO G4 at three reference neuro-oncological Italian centers and correlated them with survival. RESULTS A total of 133 patients were included. Patients were young (median age 41 years) and most received post-operative treatment including chemo-radiation (n = 101) and/or temozolomide maintenance (n = 112). With a median follow-up of 51 months, the median overall survival (mOS) was 31.2 months, with a 5-year survival probability of 26%. In the univariate analysis, complete resection (mOS: 40.2 versus 26.3 months, P = 0.03), methyl-guaninemethyltransferase (MGMT) promoter methylation (mOS: 40.7 versus 18 months, P = 0.0136), and absence of telomerase reverse transcriptase (TERT) promoter mutation (mOS: 40.7 versus 18 months, P = 0.0003) correlated with better prognosis. In the multivariate models, lack of TERT promoter mutation [hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.07-0.82, P = 0.024] and MGMT methylation (HR 0.40, 95% CI 0.20-0.81, P = 0.01) remained associated with improved survival. CONCLUSIONS This is the largest experience in Western countries exploring the prognostic signature of patients with A IDHm CNS G4. Our results show that MGMT promoter methylation and TERT promoter mutation may impact clinical outcomes. This may support physicians in prognostication, clinical management, and design of future studies of this distinct diagnostic entity.
Collapse
Affiliation(s)
- A Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan. https://twitter.com/AngeloDipa_
| | - E Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
| | - L Giordano
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - M Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua
| | - C Barigazzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - V Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
| | - A Losurdo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - P Persico
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - A Di Muzio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - P Navarria
- Department of Radiotherapy and Radiosurgery
| | - F Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua
| | - A Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - G Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua. https://twitter.com/DrLombardiGiu
| | - M Simonelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan.
| |
Collapse
|
6
|
Ho WM, Chen CY, Chiang TW, Chuang TJ. A longer time to relapse is associated with a larger increase in differences between paired primary and recurrent IDH wild-type glioblastomas at both the transcriptomic and genomic levels. Acta Neuropathol Commun 2024; 12:77. [PMID: 38762464 PMCID: PMC11102269 DOI: 10.1186/s40478-024-01790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, which remains incurable and often recurs rapidly after initial therapy. While large efforts have been dedicated to uncover genomic/transcriptomic alternations associated with the recurrence of GBMs, the evolutionary trajectories of matched pairs of primary and recurrent (P-R) GBMs remain largely elusive. It remains challenging to identify genes associated with time to relapse (TTR) and construct a stable and effective prognostic model for predicting TTR of primary GBM patients. By integrating RNA-sequencing and genomic data from multiple datasets of patient-matched longitudinal GBMs of isocitrate dehydrogenase wild-type (IDH-wt), here we examined the associations of TTR with heterogeneities between paired P-R GBMs in gene expression profiles, tumor mutation burden (TMB), and microenvironment. Our results revealed a positive correlation between TTR and transcriptomic/genomic differences between paired P-R GBMs, higher percentages of non-mesenchymal-to-mesenchymal transition and mesenchymal subtype for patients with a short TTR than for those with a long TTR, a high correlation between paired P-R GBMs in gene expression profiles and TMB, and a negative correlation between the fitting level of such a paired P-R GBM correlation and TTR. According to these observations, we identified 55 TTR-associated genes and thereby constructed a seven-gene (ZSCAN10, SIGLEC14, GHRHR, TBX15, TAS2R1, CDKL1, and CD101) prognostic model for predicting TTR of primary IDH-wt GBM patients using univariate/multivariate Cox regression analyses. The risk scores estimated by the model were significantly negatively correlated with TTR in the training set and two independent testing sets. The model also segregated IDH-wt GBM patients into two groups with significantly divergent progression-free survival outcomes and showed promising performance for predicting 1-, 2-, and 3-year progression-free survival rates in all training and testing sets. Our findings provide new insights into the molecular understanding of GBM progression at recurrence and potential targets for therapeutic treatments.
Collapse
Affiliation(s)
- Wei-Min Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Trees-Juen Chuang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Ph.D. Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Pons-Escoda A, Majos C, Smits M, Oleaga L. Presurgical diagnosis of diffuse gliomas in adults: Post-WHO 2021 practical perspectives from radiologists in neuro-oncology units. RADIOLOGIA 2024; 66:260-277. [PMID: 38908887 DOI: 10.1016/j.rxeng.2024.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/31/2023] [Indexed: 06/24/2024]
Abstract
The 2021 World Health Organization classification of CNS tumours was greeted with enthusiasm as well as an initial potential overwhelm. However, with time and experience, our understanding of its key aspects has notably improved. Using our collective expertise gained in neuro-oncology units in hospitals in different countries, we have compiled a practical guide for radiologists that clarifies the classification criteria for diffuse gliomas in adults. Its format is clear and concise to facilitate its incorporation into everyday clinical practice. The document includes a historical overview of the classifications and highlights the most important recent additions. It describes the main types in detail with an emphasis on their appearance on imaging. The authors also address the most debated issues in recent years. It will better prepare radiologists to conduct accurate presurgical diagnoses and collaborate effectively in clinical decision making, thus impacting decisions on treatment, prognosis, and overall patient care.
Collapse
Affiliation(s)
- A Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Facultat de Medicina i Ciencies de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - C Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain; Neuro-Oncology Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, Barcelona, Spain
| | - M Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - L Oleaga
- Radiology Department, Hospital Clínic Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Satgunaseelan L, Sy J, Shivalingam B, Sim HW, Alexander KL, Buckland ME. Prognostic and predictive biomarkers in central nervous system tumours: the molecular state of play. Pathology 2024; 56:158-169. [PMID: 38233331 DOI: 10.1016/j.pathol.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 01/19/2024]
Abstract
Central nervous system (CNS) tumours were one of the first cancer types to adopt and integrate molecular profiling into routine clinical diagnosis in 2016. The vast majority of these biomarkers, used to discriminate between tumour types, also offered prognostic information. With the advent of The Cancer Genome Atlas (TCGA) and other large genomic datasets, further prognostic sub-stratification was possible within tumour types, leading to increased precision in CNS tumour grading. This review outlines the evolution of the molecular landscape of adult CNS tumours, through the prism of World Health Organization (WHO) Classifications. We begin our journey in the pre-molecular era, where high-grade gliomas were divided into 'primary' and 'secondary' glioblastomas. Molecular alterations explaining these clinicopathological observations were the first branching points of glioma diagnostics, with the discovery of IDH1/2 mutations and 1p/19q codeletion. Subsequently, the rigorous characterisation of paediatric gliomas led to the unearthing of histone H3 alterations as a key event in gliomagenesis, which also had implications for young adult patients. Simultaneously, studies investigating prognostic biomarkers within tumour types were undertaken. Certain genomic phenotypes were found to portend unfavourable outcomes, for example, MYCN amplification in spinal ependymoma. The arrival of methylation profiling, having revolutionised the diagnosis of CNS tumours, now promises to bring increased prognostic accuracy, as has been shown in meningiomas. While MGMT promoter hypermethylation has remained a reliable biomarker of response to cytotoxic chemotherapy, targeted therapy in CNS tumours has unfortunately not had the success of other cancers. Therefore, predictive biomarkers have lagged behind the identification of prognostic biomarkers in CNS tumours. Emerging research from new clinical trials is cause for guarded optimism and may shift our conceptualisation of predictive biomarker testing in CNS tumours.
Collapse
Affiliation(s)
- Laveniya Satgunaseelan
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Joanne Sy
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Brindha Shivalingam
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Hao-Wen Sim
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Kimberley L Alexander
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Department of Neurosurgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Broggi G, Angelico G, Farina J, Tinnirello G, Barresi V, Zanelli M, Palicelli A, Certo F, Barbagallo G, Magro G, Caltabiano R. Tumor-associated microenvironment, PD-L1 expression and their relationship with immunotherapy in glioblastoma, IDH-wild type: A comprehensive review with emphasis on the implications for neuropathologists. Pathol Res Pract 2024; 254:155144. [PMID: 38277747 DOI: 10.1016/j.prp.2024.155144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Although novel knowledge has been acquired on the molecular landscape of glioblastoma (GBM), a relatively few steps forward have been made regarding its therapy. With the increasing use of novel immunotherapeutic drugs capable of stimulating the antitumor inflammatory response, in the last decades numerous studies aimed to characterize the tumor-associated microenvironment (TME) and its relationship with the immunogenicity of GBM. In this regard, although the tumor-associated microglia and macrophages (TAMs) and PD-L1/PD-1 axis have been emerged as one of the most relevant components of the GBM TME and one of the potential molecular pathways targetable with immunotherapy, respectively. It has been supposed that TAMs may acquire different phenotypes, switching from M1 to M2 phenotypes, with tumor-suppressive and tumor-stimulating role depending on the different surrounding conditions. PD-L1 is a type 1 transmembrane protein ligand expressed by T-cells, B-cells and antigen-presenting cells, with a main inhibitory checkpoint role on tumor immune regulation. While PD-L1 immunohistochemical expression has been extensively investigated in many cancers, its usefulness in the evaluation of GBM response rates to immunotherapy and its standardized evaluation by immunohistochemistry are still debated. The present review paper focuses on the current "state of the art" about the relationship between TME, PD-L1/PD-1 pathway and immunotherapy in GBM, also providing neuropathologists with an updated guide about the clinical trials conducted with PD-L1 and PD-1 inhibitors.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy.
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Anatomic Pathology, University of Verona, Verona 37134, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42123, Italy
| | - Francesco Certo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Giuseppe Barbagallo
- Department of Neurological Surgery, Policlinico "G. Rodolico-S. Marco" University Hospital, Catania 95121, Italy; Interdisciplinary Research Center on Brain Tumors Diagnosis and Treatment, University of Catania, Catania 95123, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania 95123, Italy
| |
Collapse
|
10
|
Satomi K, Ichimura K, Shibahara J. Decoding the DNA methylome of central nervous system tumors: An emerging modality for integrated diagnosis. Pathol Int 2024; 74:51-67. [PMID: 38224248 DOI: 10.1111/pin.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
The definitive diagnosis and classification of individual cancers are crucial for patient care and cancer research. To achieve a robust diagnosis of central nervous system (CNS) tumors, a genotype-phenotype integrated diagnostic approach was introduced in recent versions of the World Health Organization classification, followed by the incorporation of a genome-wide DNA methylome-based classification. Microarray-based platforms are widely used to obtain DNA methylome data, and the German Cancer Research Center (Deutsches Krebsforschungszentrum [DKFZ]) has a webtool for a DNA methylation-based classifier (DKFZ classifier). Integration of DNA methylome will further enhance the precision of CNS tumor classification, especially in diagnostically challenging cases. However, in the clinical application of DNA methylome-based classification, challenges related to data interpretation persist, in addition to technical caveats, regulations, and limited accessibility. Dimensionality reduction (DMR) can complement integrated diagnosis by visualizing a profile and comparing it with other known samples. Therefore, DNA methylome-based classification is a highly useful research tool for auxiliary analysis in challenging diagnostic and rare disease cases, and for establishing novel tumor concepts. Decoding the DNA methylome, especially by DMR in addition to DKFZ classifier, emphasizes the capability of grasping the fundamental biological principles that provide new perspectives on CNS tumors.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Ranade M, Epari S, Shetty O, Dhanavade S, Chavan S, Sahay A, Sahu A, Shetty P, Moiyadi A, Singh V, Dasgupta A, Chatterjee A, Kannan S, Gupta T. CDKN2A/B deletion in IDH-mutant astrocytomas: An evaluation by Fluorescence in-situ hybridization. J Neurooncol 2024:10.1007/s11060-024-04569-7. [PMID: 38265748 DOI: 10.1007/s11060-024-04569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION CDKN2A/B homozygous deletion is one of the defining features of grade 4 in IDH-mutant astrocytic tumours. AIM To evaluate CDKN2A/B-deletion in IDH-mutant astrocytic tumours and its clinicopathological impact. MATERIALS AND METHODS CDKN2A/B-deletion was evaluated by Fluorescence in-situ hybridisation (FISH) and interpreted by two recently accepted methods. RESULTS Eighty-three out of 94 cases (histologically-grade 2: 3, grade 3: 46, grade 4: 34) were interpretable on FISH. Concordant CDKN2A/B-deletion was observed in 71% (27/38) of lower-grade tumours (n = 49) and 90% (27/30) of histological grade 4 tumours (n = 34). Both the interpretation methods showed good agreement (Kappa = 0.75). CDKN2A/B-deletion showed an inverse correlation for < 10% MIB-1 labeling index (p = 0.01) while that by method-2 showed a significant correlation for grade 4 (p = 0.02). No significant correlation was observed for any other clinicopathological parameters. Twenty-four patients showed progression/recurrence (including deaths), and no significant difference in frequency of CDKN2A/B deletion was observed among cases with disease progression across different histological grades. CONCLUSIONS CDKN2A/B-deletion was observed across all the histological grades of IDH-mutant astrocytic tumours, expectedly more in the higher grade. FISH, as a method, can be used for the detection of CDKN2A/B homozygous deletion, when there is concordant interpretation.
Collapse
Affiliation(s)
- Manali Ranade
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India.
| | - Omshree Shetty
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sandeep Dhanavade
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sheetal Chavan
- Department of Pathology (Molecular Pathology Division), Tata Memorial Hospital, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology (Including Molecular Pathology Division), Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Arpita Sahu
- Department of Radiology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Vikash Singh
- Department of Neurosurgical Division of Surgical Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Sadhana Kannan
- Department of Biostatistics, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital & ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
12
|
Gundogdu F, Babaoglu B, Soylemezoglu F. Reliability assessment of methylthioadenosine phosphorylase immunohistochemistry as a surrogate biomarker for CDKN2A homozygous deletion in adult-type IDH-mutant diffuse gliomas. J Neuropathol Exp Neurol 2024; 83:107-114. [PMID: 38109891 PMCID: PMC10799299 DOI: 10.1093/jnen/nlad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
According to the 2021 World Health Organization classification of brain tumors, astrocytomas containing a CDKN2A/B homozygous deletion (HD) are designated as grade 4 even when no microvascular proliferation and/or necrosis is present. In this study, we aimed to investigate the relationship between CDKN2A HD and loss of methylthioadenosine phosphorylase (MTAP) expression in adult-type IDH-mutant gliomas and to assess the sensitivity and specificity of MTAP immunohistochemistry (IHC) along with interobserver agreement as a surrogate biomarker for CDKN2A HD. Eighty-eight astrocytomas and 71 oligodendrogliomas cases that were diagnosed between 2014 and 2021 at Hacettepe University were selected and tissue microarrays were conducted to perform CDKN2A fluorescence in situ hybridization and MTAP IHC. Twenty-five (15.7%) cases harbored CDKN2A HD. MTAP loss was detected in 28 (15.7%) cases by the first observer and 27 (17%) cases by the second observer. The sensitivity and specificity of MTAP were calculated as 88% and 95.52%-96.27% for 2 observers. A very good/perfect agreement was noted between the observers (Cohen kappa coefficient = 0.938). Intratumoral heterogeneity was observed in 4 cases. MTAP IHC was found to be a reliable surrogate biomarker as a possible alternative to CDKN2A HD identification with a high sensitivity and specificity along with high interobserver agreement.
Collapse
Affiliation(s)
- Fatma Gundogdu
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | - Berrin Babaoglu
- Department of Pathology, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
13
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Otsuji R, Hata N, Yamamoto H, Kuga D, Hatae R, Sangatsuda Y, Fujioka Y, Noguchi N, Sako A, Togao O, Yoshitake T, Nakamizo A, Mizoguchi M, Yoshimoto K. Hemizygous deletion of cyclin-dependent kinase inhibitor 2A/B with p16 immuno-negative and methylthioadenosine phosphorylase retention predicts poor prognosis in IDH-mutant adult glioma. Neurooncol Adv 2024; 6:vdae069. [PMID: 39022644 PMCID: PMC11252564 DOI: 10.1093/noajnl/vdae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Homozygous deletion of the tumor suppression genes cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) is a strong adverse prognostic factor in IDH-mutant gliomas, particularly astrocytoma. However, the impact of hemizygous deletion of CDKN2A/B is unknown. Furthermore, the influence of CDKN2A/B status in IDH-mutant and 1p/19q-codeleted oligodendroglioma remains controversial. We examined the impact of CDKN2A/B status classification, including hemizygous deletions, on the prognosis of IDH-mutant gliomas. Methods We enrolled 101 adults with IDH-mutant glioma between December 2002 and November 2021. CDKN2A/B deletion was evaluated with multiplex ligation-dependent probe amplification (MLPA). Immunohistochemical analysis of p16/MTAP and promoter methylation analysis with methylation-specific MLPA was performed for cases with CDKN2A/B deletion. Kaplan - Meier plots and Cox proportion hazards model analyses were performed to evaluate the impact on overall (OS) and progression-free survival. Results Of 101 cases, 12 and 4 were classified as hemizygous and homozygous deletion, respectively. Immunohistochemistry revealed p16-negative and MTAP retention in cases with hemizygous deletion, whereas homozygous deletions had p16-negative and MTAP loss. In astrocytoma, OS was shorter in the order of homozygous deletion, hemizygous deletion, and copy-neutral groups (median OS: 38.5, 59.5, and 93.1 months, respectively). Multivariate analysis revealed hazard ratios of 9.30 (P = .0191) and 2.44 (P = .0943) for homozygous and hemizygous deletions, respectively. Conclusions CDKN2A/B hemizygous deletions exerted a negative impact on OS in astrocytoma. Immunohistochemistry of p16/MTAP can be utilized to validate hemizygous or homozygous deletions in combination with conventional molecular diagnosis.
Collapse
Affiliation(s)
- Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aki Sako
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurosurgery, National Hospital Organization Kyushu Medical Center, Clinical Research Institute, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Pasupuleti V, Vora L, Prasad R, Nandakumar DN, Khatri DK. Glioblastoma preclinical models: Strengths and weaknesses. Biochim Biophys Acta Rev Cancer 2024; 1879:189059. [PMID: 38109948 DOI: 10.1016/j.bbcan.2023.189059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Glioblastoma multiforme is a highly malignant brain tumor with significant intra- and intertumoral heterogeneity known for its aggressive nature and poor prognosis. The complex signaling cascade that regulates this heterogeneity makes targeted drug therapy ineffective. The development of an optimal preclinical model is crucial for the comprehension of molecular heterogeneity and enhancing therapeutic efficacy. The ideal model should establish a relationship between various oncogenes and their corresponding responses. This review presents an analysis of preclinical in vivo and in vitro models that have contributed to the advancement of knowledge in model development. The experimental designs utilized in vivo models consisting of both immunodeficient and immunocompetent mice induced with intracranial glioma. The transgenic model was generated using various techniques, like the viral vector delivery system, transposon system, Cre-LoxP model, and CRISPR-Cas9 approaches. The utilization of the patient-derived xenograft model in glioma research is valuable because it closely replicates the human glioma microenvironment, providing evidence of tumor heterogeneity. The utilization of in vitro techniques in the initial stages of research facilitated the comprehension of molecular interactions. However, these techniques are inadequate in reproducing the interactions between cells and extracellular matrix (ECM). As a result, bioengineered 3D-in vitro models, including spheroids, scaffolds, and brain organoids, were developed to cultivate glioma cells in a three-dimensional environment. These models have enabled researchers to understand the influence of ECM on the invasive nature of tumors. Collectively, these preclinical models effectively depict the molecular pathways and facilitate the evaluation of multiple molecules while tailoring drug therapy.
Collapse
Affiliation(s)
- Vasavi Pasupuleti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 516, 5th floor, 73 Inchon-ro, Seongbuk-gu, Seoul 12841, Republic of Korea
| | - D N Nandakumar
- Department of Neurochemistry National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India.
| |
Collapse
|
16
|
Nafe R, Porto L, Samp PF, You SJ, Hattingen E. Adult-type and Pediatric-type Diffuse Gliomas : What the Neuroradiologist Should Know. Clin Neuroradiol 2023; 33:611-624. [PMID: 36941392 PMCID: PMC10449995 DOI: 10.1007/s00062-023-01277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/22/2023]
Abstract
The classification of diffuse gliomas into the adult type and the pediatric type is the new basis for the diagnosis and clinical evaluation. The knowledge for the neuroradiologist should not remain limited to radiological aspects but should be based additionally on the current edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). This classification defines the 11 entities of diffuse gliomas, which are included in the 3 large groups of adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas, and pediatric-type diffuse high-grade gliomas. This article provides a detailed overview of important molecular, morphological, and clinical aspects for all 11 entities, such as typical genetic alterations, age distribution, variability of the tumor localization, variability of histopathological and radiological findings within each entity, as well as currently available statistical information on prognosis and outcome. Important differential diagnoses are also discussed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany.
| | - Luciana Porto
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Patrick-Felix Samp
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Se-Jong You
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | - Elke Hattingen
- Dept. Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Yuile A, Satgunaseelan L, Wei JQ, Rodriguez M, Back M, Pavlakis N, Hudson A, Kastelan M, Wheeler HR, Lee A. CDKN2A/B Homozygous Deletions in Astrocytomas: A Literature Review. Curr Issues Mol Biol 2023; 45:5276-5292. [PMID: 37504251 PMCID: PMC10378679 DOI: 10.3390/cimb45070335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Genomic alterations of CDKN2A and CDKN2B in astrocytomas have been an evolving area of study for decades. Most recently, there has been considerable interest in the effect of CDKN2A and/or CDKN2B (CDKN2A/B) homozygous deletions (HD) on the prognosis of isocitrate dehydrogenase (IDH)-mutant astrocytomas. This is highlighted by the adoption of CDKN2A/B HD as an essential criterion for astrocytoma and IDH-mutant central nervous system (CNS) WHO grade 4 in the fifth edition of the World Health Organisation (WHO) Classification of Central Nervous System Tumours (2021). The CDKN2A and CDKN2B genes are located on the short arm of chromosome 9. CDKN2A encodes for two proteins, p14 and p16, and CDKN2B encodes for p15. These proteins regulate cell growth and angiogenesis. Interpreting the impact of CDKN2A/B alterations on astrocytoma prognosis is complicated by recent changes in tumour classification and a lack of uniform standards for testing CDKN2A/B. While the prognostic impact of CDKN2A/B HD is established, the role of different CDKN2A/B alterations-heterozygous deletions (HeD), point mutations, and promoter methylation-is less clear. Consequently, how these alternations should be incorporated into patient management remains controversial. To this end, we reviewed the literature on different CDKN2A/B alterations in IDH-mutant astrocytomas and their impact on diagnosis and management. We also provided a historical review of the changing impact of CDKN2A/B alterations as glioma classification has evolved over time. Through this historical context, we demonstrate that CDKN2A/B HD is an important negative prognostic marker in IDH-mutant astrocytomas; however, the historical data is challenging to interpret given changes in tumour classification over time, variation in the quality of evidence, and variations in the techniques used to identify CDKN2A/B deletions. Therefore, future prospective studies using uniform classification and detection techniques are required to improve the clinical interpretation of this molecular marker.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Laveniya Satgunaseelan
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Joe Q Wei
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Michael Rodriguez
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
- Department of Pathology, Prince of Wales Hospital, Sydney, NSW 2065, Australia
| | - Michael Back
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
- Department of Radiation Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
| | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Amanda Hudson
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
| | - Marina Kastelan
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Helen R Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| | - Adrian Lee
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Faculty of Medicine and Health, School of Medicine, University of Sydney, Camperdown Campus, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
18
|
Martin KC, Ma C, Yip S. From Theory to Practice: Implementing the WHO 2021 Classification of Adult Diffuse Gliomas in Neuropathology Diagnosis. Brain Sci 2023; 13:brainsci13050817. [PMID: 37239289 DOI: 10.3390/brainsci13050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Diffuse gliomas are the most common type of primary central nervous system (CNS) neoplasm to affect the adult population. The diagnosis of adult diffuse gliomas is dependent upon the integration of morphological features of the tumour with its underlying molecular alterations, and the integrative diagnosis has become of increased importance in the fifth edition of the WHO classification of CNS neoplasms (WHO CNS5). The three major diagnostic entities of adult diffuse gliomas are as follows: (1) astrocytoma, IDH-mutant; (2) oligodendroglioma, IDH-mutant and 1p/19q-codeleted; and (3) glioblastoma, IDH-wildtype. The aim of this review is to summarize the pathophysiology, pathology, molecular characteristics, and major diagnostic updates encountered in WHO CNS5 of adult diffuse gliomas. Finally, the application of implementing the necessary molecular tests for diagnostic workup of these entities in the pathology laboratory setting is discussed.
Collapse
Affiliation(s)
- Karina Chornenka Martin
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Crystal Ma
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
19
|
Shimizu Y, Suzuki M, Akiyama O, Ogino I, Matsushita Y, Satomi K, Yanagisawa S, Ohno M, Takahashi M, Miyakita Y, Narita Y, Ichimura K, Kondo A. Utility of real-time polymerase chain reaction for the assessment of CDKN2A homozygous deletion in adult-type IDH-mutant astrocytoma. Brain Tumor Pathol 2023; 40:93-100. [PMID: 36788155 DOI: 10.1007/s10014-023-00450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
The World Health Organization Classification of Tumors of the Central Nervous System 5th Edition (WHO CNS5) introduced a newly defined astrocytoma, IDH-mutant grade 4, for adult diffuse glioma classification. One of the diagnostic criteria is the presence of a CDKN2A/B homozygous deletion (HD). Here, we report a robust and cost-effective quantitative polymerase chain reaction (qPCR)-based test for assessing CDKN2A HD. A TaqMan copy number assay was performed using a probe located within CDKN2A. The linear correlation between the Ct values and relative CDKN2A copy number was confirmed using a serial mixture of DNA from normal blood and U87MG cells. The qPCR assay was performed in 109 IDH-mutant astrocytomas, including 14 tumors with CDKN2A HD, verified either by multiplex ligation-dependent probe amplification (MLPA) or CytoScan HD microarray platforms. Receiver operating characteristic curve analysis indicated that a cutoff value of 0.85 yielded optimal sensitivity (100%) and specificity (99.0%) for determining CDKN2A HD. The assay applies to DNA extracted from frozen or formalin-fixed paraffin-embedded tissue samples. Survival was significantly shorter in patients with than in those without CDKN2A HD, assessed by either MLPA/CytoScan or qPCR. Thus, our qPCR method is clinically applicable for astrocytoma grading and prognostication, compatible with the WHO CNS5.
Collapse
Affiliation(s)
- Yuzaburo Shimizu
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Mario Suzuki
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Osamu Akiyama
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
| | - Yuko Matsushita
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Yanagisawa
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
20
|
Oh KS, Mahalingam M. Melanoma and Glioblastoma-Not a Serendipitous Association. Adv Anat Pathol 2023; 30:00125480-990000000-00051. [PMID: 36624550 DOI: 10.1097/pap.0000000000000393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, we came across a patient with malignant melanoma and primary glioblastoma. Given this, we parsed the literature to ascertain the relationship, if any, between these 2 malignancies. We begin with a brief overview of melanoma and glioma in isolation followed by a chronologic overview of case reports and epidemiologic studies documenting both neoplasms. This is followed by studies detailing genetic abnormalities common to both malignancies with a view to identifying unifying genetic targets for therapeutic strategies as well as to explore the possibility of a putative association and an inherited cancer susceptibility trait. From a scientific perspective, we believe we have provided evidence favoring an association between melanoma and glioma. Future studies that include documentation of additional cases, as well as a detailed molecular analyses, will lend credence to our hypothesis that the co-occurrence of these 2 conditions is likely not serendipitous.
Collapse
Affiliation(s)
- Kei Shing Oh
- Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL
| | - Meera Mahalingam
- Dermatopathology Section, Department of Pathology and Laboratory Medicine, VA-Integrated-Service-Network-1 (VISN1), West Roxbury, MA
| |
Collapse
|
21
|
Ahmad Z, Rahim S, Abdul-Ghafar J, Chundriger Q, Ud Din N. Events in CNS Tumor Pathology Post-2016 WHO CNS: cIMPACT-NOW Updates and Other Advancements: A Comprehensive Review Plus a Summary of the Salient Features of 2021 WHO CNS 5. Int J Gen Med 2023; 16:107-127. [PMID: 36644568 PMCID: PMC9833325 DOI: 10.2147/ijgm.s394872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction The 2016 World Health Organization Classification (WHO) of Tumors of the Central Nervous System (CNS) represented a major change. It recommended an "integrated diagnosis" comprising histologic and molecular information facilitating a more precise diagnosis of specific CNS tumors. Its goal was to provide greater diagnostic precision and reproducibility resulting in more clinical relevance and predictive value, ultimately leading to better patient care. Advances in molecular classification, mostly resulting from DNA methylation array profiling of CNS tumors, were occurring at a very rapid pace and required more rapid integration into clinical practice. Methods cIMPACT-NOW updates and other recent papers plus salient features of 2021 WHO CNS5 in this comprehensive write-up were reviewed. Results CNS tumor classification needs to be updated at a rapid pace and mechanisms put into place to guide diagnosticians and clinicians in the interim period if major changes in the classification of tumor types came to light. Recognizing the need to integrate these into clinical practice more rapidly and without inordinate delay, the International Society of Neuropathology (ISN) 2016 sponsored an initiative called cIMPACT-NOW. Discussion and/or Conclusion Goal of cIMPACT-NOW was to provide clarification regarding contentious issues arising in the wake of the 2016 WHO CNS update as well as report new advancements in molecular classification of CNS tumors and new tumor entities emerging as a result of these advancements. cIMPACT-NOW updates: It thus laid the foundation for the 5th edition of the WHO Classification of CNS tumors (2021 WHO CNS 5). We have discussed cIMPACT updates in detail in this review. In addition, molecular diagnostics including DNA methylation-based classification of CNS tumors and the practical use of molecular classification in the prognostication and treatment of CNS tumors is discussed. Finally, the salient features of the new CNS tumor classification are summarized.
Collapse
Affiliation(s)
- Zubair Ahmad
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Shabina Rahim
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan,Correspondence: Jamshid Abdul-Ghafar, Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan, Tel +93 792 827 287, Email
| | - Qurratulain Chundriger
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
22
|
Fortin Ensign SP, Jenkins RB, Giannini C, Sarkaria JN, Galanis E, Kizilbash SH. Translational significance of CDKN2A/B homozygous deletion in isocitrate dehydrogenase-mutant astrocytoma. Neuro Oncol 2023; 25:28-36. [PMID: 35973817 PMCID: PMC9825307 DOI: 10.1093/neuonc/noac205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Indexed: 01/26/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) 1 or 2 mutations confer a favorable prognosis compared to IDH-wildtype in astrocytoma, frequently denoting a lower grade malignancy. However, recent molecular profiling has identified specific aggressive tumor subgroups with clear clinical prognostic implications that are independent of histologic grading. The homozygous deletion of CDKN2A/B is the strongest implicated independent indicator of the poor prognosis within IDH-mutant astrocytoma, and the identification of this alteration in these lower histologic grade tumors transforms their biology toward an aggressive grade 4 phenotype clinically. CDKN2A/B homozygous deletion is now sufficient to define a grade 4 tumor in IDH-mutant astrocytomas regardless of histologic appearance, yet there are currently no effective molecularly informed targeted therapies for these tumors. The biological impact of CDKN2A/B homozygous deletion in IDH-mutant tumors and the optimal treatment strategy for this molecular subgroup remains insufficiently explored. Here we review the current understanding of the translational significance of homozygous deletion of CDKN2A/B gene expression in IDH-mutant astrocytoma and associated diagnostic and therapeutic implications.
Collapse
Affiliation(s)
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
23
|
Li H, He J, Li M, Li K, Pu X, Guo Y. Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma. Front Immunol 2022; 13:1027631. [PMID: 36532035 PMCID: PMC9751405 DOI: 10.3389/fimmu.2022.1027631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction As a malignant brain tumor, glioblastoma (GBM) is characterized by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and refractory natures. Immunotherapy has been becoming a promising strategy to treat diverse cancers. It has been known that there are highly heterogeneous immunosuppressive microenvironments among different GBM molecular subtypes that mainly include classical (CL), mesenchymal (MES), and proneural (PN), respectively. Therefore, an in-depth understanding of immune landscapes among them is essential for identifying novel immune markers of GBM. Methods and results In the present study, based on collecting the largest number of 109 immune signatures, we aim to achieve a precise diagnosis, prognosis, and immunotherapy prediction for GBM by performing a comprehensive immunogenomic analysis. Firstly, machine-learning (ML) methods were proposed to evaluate the diagnostic values of these immune signatures, and the optimal classifier was constructed for accurate recognition of three GBM subtypes with robust and promising performance. The prognostic values of these signatures were then confirmed, and a risk score was established to divide all GBM patients into high-, medium-, and low-risk groups with a high predictive accuracy for overall survival (OS). Therefore, complete differential analysis across GBM subtypes was performed in terms of the immune characteristics along with clinicopathological and molecular features, which indicates that MES shows much higher immune heterogeneity compared to CL and PN but has significantly better immunotherapy responses, although MES patients may have an immunosuppressive microenvironment and be more proinflammatory and invasive. Finally, the MES subtype is proved to be more sensitive to 17-AAG, docetaxel, and erlotinib using drug sensitivity analysis and three compounds of AS-703026, PD-0325901, and MEK1-2-inhibitor might be potential therapeutic agents. Conclusion Overall, the findings of this research could help enhance our understanding of the tumor immune microenvironment and provide new insights for improving the prognosis and immunotherapy of GBM patients.
Collapse
|
24
|
Molecular markers related to patient outcome in patients with IDH-mutant astrocytomas grade 2 to 4: A systematic review. Eur J Cancer 2022; 175:214-223. [PMID: 36152406 DOI: 10.1016/j.ejca.2022.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Grading and classification of IDH-mutant astrocytomas has shifted from solely histology towards histology combined with molecular diagnostics. In this systematic review, we give an overview of all currently known clinically relevant molecular markers within IDH-mutant astrocytomas grade 2 to 4. METHODS A literature search was performed in five electronic databases for English original papers on patient outcome with respect to a molecular marker as determined by DNA/RNA sequencing, micro-arrays, or DNA methylation profiling in IDH-mutant astrocytomas grade 2 to 4. Papers were included if molecular diagnostics were performed on tumour tissue of at least 15 IDH-mutant astrocytoma patients, and if the investigated molecular markers were not limited to the diagnostic markers MGMT, ATRX, TERT, and/or TP53. RESULTS The literature search identified 4508 unique articles, published between August 2012 and December 2021, of which ultimately 44 articles were included. Numerous molecular markers from these papers were significantly correlated to patient outcome. The associations between patient outcome and non-canonical IDH mutations, PI3K mutations, high expression of MSH2, high expression of RAD18, homozygous deletion of CDKN2A/B, amplification of PDGFRA, copy number neutral loss of chromosomal arm 17p, loss of chromosomal arm 19q, the G-CIMP-low DNA methylation cluster, high total CNV, and high tumour mutation burden were confirmed in multiple studies. CONCLUSIONS Multiple genetic and epigenetic markers are associated with survival in IDH-mutant astrocytoma patients. Commonly affected are the RB signalling pathway, the RTK-PI3K-mTOR signalling pathway, genomic stability markers, and (epigenetic) gene regulation.
Collapse
|
25
|
Peritumor Edema Serves as an Independent Predictive Factor of Recurrence Patterns and Recurrence-Free Survival for High-Grade Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9547166. [PMID: 35936378 PMCID: PMC9348930 DOI: 10.1155/2022/9547166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at analyzing the factors affecting the recurrence patterns and recurrence-free survival (RFS) of high-grade gliomas (HGG). Methods. Eligible patients admitted to the Affiliated Hospital of Xuzhou Medical University were selected. Subsequently, the effects of some clinical data including age, gender, WHO pathological grades, tumor site, tumor size, clinical treatments, and peritumoral edema (PTE) area and molecular markers (Ki-67, MGMT, IDH-1, and p53) on HGG patients’ recurrence patterns and RFS were analyzed. Results. A total number of 77 patients were enrolled into this study. After analyzing all the cases, it was determined that tumor size and tumor site had a significant influence on the recurrent patterns of HGG, and PTE was an independent predict factor of recurrence patterns. Specifically, when the PTE was mild (<1 cm), the recurrence pattern tended to be local; in contrast, HGG was more likely to progress to marginal recurrence and distant recurrence. Furthermore, age and PTE were significantly associated with RFS; the median RFS of the population with
(23.60 months) was obviously longer than the population with
(5.00 months). Conclusions. PTE is an independent predictor of recurrence patterns and RFS for HGG. Therefore, preoperative identification of PTE in HGG patients is crucially important, which is helpful to accurately estimate the recurrence pattern and RFS.
Collapse
|
26
|
Brat DJ, Aldape K, Bridge JA, Canoll P, Colman H, Hameed MR, Harris BT, Hattab EM, Huse JT, Jenkins RB, Lopez-Terrada DH, McDonald WC, Rodriguez FJ, Souter LH, Colasacco C, Thomas NE, Yount MH, van den Bent MJ, Perry A. Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med 2022; 146:547-574. [PMID: 35175291 PMCID: PMC9311267 DOI: 10.5858/arpa.2021-0295-cp] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.— To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.— The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.— Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.— Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.
Collapse
Affiliation(s)
- Daniel J Brat
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Brat)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland (Aldape)
| | - Julia A Bridge
- The Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska (Bridge)
- Cytogenetics, ProPath, Dallas, Texas (Bridge)
| | - Peter Canoll
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Canoll)
| | - Howard Colman
- The Department of Neurosurgery and Huntsman Cancer Institute, University of Utah, Salt Lake City (Colman)
| | - Meera R Hameed
- The Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (Hameed)
| | - Brent T Harris
- The Department of Neurology and Pathology, MedStar Georgetown University Hospital, Washington, DC (Harris)
| | - Eyas M Hattab
- The Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky (Hattab)
| | - Jason T Huse
- The Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston (Huse)
| | - Robert B Jenkins
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Jenkins)
| | - Dolores H Lopez-Terrada
- The Departments of Pathology and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas (Lopez-Terrada)
| | - William C McDonald
- The Department of Pathology, Abbott Northwestern Hospital, Minneapolis, Minnesota (McDonald)
| | - Fausto J Rodriguez
- The Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland (Rodriguez)
| | | | - Carol Colasacco
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | - Nicole E Thomas
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | | | - Martin J van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute University Medical Center Rotterdam, Rotterdam, the Netherlands (van den Bent)
| | - Arie Perry
- The Departments of Pathology and Neurological Surgery, University of California San Francisco School of Medicine, San Francisco (Perry)
| |
Collapse
|
27
|
R132H IDH1 sensitizes glioma to the antiproliferative and cytotoxic effects of BET inhibition. J Cancer Res Clin Oncol 2022; 148:2275-2285. [PMID: 35467128 PMCID: PMC9349147 DOI: 10.1007/s00432-022-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
Introduction Mutations in isocitrate dehydrogenase 1/2 (IDHmut) identify a subset of gliomas that exhibit epigenetic dysregulation via aberrant DNA methylation. These tumors are ultimately fatal and lack effective therapeutic strategies. Considering the epigenetic dysregulation of IDHmut gliomas, we hypothesized that epigenetic-targeting drugs may yield therapeutic benefits in gliomas bearing IDHmut. One set of targets includes the bromodomain and extraterminal (BET) family of transcriptional coactivators. Methods We used TCGA data from glioma patients to determine whether BET proteins affect patient survival differently based on IDH status. Follow-up experiments using a set of IDH wildtype/mutant glioma cultures, as well as an IDH wildtype glioblastoma cell line expressing exogenous R132H IDH1, focused on cell health assays to investigate whether IDHmut was associated with increased sensitivity to the BET inhibitor JQ1. Immunoblots were used to evaluate the molecular response to JQ1 in these cultures. Results We identified that high BRD4 expression associated with decreased survival only in IDHmut glioma patients. Cell viability analysis showed that IDHmut sensitized glioma cells to delayed cytotoxicity (10 days) in response to JQ1. Early effects of JQ1 (3 days) were primarily antiproliferative, with IDHmut glioma exhibiting a modest increase in sensitivity. Finally, exogenous R132H IDH1 expression in a resistant IDH wildtype cell line recapitulated the JQ1-mediated delayed cytotoxicity seen in our endogenous IDHmut glioma cells. Conclusion Overall, these data suggest that BRD4 enhances malignancy primarily in gliomas bearing IDHmut and is associated with greater sensitivity to BET inhibition. The finding that BET inhibition primarily exhibits delayed cytotoxicity may be overlooked in conventional short endpoint dose–response assays. Follow-up mechanistic and animal studies will help address the translational potential of these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04018-w.
Collapse
|
28
|
Shi ZF, Li KKW, Huang QJQ, Wang WW, Kwan JSH, Chen H, Liu XZ, Li WC, Chan DTM, Zhang ZY, Mao Y, Ng HK. Molecular landscape of IDH-wildtype, H3-wildtype glioblastomas of adolescents and young adults (AYA). Neuropathol Appl Neurobiol 2022; 48:e12802. [PMID: 35191072 DOI: 10.1111/nan.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We aimed to characterise glioblastomas of adolescents and young adults (AYA) that were IDH wildtype (wt) and H3 wildtype (wt). MATERIALS AND METHODS Fifty such patients (aged 16-32) were studied by methylation profiling, targeted sequencing and targeted RNA-seq. RESULTS Tumours predominantly clustered into three methylation classes according to the terminology of Capper et al. (2018): (anaplastic) PXA (21 cases), GBM_midline (15 cases) and glioblastoma RTK/mesenchymal (7 cases). Two cases clustered with ANA_PA, 4 cases with LGG classes and 1 with GBM_MYCN. Only fifteen cases reached a calibrated score >0.84 when the cases were uploaded to DKFZ Classifier. GBM_midline-clustered tumours had a poorer overall survival (OS) compared to the PXA-clustered tumours (p=0.030). LGG-clustered cases had a significantly better survival than GBM_midline-clustered tumours and glioblastoma RTK/mesenchymal-clustered tumours. Only 13/21 (62%) of PXA-clustered cases were BRAF V600E mutated. Most GBM_midline-clustered cases were not located in the midline. GBM_midline-clustered cases were characterized by PDGFRA amplification/mutation (73.3%), mutations of mismatch repair genes (40.0%), and all showed H3K27me3 and EZH1P loss, and an unmethylated MGMT promoter. Across the whole cohort, MGMT promoter methylation and wildtype TERT promoter were favourable prognosticators. Mismatch repair gene mutations were poor prognosticators and together with methylation class and MGMT methylation, maintained their significance in multi-variate analyses. BRAF mutation was a good prognosticator in the PXA-clustered tumours. CONCLUSION Methylation profiling is a useful tool in the diagnosis and prognostication of AYA glioblastomas and the methylation classes have distinct molecular characteristics. The usual molecular diagnostic criteria for adult IDHwt glioblastoma should be applied with caution within the AYA age group.
Collapse
Affiliation(s)
- Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Hong Kong and Shanghai Brain Consortium (HSBC)
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC)
| | - Queenie Jun-Qi Huang
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC)
| |
Collapse
|
29
|
Komori T. Grading of adult diffuse gliomas according to the 2021 WHO Classification of Tumors of the Central Nervous System. J Transl Med 2022; 102:126-133. [PMID: 34504304 DOI: 10.1038/s41374-021-00667-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
The grading of gliomas based on histological features has been a subject of debate for several decades. A consensus has not yet been reached because of technical limitations and inter-observer variations. While the traditional grading system has failed to stratify the risk of IDH-mutant astrocytoma, canonical histological and proliferative markers may be applicable to the risk stratification of IDH-wild-type astrocytoma. Numerous studies have examined molecular markers in order to obtain more clinically relevant information that will improve the risk stratification of gliomas. The CDKN2A/B homozygous deletion for IDH-mutant astrocytoma and the following three criteria for IDH-wild-type astrocytoma: the concurrent gain of whole chromosome 7 and loss of whole chromosome 10, TERT promoter mutations, and EGFR amplification, were identified as independent molecular markers of the worst clinical outcomes. Therefore, the 2021 World Health Organization (WHO) Classification of Tumors of the Central Nervous System adopted these molecular markers into the revised grading criteria of IDH-mutant and -wild-type astrocytoma, respectively, as a grading system within tumor types. Of note, several recent studies have shown that some low-grade IDH-wild-type astrocytoma lacking both the molecular glioblastoma signature and genetic alterations typical of pediatric-type gliomas may demonstrate a relatively indolent clinical course, suggesting the existence of lower-grade adult IDH-wild-type astrocytoma. In terms of oligodendroglioma, IDH-mutant, and 1p/19q codeleted, consistent makers that predict poor outcomes have not yet been identified, and, thus, the current criteria have remained unchanged. Molecular testing to fulfill the revised WHO criteria is, however, not always available worldwide, and in that case, an integrated diagnosis combining all available complementary information is highly recommended. This review discusses controversial issues surrounding legacy grading systems and newly identified potential genetic markers of adult diffuse gliomas and provides perspectives on future grading systems.
Collapse
Affiliation(s)
- Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| |
Collapse
|
30
|
Umphlett M, Bilal KH, Martini ML, Suwala AK, Ahuja S, Rashidipour O, Germano I, Snuderl M, Morgenstern P, Tsankova NM. IDH-mutant astrocytoma with EGFR amplification-Genomic profiling in four cases and review of literature. Neurooncol Adv 2022; 4:vdac067. [PMID: 35669011 PMCID: PMC9159664 DOI: 10.1093/noajnl/vdac067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Melissa Umphlett
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Mount Sinai West, New York, New York, USA
| | | | - Michael L Martini
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, California, USA
| | - Sadhna Ahuja
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Omid Rashidipour
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Isabelle Germano
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Health, New York, New York, USA
| | - Peter Morgenstern
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nadejda M Tsankova
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
31
|
Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022; 128:47-58. [PMID: 34633681 DOI: 10.1002/cncr.33918] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
The 2016 revised fourth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors incorporated molecular features with histologic grading, revolutionizing how oncologists conceptualize primary brain and spinal cord tumors as well as providing new insights into their management and prognosis. The 2021 revised fifth edition of the WHO classification further integrates molecular alterations for CNS tumor categorization, updating current understanding of the pathophysiology of many of these disease entities. Here, the authors review changes in the new classification for the most common primary adult tumors-gliomas (including astrocytomas, oligodendrogliomas, and ependymomas) and meningiomas-highlighting the key genomic alterations for each group classification to help clinicians interpret them as they consider therapeutic options-including clinical trials and targeted therapies-and discuss the prognosis of these tumors with their patients. The revised, updated 2021 WHO classification also further integrates molecular alterations in the classification of pediatric CNS tumors, but those are not covered in the current review.
Collapse
Affiliation(s)
- Simon Gritsch
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - L Nicolas Gonzalez Castro
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Abstract
ABSTRACT The classification, diagnosis, and biological understanding of high-grade gliomas has been transformed by an evolving understanding of glioma biology. High-grade gliomas, in particular, have exemplified the impact of molecular alterations in pathology. The discovery of mutations in a key metabolic enzyme (IDH), histone genes (H3-3A), and large-scale chromosome changes (+7/-10, 1p/19q) are examples of specific alterations that now supplant traditional histologic interpretation. Here, we review established and recently defined types of adult and pediatric high-grade gliomas with discussion of key molecular alterations that have been leveraged for subclassification, grading, or prognosis.
Collapse
|
33
|
A Genome-Wide Profiling of Glioma Patients with an IDH1 Mutation Using the Catalogue of Somatic Mutations in Cancer Database. Cancers (Basel) 2021; 13:cancers13174299. [PMID: 34503108 PMCID: PMC8428353 DOI: 10.3390/cancers13174299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Glioma patients that present a somatic mutation in the isocitrate dehydrogenase 1 (IDH1) gene have a significantly better prognosis and overall survival than patients with the wild-type genotype. An IDH1 mutation is hypothesized to occur early during cellular transformation and leads to further genetic instability. A genome-wide profiling of glioma patients in the Catalogue of Somatic Mutations in Cancer (COSMIC) database was performed to classify the genetic differences in IDH1-mutant versus IDH1-wildtype patients. This classification will aid in a better understanding of how this specific mutation influences the genetic make-up of glioma and the resulting prognosis. Key differences in co-mutation and gene expression levels were identified that correlate with an improved prognosis. Abstract Gliomas are differentiated into two major disease subtypes, astrocytoma or oligodendroglioma, which are then characterized as either IDH (isocitrate dehydrogenase)-wild type or IDH-mutant due to the dramatic differences in prognosis and overall survival. Here, we investigated the genetic background of IDH1-mutant gliomas using the Catalogue of Somatic Mutations in Cancer (COSMIC) database. In astrocytoma patients, we found that IDH1 is often co-mutated with TP53, ATRX, AMBRA1, PREX1, and NOTCH1, but not CHEK2, EGFR, PTEN, or the zinc finger transcription factor ZNF429. The majority of the mutations observed in these genes were further confirmed to be either drivers or pathogenic by the Cancer-Related Analysis of Variants Toolkit (CRAVAT). Gene expression analysis showed down-regulation of DRG2 and MSN expression, both of which promote cell proliferation and invasion. There was also significant over-expression of genes such as NDRG3 and KCNB1 in IDH1-mutant astrocytoma patients. We conclude that IDH1-mutant glioma is characterized by significant genetic changes that could contribute to a better prognosis in glioma patients.
Collapse
|
34
|
Wong QHW, Li KKW, Wang WW, Malta TM, Noushmehr H, Grabovska Y, Jones C, Chan AKY, Kwan JSH, Huang QJQ, Wong GCH, Li WC, Liu XZ, Chen H, Chan DTM, Mao Y, Zhang ZY, Shi ZF, Ng HK. Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas. Mod Pathol 2021; 34:1245-1260. [PMID: 33692446 DOI: 10.1038/s41379-021-00778-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.
Collapse
Affiliation(s)
- Queenie Hoi-Wing Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Queenie Jun-Qi Huang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Gabriel Chun-Hei Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
35
|
METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-κB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett 2021; 511:36-46. [PMID: 33933553 DOI: 10.1016/j.canlet.2021.04.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Understanding the role of N6-methyladenosine (m6A) in tumorigenesis and stem cell maintenance is an emerging field in glioma research. However, it is necessary to study the function of m6A in IDH-mutation and IDH-wildtype gliomas separately. Here, we aimed to elucidate the role and mechanism of the m6A writer METTL3 in regulating the malignant progression of IDH-wildtype gliomas. We demonstrated that METTL3 expression is positively associated with a higher malignant grade and poorer prognosis of IDH-wildtype gliomas but not IDH-mutant gliomas. METTL3 could also promote the malignant progression of gliomas in both in vitro and in vivo models. Mechanistically, METTL3 upregulated MALAT1 expression by enhancing its stability via m6A modification. We further revealed that HuR was essential for METTL3-mediated MALAT1 stabilization, and upregulated MALAT1 subsequently activated NF-κB. Taken together, our findings confirmed that METTL3 promoted the malignant progression of IDH-wildtype gliomas and revealed important insight into the upstream regulatory mechanism of MALAT1 and NF-κB with a primary focus on m6A modification.
Collapse
|
36
|
Darrigues E, Elberson BW, De Loose A, Lee MP, Green E, Benton AM, Sink LG, Scott H, Gokden M, Day JD, Rodriguez A. Brain Tumor Biobank Development for Precision Medicine: Role of the Neurosurgeon. Front Oncol 2021; 11:662260. [PMID: 33981610 PMCID: PMC8108694 DOI: 10.3389/fonc.2021.662260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuro-oncology biobanks are critical for the implementation of a precision medicine program. In this perspective, we review our first year experience of a brain tumor biobank with integrated next generation sequencing. From our experience, we describe the critical role of the neurosurgeon in diagnosis, research, and precision medicine efforts. In the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125 brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases (29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next generation sequencing. Eleven patients qualified for targeted therapy based on identification of actionable gene mutations. One patient with a hereditary cancer predisposition syndrome was also identified. An iterative quality improvement process was implemented to streamline the workflow between the operating room, pathology, and the research laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly improved standard operating procedure. Intraoperative selection and processing of tumor tissue by the neurosurgeon was integral to increasing success with cell culture assays. Currently, our institutional protocol integrates standard histopathological diagnosis, next generation sequencing, and functional assays on surgical specimens to develop precision medicine protocols for our patients. This perspective reviews the critical role of neurosurgeons in brain tumor biobank implementation and success as well as future directions for enhancing precision medicine efforts.
Collapse
Affiliation(s)
- Emilie Darrigues
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin W Elberson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Annick De Loose
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison P Lee
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ebonye Green
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ashley M Benton
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ladye G Sink
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hayden Scott
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Day
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
37
|
Satomi K, Ohno M, Matsushita Y, Takahashi M, Miyakita Y, Narita Y, Ichimura K, Yoshida A. Utility of methylthioadenosine phosphorylase immunohistochemical deficiency as a surrogate for CDKN2A homozygous deletion in the assessment of adult-type infiltrating astrocytoma. Mod Pathol 2021; 34:688-700. [PMID: 33077924 DOI: 10.1038/s41379-020-00701-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 01/01/2023]
Abstract
Homozygous deletion (HD) of CDKN2A is one of the most promising biomarkers for predicting poor prognosis of IDH-mutant diffuse gliomas. The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) recommendations propose that IDH-mutant lower-grade astrocytomas with CDKN2A/B HD be classified as grade IV tumors. Loss of methylthioadenosine phosphorylase (MTAP) immunohistochemistry staining has been proposed as a surrogate of CDKN2A HD in various tumors but its performance has not been fully investigated in diffuse glioma. This study determined whether MTAP immunoreactivity could serve as a proxy for CDKN2A HD in adult-type diffuse glioma, thereby contributing to stratifying patient outcome. MTAP immunohistochemistry staining using clone EPR6893 was scored in 178 diffuse glioma specimens consisting of 77 IDH-mutant astrocytomas, 13 IDH-mutant oligodendrogliomas, and 88 IDH-wildtype glioblastomas. The use of MTAP immunohistochemical deficiency to predict CDKN2A HD was good for IDH-mutant astrocytomas (sensitivity, 88%; specificity, 98%) and IDH-wildtype glioblastomas (sensitivity, 89%; specificity, 100%), but poor for IDH-mutant oligodendrogliomas (sensitivity, 67%; specificity, 57%). Both CDKN2A HD and MTAP immunohistochemical deficiency were significant adverse prognostic factors of overall survival for IDH-mutant astrocytoma (P < 0.001 each), but neither were prognostically significant for oligodendroglioma or IDH-wildtype glioblastoma. IDH-mutant lower-grade astrocytoma with CDKN2A HD and deficient MTAP immunoreactivity exhibited overlapping unfavorable outcome with IDH-mutant glioblastoma. MTAP immunostaining was easily interpreted in 61% of the cases tested, but scoring required greater care in the remaining cases. An alternative MTAP antibody clone (2G4) produced identical scoring results in all but 1 case, and a slightly larger proportion (66%) of cases were considered easy to interpret compared to using EPR6893. In summary, loss of MTAP immunoreactivity could serve as a reasonable predictive surrogate for CDKN2A HD in IDH-mutant astrocytomas and IDH-wildtype glioblastomas and could provide significant prognostic value for IDH-mutant astrocytoma, comparable to CDKN2A HD.
Collapse
Affiliation(s)
- Kaishi Satomi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuko Matsushita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yasuji Miyakita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Rare Cancer Center, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koichi Ichimura
- Rare Cancer Center, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan. .,Rare Cancer Center, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
38
|
Esami citologici, istologici, immunoistochimici e genetici dei tumori del sistema nervoso centrale. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
[Histomolecular diagnosis of glial and glioneuronal tumours]. Ann Pathol 2021; 41:137-153. [PMID: 33712303 DOI: 10.1016/j.annpat.2020.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
While rare compared to extra-cranial neoplasms, glial and glioneuronal tumors are responsible of high morbidity and mortality. In 2016, the World Health Organization introduced histo-molecular ("integrated") diagnostics for central nervous system tumors based on morphology, immunohistochemistry and the presence of key genetic alterations. This combined phenotypic-genotypic classification allows for a more objective diagnostic of brain tumors. The implementation of such a classification in daily practice requires immunohistochemical surrogates to detect common genetic alterations and sometimes expensive and not widely available molecular biology techniques. The first step in brain tumor diagnostics is to inquire about the clinical picture and the imaging findings. When dealing with a glial tumor, the pathologist needs to assess its nature, infiltrative or circumscribed. If the tumor is infiltrative, IDH1/2 genes (prognostic marker) and chromosomes 1p/19q (diagnosis of oligodendroglioma) need to be assessed. If the tumor appears circumscribed, the pathologist should look for a neuronal component associated with the glial component (glioneuronal tumor). A limited immunohistochemistry panel will help distinguish between diffuse glioma (IDH1-R132H, ATRX, p53) and circumscribed glial/glioneuronal tumor (CD34, neuronal markers, BRAF-V600E), and some antibodies may reliably detect genetic alterations (IDH1-R132H, BRAF-V600E and H3-K27M mutations). Chromosomal imbalances (1p/19q codeletion in oligodendroglioma; chromosome 7 gain/chromosome 10 loss and EGFR amplification in glioblastoma) and gene rearrangements (BRAF fusion, FGFR1 fusion) will be identified by molecular biology techniques. The up-coming edition of the WHO classification of the central nervous system tumors will rely more heavily on molecular alterations to accurately diagnose and treat brain tumors.
Collapse
|
40
|
Patel SH, Batchala PP, Muttikkal TJE, Ferrante SS, Patrie JT, Fadul CE, Schiff D, Lopes MB, Jain R. Fluid attenuation in non-contrast-enhancing tumor (nCET): an MRI Marker for Isocitrate Dehydrogenase (IDH) mutation in Glioblastoma. J Neurooncol 2021; 152:523-531. [PMID: 33661425 DOI: 10.1007/s11060-021-03720-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE The WHO 2016 update classifies glioblastomas (WHO grade IV) according to isocitrate dehydrogenase (IDH) gene mutation status. We aimed to determine MRI-based metrics for predicting IDH mutation in glioblastoma. METHODS This retrospective study included glioblastoma cases (n = 199) with known IDH mutation status and pre-operative MRI (T1WI, T2WI, FLAIR, contrast-enhanced T1W1 at minimum). Two neuroradiologists determined the following MRI metrics: (1) primary lobe of involvement (frontal or non-frontal); (2) presence/absence of contrast-enhancement; (3) presence/absence of necrosis; (4) presence/absence of fluid attenuation in the non-contrast-enhancing tumor (nCET); (5) maximum width of peritumoral edema (cm); (6) presence/absence of multifocal disease. Inter-reader agreement was determined. After resolving discordant measurements, multivariate association between consensus MRI metrics/patient age and IDH mutation status was determined. RESULTS Among 199 glioblastomas, 16 were IDH-mutant. Inter-reader agreement was calculated for contrast-enhancement (ĸ = 0.49 [- 0.11-1.00]), necrosis (ĸ = 0.55 [0.34-0.76]), fluid attenuation in nCET (ĸ = 0.83 [0.68-0.99]), multifocal disease (ĸ = 0.55 [0.39-0.70]), and primary lobe (ĸ = 0.85 [0.80-0.91]). Mean difference for peritumoral edema width between readers was 0.3 cm [0.2-0.5], p < 0.001. Multivariate analysis uncovered significant associations between IDH-mutation and fluid attenuation in nCET (OR 82.9 [19.22, ∞], p < 0.001), younger age (OR 0.93 [0.86, 0.98], p = 0.009), frontal lobe location (OR 11.08 [1.14, 352.97], p = 0.037), and less peritumoral edema (OR 0.15 [0, 0.65], p = 0.044). CONCLUSIONS Conventional MRI metrics and patient age predict IDH-mutation status in glioblastoma. Among MRI markers, fluid attenuation in nCET represents a novel marker with high inter-reader agreement that is strongly associated with Glioblastoma, IDH-mutant.
Collapse
Affiliation(s)
- Sohil H Patel
- Department of Radiology and Medical Imaging, University of Virginia Health System, PO Box 800170, Charlottesville, VA, 22908, USA.
| | - Prem P Batchala
- Department of Radiology and Medical Imaging, University of Virginia Health System, PO Box 800170, Charlottesville, VA, 22908, USA
| | - Thomas J Eluvathingal Muttikkal
- Department of Radiology and Medical Imaging, University of Virginia Health System, PO Box 800170, Charlottesville, VA, 22908, USA
| | - Sergio S Ferrante
- Department of Radiology and Medical Imaging, University of Virginia Health System, PO Box 800170, Charlottesville, VA, 22908, USA
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, VA, USA
| | - Camilo E Fadul
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, VA, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, VA, USA
| | - M Beatriz Lopes
- Department of Pathology, Divisions of Neuropathology and Molecular Diagnostics, University of Virginia Health System, Charlottesville, VA, USA
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, 550 1st Avenue, New York, NY, 10016, USA.,Department of Neurosurgery, New York University School of Medicine, 550 1st Avenue, New York, NY, 10016, USA
| |
Collapse
|
41
|
Pryzbylski AL, Kollmeyer TM, Praska CE, Raghunathan A, Jentoft ME, Giannini C, Vaubel RA, Halling KC, Zheng G, DiGuardo MA, Kipp BR, Jenkins RB, Ida CM. Non-canonical IDH Mutation Frequency in IDH1-R132H-Negative Glioblastoma Patients Older Than 54 Years. J Neuropathol Exp Neurol 2021; 80:804-806. [PMID: 33550363 DOI: 10.1093/jnen/nlab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amber L Pryzbylski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas M Kollmeyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Corinne E Praska
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark E Jentoft
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gang Zheng
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaret A DiGuardo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Cristiane M Ida
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Ferreira WAS, Amorim CKN, Burbano RR, Villacis RAR, Marchi FA, Medina TS, Lima MMCD, Oliveira EHCD. Genomic and transcriptomic characterization of the human glioblastoma cell line AHOL1. ACTA ACUST UNITED AC 2021; 54:e9571. [PMID: 33470396 PMCID: PMC7812907 DOI: 10.1590/1414-431x20209571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Cancer cell lines are widely used as in vitro models of tumorigenesis, facilitating fundamental discoveries in cancer biology and translational medicine. Currently, there are few options for glioblastoma (GBM) treatment and limited in vitro models with accurate genomic and transcriptomic characterization. Here, a detailed characterization of a new GBM cell line, namely AHOL1, was conducted in order to fully characterize its molecular composition based on its karyotype, copy number alteration (CNA), and transcriptome profiling, followed by the validation of key elements associated with GBM tumorigenesis. Large numbers of CNAs and differentially expressed genes (DEGs) were identified. CNAs were distributed throughout the genome, including gains at Xq11.1-q28, Xp22.33-p11.1, Xq21.1-q21.33, 4p15.1-p14, 8q23.2-q23.3 and losses at Yq11.21-q12, Yp11.31-p11.2, and 15q11.1-q11.2 positions. Nine druggable genes were identified, including HCRTR2, ETV1, PTPRD, PRKX, STS, RPS6KA6, ZFY, USP9Y, and KDM5D. By integrating DEGs and CNAs, we identified 57 overlapping genes enriched in fourteen pathways. Altered expression of several cancer-related candidates found in the DEGs-CNA dataset was confirmed by RT-qPCR. Taken together, this first comprehensive genomic and transcriptomic landscape of AHOL1 provides unique resources for further studies and identifies several druggable targets that may be useful for therapeutics and biologic and molecular investigation of GBM.
Collapse
Affiliation(s)
- W A S Ferreira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - C K N Amorim
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brasil
| | - R R Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil.,Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Belém, PA, Brasil.,Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém, PA, Brasil
| | - R A R Villacis
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brasil
| | - F A Marchi
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - T S Medina
- Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - M M C de Lima
- Instituto de Ciências Biológicas, Faculdade de Biomedicina, Universidade Federal do Pará, Belém, PA, Brasil
| | - E H C de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brasil.,Instituto de Ciências Exatas e Naturais, Faculdade de Ciências Naturais, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
43
|
Chai R, Li G, Liu Y, Zhang K, Zhao Z, Wu F, Chang Y, Pang B, Li J, Li Y, Jiang T, Wang Y. Predictive value of MGMT promoter methylation on the survival of TMZ treated IDH-mutant glioblastoma. Cancer Biol Med 2021; 18:272-282. [PMID: 33628600 PMCID: PMC7877176 DOI: 10.20892/j.issn.2095-3941.2020.0179] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Objective O6methylguanine-DNA methyltransferase (MGMT) promoter methylation is a biomarker widely used to predict the sensitivity of IDH-wildtype glioblastoma to temozolomide therapy. Given that the IDH status has critical effects on the survival and epigenetic features of glioblastoma, we aimed to assess the role of MGMT promoter methylation in IDH-mutant glioblastoma. Methods This study included 187 IDH-mutant glioblastomas and used 173 IDH-wildtype glioblastomas for comparison. Kaplan-Meier curves and multivariate Cox regression were used to study the predictive effects. Results Compared with IDH-wildtype glioblastomas, IDH-mutant glioblastomas showed significantly higher (P < 0.0001) MGMT promoter methylation. We demonstrated that MGMT promoter methylation status, as determined by a high cutoff value (≥30%) in pyrosequencing, could be used to significantly stratify the survival of 50 IDH-mutant glioblastomas receiving temozolomide therapy (cohort A); this result was validated in another cohort of 25 IDH-mutant glioblastomas (cohort B). The median progression-free survival and median overall survival in cohort A were 9.33 and 13.76 months for unmethylated cases, and 18.37 and 41.61 months for methylated cases, and in cohort B were 6.97 and 9.10 months for unmethylated cases, and 23.40 and 26.40 months for methylated cases. In addition, we confirmed that the MGMT promoter methylation was significantly (P = 0.0001) correlated with longer OS in IDH-mutant patients with GBM, independently of age, gender distribution, tumor type (primary or recurrent/secondary), and the extent of resection. Conclusions MGMT promoter methylation has predictive value in IDH-mutant glioblastoma, but its cutoff value should be higher than that for IDH-wildtype glioblastoma.
Collapse
Affiliation(s)
- Ruichao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Yuqing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Yuzhou Chang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Jingjun Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Yangfang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yongzhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute; Chinese Glioma Genome Atlas Network (CGGA), Capital Medical University, Beijing 100070, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
44
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
45
|
Suwala AK, Stichel D, Schrimpf D, Kloor M, Wefers AK, Reinhardt A, Maas SLN, Kratz CP, Schweizer L, Hasselblatt M, Snuderl M, Abedalthagafi MSJ, Abdullaev Z, Monoranu CM, Bergmann M, Pekrun A, Freyschlag C, Aronica E, Kramm CM, Hinz F, Sievers P, Korshunov A, Kool M, Pfister SM, Sturm D, Jones DTW, Wick W, Unterberg A, Hartmann C, Dodgshun A, Tabori U, Wesseling P, Sahm F, von Deimling A, Reuss DE. Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathol 2021; 141:85-100. [PMID: 33216206 PMCID: PMC7785563 DOI: 10.1007/s00401-020-02243-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023]
Abstract
Diffuse IDH-mutant astrocytoma mostly occurs in adults and carries a favorable prognosis compared to IDH-wildtype malignant gliomas. Acquired mismatch repair deficiency is known to occur in recurrent IDH-mutant gliomas as resistance mechanism towards alkylating chemotherapy. In this multi-institutional study, we report a novel epigenetic group of 32 IDH-mutant gliomas with proven or suspected hereditary mismatch repair deficiency. None of the tumors exhibited a combined 1p/19q deletion. These primary mismatch repair-deficient IDH-mutant astrocytomas (PMMRDIA) were histologically high-grade and were mainly found in children, adolescents and young adults (median age 14 years). Mismatch repair deficiency syndromes (Lynch or Constitutional Mismatch Repair Deficiency Syndrom (CMMRD)) were clinically diagnosed and/or germline mutations in DNA mismatch repair genes (MLH1, MSH6, MSH2) were found in all cases, except one case with a family and personal history of colon cancer and another case with MSH6-deficiency available only as recurrent tumor. Loss of at least one of the mismatch repair proteins was detected via immunohistochemistry in all, but one case analyzed. Tumors displayed a hypermutant genotype and microsatellite instability was present in more than half of the sequenced cases. Integrated somatic mutational and chromosomal copy number analyses showed frequent inactivation of TP53, RB1 and activation of RTK/PI3K/AKT pathways. In contrast to the majority of IDH-mutant gliomas, more than 60% of the samples in our cohort presented with an unmethylated MGMT promoter. While the rate of immuno-histochemical ATRX loss was reduced, variants of unknown significance were more frequently detected possibly indicating a higher frequency of ATRX inactivation by protein malfunction. Compared to reference cohorts of other IDH-mutant gliomas, primary mismatch repair-deficient IDH-mutant astrocytomas have by far the worst clinical outcome with a median survival of only 15 months irrespective of histological or molecular features. The findings reveal a so far unknown entity of IDH-mutant astrocytoma with high prognostic relevance. Diagnosis can be established by aligning with the characteristic DNA methylation profile, by DNA-sequencing-based proof of mismatch repair deficiency or immunohistochemically demonstrating loss-of-mismatch repair proteins.
Collapse
Affiliation(s)
- Abigail K Suwala
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Annika K Wefers
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Sybren L N Maas
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Leonille Schweizer
- Department of Neuropathology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Matija Snuderl
- Division of Neuropathology, NYU Langone Health, New York, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, USA
- Division of Molecular Pathology and Diagnostics, NYU Langone Health, New York, USA
| | - Malak Sameer J Abedalthagafi
- Pathology Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Camelia M Monoranu
- Institute of Pathology, Julius-Maximilians-University, Würzburg, Germany
| | - Markus Bergmann
- Institute of Clinical Neuropathology, Bremen-Mitte Medical Center, Bremen, Germany
| | - Arnulf Pekrun
- Professor Hess Children's Hospital, Klinikum Bremen-Mitte, Bremen, Germany
| | | | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Felix Hinz
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Andrew Dodgshun
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
- Children's Haematology and Oncology Center, Christchurch Hospital, Christchurch, New Zealand
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Division of Haematology and Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This article highlights important aspects of the evaluation, diagnosis, and treatment of adult gliomas, including lower-grade astrocytomas and oligodendrogliomas, glioblastomas, and ependymomas. RECENT FINDINGS The appropriate initial evaluation and accurate diagnosis of gliomas require an understanding of the spectrum of clinical and radiographic presentations. Recent advances in the understanding of distinct molecular prognostic subtypes have led to major revisions in the diagnostic classification of gliomas. Integration of these new diagnostic and molecular classifications is an important part of the modern management of gliomas and facilitates better understanding and interpretation of the efficacy of different therapies in specific glioma subtypes. SUMMARY The management of adult gliomas is a multidisciplinary endeavor. However, despite recent molecular and treatment advances, the majority of diffuse gliomas remain incurable, and efforts aimed at the development and testing of new therapies in clinical trials are ongoing.
Collapse
|
47
|
The role of neuropathology in the management of newly diagnosed glioblastoma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2020; 150:143-164. [PMID: 33215342 DOI: 10.1007/s11060-020-03616-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma (GBM) QUESTION : For adult patients with newly diagnosed GBM does testing for Isocitrate Dehydrogenase 1 or 2 (IDH 1/2) mutations afford benefit beyond standard histopathology in providing accurate classification and outcome prognostication? Level III IDH 1/2 mutational status by immunohistochemistry (IHC) and/or sequencing is suggested for classification and prognostic information. Level III Non-canonical IDH 1/2 mutations are very rare in patients aged 55 or older and universal testing of variant mutations by sequence analysis is not suggested for this age range. QUESTION For adult patients with lower grade infiltrating astrocytomas (WHO grades II and III) can the IDH-wildtype status designation supersede histopathology to predict prognosis and biologic relevance to eventual behavior as a GBM? Level III The designation of infiltrating astrocytomas (WHO grades II and III) as IDH-wildtype is not suggested as sufficient for a higher grade designation alone. Level III It is suggested that IDH-wildtype WHO grades II and III astrocytomas be tested for molecular-genetic alterations typical of IDH-wildtype GBM such as EGFR amplification, gain of chromosome 7/loss of chromosome 10 and TERT-p mutation to substantiate prediction of behavior similar to IDH-wildtype glioblastoma. Level III It is suggested that a diagnosis of diffuse astrocytic glioma, IDH-wildtype, with molecular features of GBM, WHO grade IV be rendered for infiltrating astrocytomas that lack histologic criteria of GBM but harbors molecular-genetic alterations of IDH-wildtype glioblastoma. QUESTION For adult patients with newly diagnosed infiltrating glioma arising in the midline does testing for H3-K27M mutations provide information beyond that gained by histopathology for accurate classification and outcome prognostication? Level III It is suggested that infiltrating gliomas arising in midline anatomic locations be tested for the H3-K27M mutation as they tend to exhibit WHO grade IV behavior even if they lack histologic criteria for glioblastoma.
Collapse
|
48
|
Banan R, Stichel D, Bleck A, Hong B, Lehmann U, Suwala A, Reinhardt A, Schrimpf D, Buslei R, Stadelmann C, Ehlert K, Prinz M, Acker T, Schittenhelm J, Kaul D, Schweizer L, Capper D, Harter PN, Etminan N, Jones DTW, Pfister SM, Herold-Mende C, Wick W, Sahm F, von Deimling A, Hartmann C, Reuss DE. Infratentorial IDH-mutant astrocytoma is a distinct subtype. Acta Neuropathol 2020; 140:569-581. [PMID: 32776277 DOI: 10.1007/s00401-020-02194-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Diffuse IDH-mutant astrocytic tumors are rarely diagnosed in the cerebellum or brainstem. In this multi-institutional study, we characterized a series of primary infratentorial IDH-mutant astrocytic tumors with respect to clinical and molecular parameters. We report that about 80% of IDH mutations in these tumors are of non-IDH1-R132H variants which are rare in supratentorial astrocytomas. Most frequently, IDH1-R132C/G and IDH2-R172S/G mutations were present. Moreover, the frequencies of ATRX-loss and MGMT promoter methylation, which are typically associated with IDH mutations in supratentorial astrocytic tumors, were significantly lower in the infratentorial compartment. Gene panel sequencing revealed two samples with IDH1-R132C/H3F3A-K27M co-mutations. Genome-wide DNA methylation as well as chromosomal copy number profiling provided further evidence for a molecular distinctiveness of infratentorial IDH-mutant astrocytomas. Clinical outcome of patients with infratentorial IDH-mutant astrocytomas is significantly better than that of patients with diffuse midline gliomas, H3K27M-mutant (p < 0.005) and significantly worse than that of patients with supratentorial IDH-mutant astrocytomas (p = 0.028). The presented data highlight the very existence and distinctiveness of infratentorial IDH-mutant astrocytomas that have important implications for diagnostics and prognostication. They imply that molecular testing is critical for detection of these tumors, since many of these tumors cannot be identified by immunohistochemistry applied for the mutated IDH1-R132H protein or loss of ATRX.
Collapse
Affiliation(s)
- Rouzbeh Banan
- Department of Neuropathology, Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Anja Bleck
- Department of Neuropathology, Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Bujung Hong
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Abigail Suwala
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Annekathrin Reinhardt
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schrimpf
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rolf Buslei
- Institute of Pathology, Klinikum Bamberg, Klinikum, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Karoline Ehlert
- Department of Pediatric Oncology and Hematology, University of Greifswald, Greifswald, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Till Acker
- Institute of Neuropathology, University of Gießen, Gießen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, University of Tübingen, Tübingen, Germany
| | - David Kaul
- Department of Radiation Oncology and Radiotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonille Schweizer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Frankfurt, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - David T W Jones
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Childrens Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Pediatric Glioma Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Childrens Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Felix Sahm
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - David E Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
49
|
Jünger ST, Andreiuolo F, Mynarek M, Wohlers I, Rahmann S, Klein-Hitpass L, Dörner E, Zur Mühlen A, Velez-Char N, von Hoff K, Warmuth-Metz M, Kortmann RD, Timmermann B, von Bueren A, Rutkowski S, Pietsch T. CDKN2A deletion in supratentorial ependymoma with RELA alteration indicates a dismal prognosis: a retrospective analysis of the HIT ependymoma trial cohort. Acta Neuropathol 2020; 140:405-407. [PMID: 32514758 PMCID: PMC7423858 DOI: 10.1007/s00401-020-02169-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Neurosurgery, University of Cologne Medical Center, Cologne, Germany
| | - Felipe Andreiuolo
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Inken Wohlers
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
- Medical Systems Biology Division, Lübeck Institute of Experimental Dermatology and Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany
| | - Ludger Klein-Hitpass
- Department of Cell Biology (Tumor Research), University of Duisburg-Essen, Essen, Germany
| | - Evelyn Dörner
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anja Zur Mühlen
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Natalia Velez-Char
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | | | | | - Andre von Bueren
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Obstetrics and Gynecology, University Hospital of Geneva, Geneva, Switzerland
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
50
|
Appay R, Dehais C, Maurage CA, Alentorn A, Carpentier C, Colin C, Ducray F, Escande F, Idbaih A, Kamoun A, Marie Y, Mokhtari K, Tabouret E, Trabelsi N, Uro-Coste E, Delattre JY, Figarella-Branger D. CDKN2A homozygous deletion is a strong adverse prognosis factor in diffuse malignant IDH-mutant gliomas. Neuro Oncol 2020; 21:1519-1528. [PMID: 31832685 DOI: 10.1093/neuonc/noz124] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The 2016 World Health Organization (WHO) classification of central nervous system tumors stratifies isocitrate dehydrogenase (IDH)-mutant gliomas into 2 major groups depending on the presence or absence of 1p/19q codeletion. However, the grading system remains unchanged and it is now controversial whether it can be still applied to this updated molecular classification. METHODS In a large cohort of 911 high-grade IDH-mutant gliomas from the French national POLA network (including 428 IDH-mutant gliomas without 1p/19q codeletion and 483 anaplastic oligodendrogliomas, IDH-mutant and 1p/19q codeleted), we investigated the prognostic value of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene homozygous deletion as well as WHO grading criteria (mitoses, microvascular proliferation, and necrosis). In addition, we searched for other retinoblastoma pathway gene alterations (CDK4 amplification and RB1 homozygous deletion) in a subset of patients. CDKN2A homozygous deletion was also searched in an independent series of 40 grade II IDH-mutant gliomas. RESULTS CDKN2A homozygous deletion was associated with dismal outcome among IDH-mutant gliomas lacking 1p/19q codeletion (P < 0.0001 for progression-free survival and P = 0.004 for overall survival) as well as among anaplastic oligodendrogliomas, IDH-mutant + 1p/19q codeleted (P = 0.002 for progression-free survival and P < 0.0001 for overall survival) in univariate and multivariate analysis including age, extent of surgery, adjuvant treatment, microvascular proliferation, and necrosis. In both groups, the presence of microvascular proliferation and/or necrosis remained of prognostic value only in cases lacking CDKN2A homozygous deletion. CDKN2A homozygous deletion was not recorded in grade II gliomas. CONCLUSIONS Our study pointed out the utmost relevance of CDKN2A homozygous deletion as an adverse prognostic factor in the 2 broad categories of IDH-mutant gliomas stratified on 1p/19q codeletion and suggests that the grading of these tumors should be refined.
Collapse
Affiliation(s)
- Romain Appay
- Department of Pathological Anatomy and Neuropathology, Timone Hospital, Public Assistance-Marseille Hospitals (APHM), Marseille, France.,Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France
| | - Caroline Dehais
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Claude-Alain Maurage
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Agusti Alentorn
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France
| | - Catherine Carpentier
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Carole Colin
- Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France
| | - François Ducray
- Department of Neuro-Oncology, Civil Hospices of Lyon, Pierre Wertheimer Hospital, Bron, France.,Department of Cancer Cell Plasticity, Cancer Research Center of Lyon, Lyon, France
| | - Fabienne Escande
- Department of Pathology, Lille University Hospital, Lille, France
| | - Ahmed Idbaih
- Department of Neurology 2-Mazarin, Public Assistance-Paris Hospitals (APHP), University Hospital Pitié Salpêtrière-Charles Foix, Paris, France.,Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Aurélie Kamoun
- Tumor Identity Card Program, National League Against Cancer, Paris, France
| | - Yannick Marie
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Karima Mokhtari
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France.,Department of Neurology, Raymond Escourolle Neuropathology Service, University Hospitals of Pitié Salpêtrière-Charles Foix, APHP, Paris, France
| | - Emeline Tabouret
- Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France.,Department of Neuro-Oncology, Timone Hospital, APHM, Marseille, France
| | - Nesrine Trabelsi
- Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Emmanuelle Uro-Coste
- Department of Pathological Anatomy and Histology-Cytology, Rangueil Hospital, Toulouse, France.,Center for Research in Cancerology, Inserm U1037, University of Toulouse, Toulouse, France
| | - Jean-Yves Delattre
- Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France.,Sorbonne University, National Institute of Health and Medical Research (Inserm), CNRS, Brain and Spinal Cord Institute, University Hospitals of Pitié Salpêtrière-Charles Foix, Department of Neurology 2-Mazarin, Paris, France
| | - Dominique Figarella-Branger
- Department of Pathological Anatomy and Neuropathology, Timone Hospital, Public Assistance-Marseille Hospitals (APHM), Marseille, France.,Aix-Marseille University, Scientific Research National Center (CNRS), Institute of Neurophysiopathology, Marseille, France
| | | |
Collapse
|