1
|
Colín-Martínez E, Espino-de-la-Fuente C, Arias C. Age- and Sex-Associated Wnt Signaling Dysregulation is Exacerbated from the Early Stages of Neuropathology in an Alzheimer's Disease Model. Neurochem Res 2024; 49:3094-3104. [PMID: 39167347 PMCID: PMC11449975 DOI: 10.1007/s11064-024-04224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Emerging studies suggest that Wnt signaling is dysregulated in the brains of AD patients, suggesting that this pathway may also contribute to disease progression. However, it remains to be determined whether alterations in the Wnt pathway are the cause or consequence of this disease and which elements of Wnt signaling mainly contribute to the appearance of AD histopathological markers early in disease compared to what occurs during normal aging. The present study aimed to describe the status of several canonical Wnt pathway components and the expression of the AD marker p-tau in the hippocampi of female and male 3xTg-AD mice during disease progression compared to those during normal aging. We analyzed the levels of the canonical Wnt components Wnt7a, Dkk-1, LRP6 and GSK3β as well as the levels of p-tau and BDNF at 3, 6, 9-12 and 18 months of age. We found a gradual increase in Dkk-1 levels during aging prior to Wnt7a and LRP5/6 depletion, which was strongly exacerbated in 3xTg-AD mice even at young ages and correlated with GSK3β activation and p-tau-S202/Thr205 expression. Dkk-1 upregulation, as well as the level of p-tau, was significantly greater in females than in males. Our results suggest that Dkk-1 upregulation is involved in the expression of several features of AD at early stages, which supports the possibility of positively modulating the canonical Wnt pathway as a therapeutic tool to delay this disease at early stages.
Collapse
Affiliation(s)
- Elizabeth Colín-Martínez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - César Espino-de-la-Fuente
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| |
Collapse
|
2
|
Legault LM, Dupas T, Breton-Larrivée M, Filion-Bienvenue F, Lemieux A, Langford-Avelar A, McGraw S. Sex-specific DNA methylation and gene expression changes in mouse placentas after early preimplantation alcohol exposure. ENVIRONMENT INTERNATIONAL 2024; 192:109014. [PMID: 39321537 DOI: 10.1016/j.envint.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
During pregnancy, exposure to alcohol represents an environmental insult capable of negatively impacting embryonic development. This influence can stem from disruption of molecular profiles, ultimately leading to manifestation of fetal alcohol spectrum disorder. Despite the central role of the placenta in proper embryonic development and successful pregnancy, studies on the placenta in a prenatal alcohol exposure and fetal alcohol spectrum disorder context are markedly lacking. Here, we employed a well-established model for preimplantation alcohol exposure, specifically targeting embryonic day 2.5, corresponding to the 8-cell stage. The exposure was administered to pregnant C57BL/6 female mice through subcutaneous injection, involving two doses of either 2.5 g/kg 50 % ethanol or an equivalent volume of saline at 2-hour intervals. Morphology, DNA methylation and gene expression patterns were assessed in male and female late-gestation (E18.5) placentas. While overall placental morphology was not altered, we found a significant decrease in male ethanol-exposed embryo weights. When looking at molecular profiles, we uncovered numerous differentially methylated regions (DMRs; 991 in males; 1309 in females) and differentially expressed genes (DEGs; 1046 in males; 340 in females) in the placentas. Remarkably, only 21 DMRs and 54 DEGs were common to both sexes, which were enriched for genes involved in growth factor response pathways. Preimplantation alcohol exposure had a greater impact on imprinted genes expression in male placentas (imprinted DEGs: 18 in males; 1 in females). Finally, by using machine learning model (L1 regularization), we were able to precisely discriminate control and ethanol-exposed placentas based on their specific DNA methylation patterns. This is the first study demonstrating that preimplantation alcohol exposure alters the DNA methylation and transcriptomic profiles of late-gestation placentas in a sex-specific manner. Our findings highlight that the DNA methylation profiles of the placenta could serve as a potent predictive molecular signature for early preimplantation alcohol exposure.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Thomas Dupas
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Fannie Filion-Bienvenue
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Anthony Lemieux
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Serge McGraw
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
3
|
Zhao B, Wei D, Long Q, Chen Q, Wang F, Chen L, Li Z, Li T, Ma T, Liu W, Wang L, Yang C, Zhang X, Wang P, Zhang Z. Altered synaptic currents, mitophagy, mitochondrial dynamics in Alzheimer's disease models and therapeutic potential of Dengzhan Shengmai capsules intervention. J Pharm Anal 2024; 14:348-370. [PMID: 38618251 PMCID: PMC11010627 DOI: 10.1016/j.jpha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 04/16/2024] Open
Abstract
Emerging research suggests a potential association of progression of Alzheimer's disease (AD) with alterations in synaptic currents and mitochondrial dynamics. However, the specific associations between these pathological changes remain unclear. In this study, we utilized Aβ42-induced AD rats and primary neural cells as in vivo and in vitro models. The investigations included behavioural tests, brain magnetic resonance imaging (MRI), liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis, Nissl staining, thioflavin-S staining, enzyme-linked immunosorbent assay, Golgi-Cox staining, transmission electron microscopy (TEM), immunofluorescence staining, proteomics, adenosine triphosphate (ATP) detection, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) assessment, mitochondrial morphology analysis, electrophysiological studies, Western blotting, and molecular docking. The results revealed changes in synaptic currents, mitophagy, and mitochondrial dynamics in the AD models. Remarkably, intervention with Dengzhan Shengmai (DZSM) capsules emerged as a pivotal element in this investigation. Aβ42-induced synaptic dysfunction was significantly mitigated by DZSM intervention, which notably amplified the frequency and amplitude of synaptic transmission. The cognitive impairment observed in AD rats was ameliorated and accompanied by robust protection against structural damage in key brain regions, including the hippocampal CA3, primary cingular cortex, prelimbic system, and dysgranular insular cortex. DZSM intervention led to increased IDE levels, augmented long-term potential (LTP) amplitude, and enhanced dendritic spine density and length. Moreover, DZSM intervention led to favourable changes in mitochondrial parameters, including ROS expression, MMP and ATP contents, and mitochondrial morphology. In conclusion, our findings delved into the realm of altered synaptic currents, mitophagy, and mitochondrial dynamics in AD, concurrently highlighting the therapeutic potential of DZSM intervention.
Collapse
Affiliation(s)
- Binbin Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qinghua Long
- Medical School, Hubei Minzu University, Enshi, Hubei, 445000, China
| | - Qingjie Chen
- HuBei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, 610066, China
| | - Linlin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zefei Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tong Li
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| | - Ping Wang
- Institute of Gerontology, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- BABRI Centre, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Ganesan K, Rentsch P, Langdon A, Milham LT, Vissel B. Modeling sporadic Alzheimer's disease in mice by combining Apolipoprotein E4 risk gene with environmental risk factors. Front Aging Neurosci 2024; 16:1357405. [PMID: 38476659 PMCID: PMC10927790 DOI: 10.3389/fnagi.2024.1357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Developing effective treatment for Alzheimer's disease (AD) remains a challenge. This can be partially attributed to the fact that the mouse models used in preclinical research largely replicate familial form of AD, while majority of human cases are sporadic; both forms differ widely in the onset and origin of pathology, therefore requiring specific/targeted treatments. Methods In this study, we aimed to model sporadic AD in mice by combining two of the many risk factors that are strongly implicated in AD: ApoE4, a major genetic risk factor, together with an inflammatory stimuli. Accordingly, we subjected ApoE4 knock in (KI) mice, expressing humanized ApoE4, to low doses of Lipopolysaccharide (LPS) injections (i.p, weekly, for 4 months). Results We assessed these animals for behavioral impairments at 6 months of age using Open Field, Y-maze, and Barnes Maze Test. LPS induced hypoactivity was observed in the Open Field and Y-maze test, whereas spatial learning and memory was intact. We then quantified differences in dendritic spine density, which is a strong correlate of AD. ApoE4KI mice showed a significant reduction in the number of spines after treatment with LPS, whereas there were no obvious differences in the total number of microglia and astrocytes. Discussion To conclude, in the current study the APoEe4 risk gene increases the vulnerability of hippocampal neurons to inflammation induced spine loss, laying a foundation for an early sporadic AD mouse model.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Jiang SZ, Shahoha M, Zhang HY, Brancaleone W, Elkahloun A, Tejeda HA, Ashery U, Eiden LE. The guanine nucleotide exchange factor RapGEF2 is required for ERK-dependent immediate-early gene (Egr1) activation during fear memory formation. Cell Mol Life Sci 2024; 81:48. [PMID: 38236296 PMCID: PMC11071968 DOI: 10.1007/s00018-023-04999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - Meishar Shahoha
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel
| | - Hai-Ying Zhang
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | - William Brancaleone
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA
| | | | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, NIMH-IRP, Bethesda, MD, USA
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, and Sagol School of Neuroscience, Tel Aviv University, Sherman Building Rm 719, Ramat Aviv, 69978, Tel Aviv, Israel.
| | - Lee E Eiden
- Section On Molecular Neuroscience, NIMH Intramural Research Program, 9000 Rockville Pike, Building 49, Room 5A38, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Xu L, Qu C, Liu Y, Liu H. The environmental enrichment ameliorates chronic cerebral hypoperfusion-induced cognitive impairment by activating autophagy signaling pathway and improving synaptic function in hippocampus. Brain Res Bull 2023; 204:110798. [PMID: 37890595 DOI: 10.1016/j.brainresbull.2023.110798] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/01/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a frequently observed underlying pathology of both Alzheimer's disease (AD) and vascular dementia (VD), which is a common consequence of cerebral blood flow (CBF) dysregulation. Synaptic damage has been proven as a crucial causative factor for CCH-related cognitive impairment. This study aimed to investigate the neuroprotective impact of environmental enrichment (EE) intervention on CCH-induced synaptic destruction and the consequent cognitive impairment. Furthermore, the underlying mechanism of this neuroprotective effect was explored to provide new insights into therapeutic interventions for individuals suffering from AD or VD. METHODS In this experiment, all rats were initially acclimatized to a standard environment (SE) for a period of one week. On the seventh day, rats underwent either bilateral common carotid artery occlusion (2VO) surgery or sham surgery (Sham) before being subjected to a four-week procedure of exposure to an EE, except for the control group. During the EE or SE procedure, intraperitoneal injection of chloroquine (CQ) into rats was performed once daily for four weeks. Following this, cognitive function was assessed using the Morris water maze (MWM) test. The synapse ultrastructure was subsequently observed using transmission electron microscopy. Expression levels of autophagy-related proteins (LC3, LAMP1, and P62) and synapse-related proteins (Synapsin I and PSD-95) were detected through Western blotting. Finally, immunofluorescence was used to examine the expression levels of Synapsin I and PSD-95 and the colocalization of LAMP-1 and LC3 in the hippocampus. RESULTS After undergoing 2VO, rats exposed to SE exhibited cognitive impairment, autophagic dysfunction, and synapse damage. The synapse damage was evidenced by ultrastructural damage and degradation of synapse-related proteins. However, these effects were significantly mitigated by exposure to an EE intervention. Moreover, the intervention led to an improvement in autophagic dysfunction. CONCLUSION The study found that EE had a positive impact on CCH-induced synaptic damage. Specifically, EE was found to increase synaptic plasticity-associated proteins and postsynaptic density thickness, while decreasing synaptic space. This multifaceted effect resulted in an amelioration of CCH-induced cognitive impairment. It was shown that this beneficial outcome was mediated via the activation of the autophagy-lysosomal pathway. Overall, the findings suggest that EE may have a therapeutic potential for cognitive impairments associated with CCH through autophagy-mediated synaptic improvement.
Collapse
Affiliation(s)
- Linling Xu
- The Affiliated Hospital of Southwest Jiaotong University & the Third People's Hospital of Chengdu, No.82, Qinglong Road, Chengdu 610014, Sichuan, China; Department of Neurology, Zhongnan Hospital, Wuhan University, No.169, Donghu Road, Wuhan 430071, Hubei, China
| | - Changhua Qu
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Department of Neurology, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Yan Liu
- The Affiliated Hospital of Southwest Jiaotong University & the Third People's Hospital of Chengdu, No.82, Qinglong Road, Chengdu 610014, Sichuan, China
| | - Hua Liu
- The Affiliated Hospital of Southwest Jiaotong University & the Third People's Hospital of Chengdu, No.82, Qinglong Road, Chengdu 610014, Sichuan, China.
| |
Collapse
|
7
|
Kao PY, Chen MH, Chang WA, Pan ML, Shu WD, Jong YJ, Huang HD, Wang CY, Chu HY, Pan CT, Liu YL, Lin YS. A genome-wide association study (GWAS) of the personality constructs in CPAI-2 in Taiwanese Hakka populations. PLoS One 2023; 18:e0281903. [PMID: 36800362 PMCID: PMC9937499 DOI: 10.1371/journal.pone.0281903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Here in this study we adopted genome-wide association studies (GWAS) to investigate the genetic components of the personality constructs in the Chinese Personality Assessment Inventory 2 (CPAI-2) in Taiwanese Hakka populations, who are likely the descendants of a recent admixture between a group of Chinese immigrants with high emigration intention and a group of the Taiwanese aboriginal population generally without it. A total of 279 qualified participants were examined and genotyped by an Illumina array with 547,644 SNPs to perform the GWAS. Although our sample size is small and that unavoidably limits our statistical power (Type 2 error but not Type 1 error), we still found three genomic regions showing strong association with Enterprise, Diversity, and Logical vs. Affective Orientation, respectively. Multiple genes around the identified regions were reported to be nervous system related, which suggests that genetic variants underlying the certain personalities should indeed exist in the nearby areas. It is likely that the recent immigration and admixture history of the Taiwanese Hakka people created strong linkage disequilibrium between the emigration intention-related genetic variants and their neighboring genetic markers, so that we could identify them despite with only limited statistical power.
Collapse
Affiliation(s)
- Pei-Ying Kao
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ming-Hui Chen
- Department of Hakka Language and Social Science, National Central University, Taoyuan, Taiwan
| | - Wei-An Chang
- Department of Humanities and Social Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Research Center for Humanities and Social Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Mei-Lin Pan
- Department of Humanities and Social Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Der Shu
- Department of Humanities and Social Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University (KMU), Kaohsiung, Taiwan
- Departments of Pediatrics and Laboratory Medicine, KMU Hospital, Kaohsiung, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Yan Wang
- Institute of Education, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hong-Yan Chu
- Research Center for Humanities and Social Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cheng-Tsung Pan
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yih-Lan Liu
- Institute of Education, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (YLL); (YSL)
| | - Yeong-Shin Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- * E-mail: (YLL); (YSL)
| |
Collapse
|
8
|
Li N, Deng M, Hu G, Li N, Yuan H, Zhou Y. New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules 2022; 12:1722. [PMID: 36421736 PMCID: PMC9687453 DOI: 10.3390/biom12111722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegeneration characterized by the impairment of memory and cognition. Despite years of studies, no effective treatment and prevention strategies are available yet. Identifying new AD therapeutic targets is crucial for better elucidating the pathogenesis and establishing a valid treatment of AD. Growing evidence suggests that microglia play a critical role in AD. Microglia are resident macrophages in the central nervous system (CNS), and their core properties supporting main biological functions include surveillance, phagocytosis, and the release of soluble factors. Activated microglia not only directly mediate the central immune response, but also participate in the pathological changes of AD, including amyloid-beta (Aβ) aggregation, tau protein phosphorylation, synaptic dissection, neuron loss, memory function decline, etc. Based on these recent findings, we provide a new framework to summarize the role of microglia in AD memory impairment. This evidence suggests that microglia have the potential to become new targets for AD therapy.
Collapse
Affiliation(s)
- Na Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Medicine, Qingdao Binhai University, Qingdao 266555, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| |
Collapse
|
9
|
Jeon H, Kim YJ, Hwang SK, Seo J, Mun JY. Restoration of Cathepsin D Level via L-Serine Attenuates PPA-Induced Lysosomal Dysfunction in Neuronal Cells. Int J Mol Sci 2022; 23:ijms231810613. [PMID: 36142514 PMCID: PMC9504002 DOI: 10.3390/ijms231810613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson’s disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.
Collapse
Affiliation(s)
- Hyunbum Jeon
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yeo Jin Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Astrogen Inc., 440, Hyeoksin-daero, Dong-gu, Daegu 41072, Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Korea
- Correspondence:
| |
Collapse
|
10
|
Kuramoto E, Kitawaki A, Yagi T, Kono H, Matsumoto SE, Hara H, Ohyagi Y, Iwai H, Yamanaka A, Goto T. Development of a system to analyze oral frailty associated with Alzheimer's disease using a mouse model. Front Aging Neurosci 2022; 14:935033. [PMID: 35983379 PMCID: PMC9380890 DOI: 10.3389/fnagi.2022.935033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
The rapid aging of the population makes the detection and prevention of frailty increasingly important. Oral frailty has been proposed as a novel frailty phenotype and is defined as a decrease in oral function coexisting with a decline in cognitive and physical functions. Oral frailty has received particular attention in relation to Alzheimer's disease (AD). However, the pathomechanisms of oral frailty related to AD remain unknown. It is assumed that the mesencephalic trigeminal nucleus (Vmes), which controls mastication, is affected by AD pathology, and as a result, masticatory function may be impaired. To investigate this possibility, we included male 3 × Tg-AD mice and their non-transgenic counterpart (NonTg) of 3-4 months of age in the present study. Immunohistochemistry revealed amyloid-β deposition and excessive tau phosphorylation in the Vmes of 3 × Tg-AD mice. Furthermore, vesicular glutamate transporter 1-immunopositive axon varicosities, which are derived from Vmes neurons, were significantly reduced in the trigeminal motor nucleus of 3 × Tg-AD mice. To investigate whether the AD pathology observed in the Vmes affects masticatory function, we analyzed electromyography of the masseter muscle during feeding. The 3 × Tg-AD mice showed a significant delay in masticatory rhythm compared to NonTg mice. Furthermore, we developed a system to simultaneously record bite force and electromyography of masseter, and devised a new method to estimate bite force during food chewing in mice. Since the muscle activity of the masseter showed a high correlation with bite force, it could be accurately estimated from the muscle activity. The estimated bite force of 3 × Tg-AD mice eating sunflower seeds was predominantly smaller than that of NonTg mice. However, there was no difference in masseter weight or muscle fiber cross-sectional area between the two groups, suggesting that the decreased bite force and delayed mastication rhythm observed in 3 × Tg-AD mice were not due to abnormality of the masseter. In conclusion, the decreased masticatory function observed in 3 × Tg-AD mice was most likely caused by AD pathology in the Vmes. Thus, novel quantitative analyses of masticatory function using the mouse model of AD enabled a comprehensive understanding of oral frailty pathogenesis.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ayano Kitawaki
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Oral Health Science, Kobe Tokiwa University, Kobe, Japan
| | - Hiroshi Kono
- Department of Biomaterials Science, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shin-Ei Matsumoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiromitsu Hara
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yasumasa Ohyagi
- Department of Neurology and Geriatric Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Pradhan LK, Sahoo PK, Chauhan S, Das SK. Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. J Mol Neurosci 2022; 72:1143-1165. [PMID: 35553375 DOI: 10.1007/s12031-022-02009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
Abstract
Since the report of "a peculiar severe disease process of the cerebral cortex" by Alois Alzheimer in 1906, it was considered to be a rare condition characterized by loss of cognition, memory impairment, and pathological markers such as senile plaques or neurofibrillary tangles (NFTs). Later on, the report was published in the textbook "Psychiatrie" and the disease was named as Alzheimer's disease (AD) and was known to be the consequences of aging; however, owing to its complex etiology, there is no cure for the progressive neurodegenerative disorder. Our current understanding of the mechanisms involved in the pathogenesis of AD is still at the mechanistic level. The treatment strategies applied currently only alleviate the symptoms and co-morbidities. For instance, the available treatments such as the usage of acetylcholinesterase inhibitors and N-methyl D-aspartate antagonists have minimal impact on the disease progression and target the later aspects of the disease. The recent advancements in the last two decades have made us more clearly understand the pathophysiology of the disease which has led to the development of novel therapeutic strategies. This review gives a brief idea about the various facets of AD pathophysiology and its management through modern investigational therapies to give a new direction for development of targeted therapeutic measures.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar-751023, India.
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India.
| |
Collapse
|
12
|
Seo NY, Kim GH, Noh JE, Shin JW, Lee CH, Lee KJ. Selective Regional Loss of Cortical Synapses Lacking Presynaptic Mitochondria in the 5xFAD Mouse Model. Front Neuroanat 2021; 15:690168. [PMID: 34248509 PMCID: PMC8267061 DOI: 10.3389/fnana.2021.690168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022] Open
Abstract
Synaptic loss in Alzheimer's disease (AD) is strongly correlated with cognitive impairment. Accumulating evidence indicates that amyloid pathology leads to synaptic degeneration and mitochondrial damage in AD. However, it remains unclear whether synapses and presynaptic mitochondria are differentially affected in various cortical regions of the AD brain at the ultrastructural level. Using serial block-face scanning electron microscopy, we assessed synaptic structures in the medial prefrontal cortex (mPFC) and primary visual cortex (V1) of the 5xFAD mouse model of AD. At 6 months of age, 5xFAD mice exhibited significantly elevated levels of amyloid deposition in layer 2/3 of the mPFC but not V1. Accordingly, three-dimensional reconstruction of synaptic connectivity revealed a significant reduction in excitatory synaptic density in layer 2 of the mPFC, but not V1, of male transgenic mice. Notably, the density of synapses lacking presynaptic mitochondria was selectively decreased in the mPFC of 5xFAD mice, with no change in the density of mitochondria-containing synapses. Further classification of spines into shape categories confirmed a preferential loss of thin spines whose presynaptic boutons were largely devoid of mitochondria in the 5xFAD mPFC. Furthermore, the number of mitochondria per bouton in spared mitochondria-containing boutons was reduced in the mPFC, but not V1, of 5xFAD mice. Collectively, these results highlight region-specific vulnerability of cortical synapses to amyloid deposition and suggest that the presence of presynaptic mitochondria may affect synaptic degeneration in AD.
Collapse
Affiliation(s)
- Na-Young Seo
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Jeong Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Ji Won Shin
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Chan Hee Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, South Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
13
|
Jang YN, Jang H, Kim GH, Noh JE, Chang KA, Lee KJ. RAPGEF2 mediates oligomeric Aβ-induced synaptic loss and cognitive dysfunction in the 3xTg-AD mouse model of Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 47:625-639. [PMID: 33345400 PMCID: PMC8359155 DOI: 10.1111/nan.12686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
AIMS Amyloid-β (Aβ) oligomers trigger synaptic degeneration that precedes plaque and tangle pathology. However, the signalling molecules that link Aβ oligomers to synaptic pathology remain unclear. Here, we addressed the potential role of RAPGEF2 as a novel signalling molecule in Aβ oligomer-induced synaptic and cognitive impairments in human-mutant amyloid precursor protein (APP) mouse models of Alzheimer's disease (AD). METHODS To investigate the role of RAPGEF2 in Aβ oligomer-induced synaptic and cognitive impairments, we utilised a combination of approaches including biochemistry, molecular cell biology, light and electron microscopy, behavioural tests with primary neuron cultures, multiple AD mouse models and post-mortem human AD brain tissue. RESULTS We found significantly elevated RAPGEF2 levels in the post-mortem human AD hippocampus. RAPGEF2 levels also increased in the transgenic AD mouse models, generating high levels of Aβ oligomers before exhibiting synaptic and cognitive impairment. RAPGEF2 upregulation activated the downstream effectors Rap2 and JNK. In cultured hippocampal neurons, oligomeric Aβ treatment increased the fluorescence intensity of RAPGEF2 and reduced the number of dendritic spines and the intensities of synaptic marker proteins, while silencing RAPGEF2 expression blocked Aβ oligomer-induced synapse loss. Additionally, the in vivo knockdown of RAPGEF2 expression in the AD hippocampus prevented cognitive deficits and the loss of excitatory synapses. CONCLUSIONS These findings demonstrate that the upregulation of RAPGEF2 levels mediates Aβ oligomer-induced synaptic and cognitive disturbances in the AD hippocampus. We propose that an early intervention regarding RAPGEF2 expression may have beneficial effects on early synaptic pathology and memory loss in AD.
Collapse
Affiliation(s)
- You-Na Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - HoChung Jang
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jeong-Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|