1
|
Quatraccioni A, Cases-Cunillera S, Balagura G, Coleman M, Rossini L, Mills JD, Casillas-Espinosa PM, Moshé SL, Sankar R, Baulac S, Noebels JL, Auvin S, O'Brien TJ, Henshall DC, Akman Ö, Galanopoulou AS. WONOEP appraisal: Genetic insights into early onset epilepsies. Epilepsia 2024; 65:3138-3154. [PMID: 39302576 DOI: 10.1111/epi.18124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Early onset epilepsies occur in newborns and infants, and to date, genetic aberrations and variants have been identified in approximately one quarter of all patients. With technological sequencing advances and ongoing research, the genetic diagnostic yield for specific seizure disorders and epilepsies is expected to increase. Genetic variants associated with epilepsy include chromosomal abnormalities and rearrangements of various sizes as well as single gene variants. Among these variants, a distinction can be made between germline and somatic, with the latter being increasingly identified in epilepsies with focal cortical malformations in recent years. The identification of the underlying genetic mechanisms of epilepsy syndromes not only revolutionizes the diagnostic schemes but also leads to a better understanding of the diseases and their interrelationships, ultimately providing new opportunities for therapeutic targeting. At the XVI Workshop on Neurobiology of Epilepsy (WONOEP 2022, Talloires, France, July 2022), various etiologies, research models, and mechanisms of genetic early onset epilepsies were presented and discussed.
Collapse
Affiliation(s)
- Anne Quatraccioni
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Silvia Cases-Cunillera
- Neuronal Signaling in Epilepsy and Glioma, Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matthew Coleman
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Laura Rossini
- Epilepsy Unit, IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St. Peter, UK
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, and Department of Neuroscience and Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jeffrey L Noebels
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stéphane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, member of European Reference Network EpiCARE, Université Paris Cité and Institut Universitaire de France, Paris, France
| | - Terence J O'Brien
- Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - David C Henshall
- Department of Physiology and Medical Physics and FutureNeuro SFI Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Mesarosova L, Scheper M, Iyer A, Anink JJ, Mills JD, Aronica E. miR-193b-3p/ PGC-1α pathway regulates an insulin dependent anti-inflammatory response in Parkinson's disease. Neurobiol Dis 2024; 199:106587. [PMID: 38950713 DOI: 10.1016/j.nbd.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024] Open
Abstract
It has been shown that many miRNAs, including miR-193b-3p, are differentially expressed in Parkinson's disease (PD). Dysregulation of miR-193b-3p/PGC-1α axis may alter homeostasis in cells and can induce an inflammatory response commonly accompanied by metabolic disturbances. The aim of the present study is to investigate if dysregulation of the miR-193-3p/PGC-1α axis may contribute to the pathological changes observed in the PD brain. Brain tissue were obtained from middle frontal gyrus of non-demented controls and individuals with a PD diagnosis. RT-qPCR was used to determine the expression of miR-193b-3p and in situ hybridization (ISH) and immunological analysis were employed to establish the cellular distribution of miR-193b-3p. Functional assays were performed using SH-SY5Y cells, including transfection and knock-down of miR-193b-3p. We found significantly lower expression of miR-193b-3p in the early stages of PD (PD4) which increased throughout disease progression. Furthermore, altered expression of PGC-1α suggested a direct inhibitory effect of miR-193b-3p in the brain of individuals with PD. Moreover, we observed changes in expression of insulin after transfection of SH-SY5Y cells with miR-193b-3p, which led to dysregulation in the expression of several pro- or anti - inflammatory genes. Our findings indicate that the miR-193b-3p/PGC-1α axis is involved in the regulation of insulin signaling. This regulation is crucial, since insulin induced inflammatory response may serve as a protective mechanism during acute situations but potentially evolve into a pathological process in chronic conditions. This novel regulatory mechanism may represent an interesting therapeutic target with potential benefits for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucia Mesarosova
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Mirte Scheper
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anand Iyer
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Jasper J Anink
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - James D Mills
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
4
|
Li Y, Si Z, Zhao W, Xie C, Zhang X, Liu J, Liu J, Xia Z. Tuberous sclerosis complex: a case report and literature review. Ital J Pediatr 2023; 49:116. [PMID: 37679848 PMCID: PMC10485941 DOI: 10.1186/s13052-023-01490-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 06/29/2023] [Indexed: 09/09/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder with different initial symptoms and complex clinical manifestations. A 14-year-old female patient presented with persistent fever and severe headache. Medical imaging examinations revealed multiple abnormal intracranial lesions. The patient had previously been misdiagnosed with "encephalitis and acute disseminated encephalomyelitis" after visiting numerous hospitals. Eventually, by combing the characteristics of the case and genetic testing results, the patient was diagnosed with TSC accompanied by Mycoplasma pneumoniae infection. The purpose of this case report and literature review is to improve understanding of the clinical diagnosis and treatment of TSC so as to avoid misdiagnosis, missed diagnosis, and overtreatment.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Zhihua Si
- Department of Neurology, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, 250014, China
| | - Wei Zhao
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Cong Xie
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Xu Zhang
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, 250014, China
| | - Jinzhi Liu
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China.
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, 67 Dongchang West Road, Liaocheng, Liaocheng, 252000, China.
- Department of Gerontology, Cheeloo College of Medicine, Shandong Provincial Qianfoshan Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
- Department of Geriatric Neurology, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, China.
- Department of Neurology, Cheeloo College of Medicine, Liaocheng People's Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Clinical School of Shandong First Medical University, 67 Dongchang West Road, Liaocheng, Liaocheng, 252000, China.
- Department of Neurology, Cheeloo College of Medicine, Liaocheng People's Hospital, Shandong University, 44 Wenhua West Road, Jinan, 250012, China.
| |
Collapse
|
5
|
Feng L, Wei Y, Sun Y, Zhou L, Bi S, Chen W, Xiang W. MIR34A modulates lens epithelial cell apoptosis and cataract development via the HK1/caspase 3 signaling pathway. Aging (Albany NY) 2023; 15:6331-6345. [PMID: 37414399 PMCID: PMC10373963 DOI: 10.18632/aging.204854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Cataracts are the leading cause of blindness in the world. Age is a major risk factor for cataracts, and with increasing aging, the burden of cataracts will grow, but the exact details of cataractogenesis remain unclear. A recent study showed that microRNA-34a (MIR34A) is involved in the development of cataracts, but the underlying pathogenesis remains obscure. Here, our results of microRNA target prediction showed that hexokinase 1 (HK1) is one of the genes targeted by MIR34A. Based on this finding, we focused on the function of MIR34A and HK1 in the progress of cataracts, whereby the human lens epithelial cell line SRA01/04 and mouse lens were treated with MIR34A mimics and HK1 siRNA. We found that HK1 mRNA is a direct target of MIR34A, whereby the high expression of MIR34A in the cataract lens suppresses the expression of HK1. In vitro, the upregulation of MIR34A together with the downregulation of HK1 inhibits the proliferation, induces the apoptosis of SRA01/04 cells, and accelerates the opacification of mouse lenses via the HK1/caspase 3 signaling pathway. In summary, our study demonstrates that MIR34A modulates lens epithelial cell (LEC) apoptosis and cataract development through the HK1/caspase 3 signaling pathway.
Collapse
Affiliation(s)
- Lujia Feng
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518040, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yimeng Sun
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shaowei Bi
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wu Xiang
- State Key Laboratory of Ophthalmology; Zhongshan Ophthalmic Center, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| |
Collapse
|
6
|
Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol 2022; 21:843-856. [PMID: 35963265 DOI: 10.1016/s1474-4422(22)00213-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022]
|