1
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Cerasuolo M, Di Meo I, Auriemma MC, Paolisso G, Papa M, Rizzo MR. Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer's Disease. Biomolecules 2024; 14:1362. [PMID: 39595539 PMCID: PMC11591903 DOI: 10.3390/biom14111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer's disease. Research shows that while the overall lipid profile in the human brain remains quite steady throughout adulthood, specific changes occur with age, especially after the age of 50. These changes include a slow decline in total lipid content and shifts in the composition of fatty acids, particularly in glycerophospholipids and cholesterol levels, which can vary depending on the brain region. Lipid rafts play a crucial role in maintaining membrane integrity and facilitating cellular signaling. In the context of Alzheimer's disease, changes in the composition of lipid rafts have been associated with the development of the disease. For example, alterations in lipid raft composition can lead to increased accumulation of amyloid β (Aβ) peptides, contributing to neurotoxic effects. Lipid droplets store neutral lipids and are key for cellular energy metabolism. As organisms age, the dynamics of lipid droplets in the brain change, with evidence suggesting a decline in metabolic activity over time. This reduced activity may lead to an imbalance in lipid synthesis and mobilization, contributing to neurodegenerative processes. In model organisms like Drosophila, studies have shown that lipid metabolism in the brain can be influenced by diet and insulin signaling pathways, crucial for maintaining metabolic balance. The interplay between lipid metabolism, oxidative stress, and inflammation is critical in the context of aging and Alzheimer's disease. Lipid peroxidation, a consequence of oxidative stress, can lead to the formation of reactive aldehydes that further damage neurons. Inflammatory processes can also disrupt lipid metabolism, contributing to the pathology of AD. Consequently, the accumulation of oxidized lipids can affect lipid raft integrity, influencing signaling pathways involved in neuronal survival and function.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (G.P.)
| |
Collapse
|
3
|
Kang Y, Yeap YJ, Yang J, Ma S, Lim KL, Zhang Q, Lu L, Zhang C. Role of lipid droplets in neurodegenerative diseases: From pathogenesis to therapeutics. Neurosci Biobehav Rev 2024; 165:105867. [PMID: 39208878 DOI: 10.1016/j.neubiorev.2024.105867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases (NDDs) are a series of disorders characterized by the progressive loss of specific neurons, leading to cognitive and locomotor impairment. NDDs affect millions of patients worldwide but lack effective treatments. Dysregulation of lipids, particularly the accumulation of lipid droplets (LDs), is strongly implicated in the pathogenesis of NDDs. How LDs contribute to the occurrence and development of NDDs, and their potential as therapeutic targets remain to be addressed. In present review, we first introduce the processes of LDs formation, transportation and degradation. We then highlight how the accumulation of LDs contributes to the pathogenesis of NDDs in a cell type-specific manner. Moreover, we discuss currently available methods for detecting LDs and elaborate on LDs-based therapeutic strategies for NDDs. Lastly, we identify gaps that need to be filled to better leverage LD-based theranostics in NDDs and other diseases. We hope this review could shed light on the role of LDs in NDDs and facilitate the development of novel therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jing Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Sufang Ma
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Qin Zhang
- Yuncheng Central Hospital, Yuncheng 044020, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China; Shanxi Engineering Research Center for Precisive Diagnosis and Treatment of Neurodegenerative Diseases, Jinzhong 030600, China.
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China; Shanxi Engineering Research Center for Precisive Diagnosis and Treatment of Neurodegenerative Diseases, Jinzhong 030600, China.
| |
Collapse
|
4
|
Lan Z, Lv S, Ge Z, Zhao B, Li L, Li C. Lactic acid regulates lipid droplet aggregation through a microglia-neuron axis in neuroinflammation. J Lipid Res 2024; 65:100629. [PMID: 39182605 PMCID: PMC11437955 DOI: 10.1016/j.jlr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Neuroinflammation, marked by the release of proinflammatory cytokines and resulting neuronal death, is a multifaceted process extending beyond traditional inflammatory pathways. Microglia, primary cells in the inflammatory response, rapidly activate during neuroinflammation and produce proinflammatory and cytotoxic factors that affect neuronal function. Recent evidence highlights the significant role of abnormal lipid droplet (LD) deposition in the pathogenesis of neuroinflammation. While microglia are known to influence LD aggregation during neuroinflammation, the regulatory mechanism within neurons is not well understood. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia.
Collapse
Affiliation(s)
- Zhuoqing Lan
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Shukai Lv
- Department of General Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ziyi Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Zhao
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leilei Li
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Caixia Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Russo T, Riessland M. Lipid accumulation drives cellular senescence in dopaminergic neurons. Aging (Albany NY) 2024; 16:11128-11133. [PMID: 39033779 PMCID: PMC11315398 DOI: 10.18632/aging.206030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Parkinson's disease (PD) is an age-related movement disorder caused by the loss of dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc) of the midbrain, however, the underlying cause(s) of this DA neuron loss in PD is unknown and there are currently no effective treatment options to prevent or slow neuronal loss or the progression of related symptoms. It has been shown that both environmental factors as well as genetic predispositions underpin PD development and recent research has revealed that lysosomal dysfunction and lipid accumulation are contributors to disease progression, where an age-related aggregation of alpha-synuclein as well as lipids have been found in PD patients. Interestingly, the most common genetic risk factor for PD is Glucosylceramidase Beta 1 (GBA), which encodes a lysosomal glucocerebrosidase (GCase) that cleaves the beta-glucosidic linkage of lipids known as glucocerebrosides (GluCer). We have recently discovered that artificial induction of GluCer accumulation leads to cellular senescence of DA neurons, suggesting that lipid aggregation plays a crucial role in the pathology of PD by driving senescence in these vulnerable DA neurons. Here, we discuss the relevance of the age-related aggregation of lipids as well as the direct functional link between general lipid aggregation, cellular senescence, and inflammaging of DA neurons. We propose that the expression of a cellular senescence phenotype in the most vulnerable neurons in PD can be triggered by lysosomal impairment and lipid aggregation. Importantly, we highlight additional data that perilipin (PLIN2) is significantly upregulated in senescent DA neurons, suggesting an overall enrichment of lipid droplets (LDs) in these cells. These findings align with our previous results in dopaminergic neurons in highlighting a central role for lipid accumulation in the senescence of DA neurons. Importantly, general lipid droplet aggregation and global lysosomal impairment have been implicated in many neurodegenerative diseases including PD. Taken together, our data suggest a connection between age-related lysosomal impairment, lipid accumulation, and cellular senescence in DA neurons that in turn drives inflammaging in the midbrain and ultimately leads to neurodegeneration and PD.
Collapse
Affiliation(s)
- Taylor Russo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Chiariello A, Rossetti L, Valente S, Pasquinelli G, Sollazzo M, Iommarini L, Porcelli AM, Tognocchi M, Conte G, Santoro A, Kwiatkowska KM, Garagnani P, Salvioli S, Conte M. Downregulation of PLIN2 in human dermal fibroblasts impairs mitochondrial function in an age-dependent fashion and induces cell senescence via GDF15. Aging Cell 2024; 23:e14111. [PMID: 38650174 PMCID: PMC11113257 DOI: 10.1111/acel.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/25/2024] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD)-coating protein playing important roles in lipid homeostasis and suppression of lipotoxicity in different tissues and cell types. Recently, a role for PLIN2 in supporting mitochondrial function has emerged. PLIN2 dysregulation is involved in many metabolic disorders and age-related diseases. However, the exact consequences of PLIN2 dysregulation are not yet completely understood. In this study, we knocked down (KD) PLIN2 in primary human dermal fibroblasts (hDFs) from young (mean age 29 years) and old (mean age 71 years) healthy donors. We have found that PLIN2 KD caused a decline of mitochondrial function only in hDFs from young donors, while mitochondria of hDFs from old donors (that are already partially impaired) did not significantly worsen upon PLIN2 KD. This mitochondrial impairment is associated with the increased expression of the stress-related mitokine growth differentiation factor 15 (GDF15) and the induction of cell senescence. Interestingly, the simultaneous KD of PLIN2 and GDF15 abrogated the induction of cell senescence, suggesting that the increase in GDF15 is the mediator of this phenomenon. Moreover, GDF15 KD caused a profound alteration of gene expression, as observed by RNA-Seq analysis. After a more stringent analysis, this alteration remained statistically significant only in hDFs from young subjects, further supporting the idea that cells from old and young donors react differently when undergoing manipulation of either PLIN2 or GDF15 genes, with the latter being likely a downstream mediator of the former.
Collapse
Affiliation(s)
- Antonio Chiariello
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Luca Rossetti
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- Interdepartmental Centre “Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)”University of BolognaBolognaItaly
| | - Sabrina Valente
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Gianandrea Pasquinelli
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Monica Tognocchi
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Giuseppe Conte
- Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
| | - Aurelia Santoro
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | | | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Maria Conte
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| |
Collapse
|
7
|
Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol 2024; 35:31-44. [PMID: 38491747 DOI: 10.1515/jbcpp-2023-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is spreading its root disproportionately among the worldwide population. Many genes have been identified as the hallmarks of AD. Based upon the knowledge, many clinical trials have been designed and conducted. Attempts have been made to alleviate the pathology associated with AD by targeting the molecular products of these genes. Irrespective of the understanding on the genetic component of AD, many clinical trials have failed and imposed greater challenges on the path of drug discovery. Therefore, this review aims to identify research and review articles to pinpoint the limitations of drug candidates (thiethylperazine, CT1812, crenezumab, CNP520, and lecanemab), which are under or withdrawn from clinical trials. Thorough analysis of the cross-talk pathways led to the identification of many confounding factors, which could interfere with the success of clinical trials with drug candidates such as thiethylperazine, CT1812, crenezumab, and CNP520. Though these drug candidates were enrolled in clinical trials, yet literature review shows many limitations. These limitations raise many questions on the rationale behind the enrollments of these drug candidates in clinical trials. A meticulous prior assessment of the outcome of clinical studies may stop risky clinical trials at their inceptions. This may save time, money, and resources.
Collapse
Affiliation(s)
- Deepraj Paul
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Rohini Agrawal
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Swati Singh
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
9
|
Lee J, Dimitry JM, Song JH, Son M, Sheehan PW, King MW, Travis Tabor G, Goo YA, Lazar MA, Petrucelli L, Musiek ES. Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice. Nat Commun 2023; 14:5197. [PMID: 37626048 PMCID: PMC10457319 DOI: 10.1038/s41467-023-40927-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is characterized by tau aggregation and associated with disrupted circadian rhythms and dampened clock gene expression. REV-ERBα is a core circadian clock protein which also serves as a nuclear receptor and transcriptional repressor involved in lipid metabolism and macrophage function. Global REV-ERBα deletion has been shown to promote microglial activation and mitigate amyloid plaque formation. However, the cell-autonomous effects of microglial REV-ERBα in healthy brain and in tauopathy are unexplored. Here, we show that microglial REV-ERBα deletion enhances inflammatory signaling, disrupts lipid metabolism, and causes lipid droplet (LD) accumulation specifically in male microglia. These events impair microglial tau phagocytosis, which can be partially rescued by blockage of LD formation. In vivo, microglial REV-ERBα deletion exacerbates tau aggregation and neuroinflammation in two mouse tauopathy models, specifically in male mice. These data demonstrate the importance of microglial lipid droplets in tau accumulation and reveal REV-ERBα as a therapeutically accessible, sex-dependent regulator of microglial inflammatory signaling, lipid metabolism, and tauopathy.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M Dimitry
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick W Sheehan
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Melvin W King
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - G Travis Tabor
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Erik S Musiek
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Lan ZQ, Ge ZY, Lv SK, Zhao B, Li CX. The regulatory role of lipophagy in central nervous system diseases. Cell Death Discov 2023; 9:229. [PMID: 37414782 DOI: 10.1038/s41420-023-01504-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Lipid droplets (LDs) are the organelles for storing neutral lipids, which are broken down when energy is insufficient. It has been suggested that excessive accumulation of LDs can affect cellular function, which is important to coordinate homeostasis of lipids in vivo. Lysosomes play an important role in the degradation of lipids, and the process of selective autophagy of LDs through lysosomes is known as lipophagy. Dysregulation of lipid metabolism has recently been associated with a variety of central nervous system (CNS) diseases, but the specific regulatory mechanisms of lipophagy in these diseases remain to be elucidated. This review summarizes various forms of lipophagy and discusses the role that lipophagy plays in the development of CNS diseases in order to reveal the related mechanisms and potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhuo-Qing Lan
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Zi-Yi Ge
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Shu-Kai Lv
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China
| | - Bing Zhao
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| | - Cai-Xia Li
- Department of General practice medicine, the Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, P.R. China.
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
12
|
Ng NS, Newbery M, Touffu A, Maksour S, Chung J, Carroll L, Zaw T, Wu Y, Ooi L. Edaravone and mitochondrial transfer as potential therapeutics for vanishing white matter disease astrocyte dysfunction. CNS Neurosci Ther 2023. [PMID: 36971196 PMCID: PMC10401142 DOI: 10.1111/cns.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION Previous research has suggested that vanishing white matter disease (VWMD) astrocytes fail to fully differentiate and respond differently to cellular stresses compared to healthy astrocytes. However, few studies have investigated potential VWMD therapeutics in monoculture patient-derived cell-based models. METHODS To investigate the impact of alterations in astrocyte expression and function in VWMD, astrocytes were differentiated from patient and control induced pluripotent stem cells and analyzed by proteomics, pathway analysis, and functional assays, in the absence and presence of stressors or potential therapeutics. RESULTS Vanishing white matter disease astrocytes demonstrated significantly reduced expression of astrocyte markers and markers of inflammatory activation or cellular stress relative to control astrocytes. These alterations were identified both in the presence and absence of polyinosinic:polycytidylic acid stimuli, which is used to simulate viral infections. Pathway analysis highlighted differential signaling in multiple pathways in VWMD astrocytes, including eukaryotic initiation factor 2 (EIF2) signaling, oxidative stress, oxidative phosphorylation (OXPHOS), mitochondrial function, the unfolded protein response (UPR), phagosome regulation, autophagy, ER stress, tricarboxylic acid cycle (TCA) cycle, glycolysis, tRNA signaling, and senescence pathways. Since oxidative stress and mitochondrial function were two of the key pathways affected, we investigated whether two independent therapeutic strategies could ameliorate astrocyte dysfunction: edaravone treatment and mitochondrial transfer. Edaravone treatment reduced differential VWMD protein expression of the UPR, phagosome regulation, ubiquitination, autophagy, ER stress, senescence, and TCA cycle pathways. Meanwhile, mitochondrial transfer decreased VWMD differential expression of the UPR, glycolysis, calcium transport, phagosome formation, and ER stress pathways, while further modulating EIF2 signaling, tRNA signaling, TCA cycle, and OXPHOS pathways. Mitochondrial transfer also increased the gene and protein expression of the astrocyte marker, glial fibrillary acidic protein (GFAP) in VWMD astrocytes. CONCLUSION This study provides further insight into the etiology of VWMD astrocytic failure and suggests edaravone and mitochondrial transfer as potential candidate VWMD therapeutics that can ameliorate disease pathways in astrocytes related to oxidative stress, mitochondrial dysfunction, and proteostasis.
Collapse
|
13
|
Yin F. Lipid metabolism and Alzheimer's disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J 2023; 290:1420-1453. [PMID: 34997690 PMCID: PMC9259766 DOI: 10.1111/febs.16344] [Citation(s) in RCA: 110] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an age-associated neurodegenerative disorder with multifactorial etiology, intersecting genetic and environmental risk factors, and a lack of disease-modifying therapeutics. While the abnormal accumulation of lipids was described in the very first report of AD neuropathology, it was not until recent decades that lipid dyshomeostasis became a focus of AD research. Clinically, lipidomic and metabolomic studies have consistently shown alterations in the levels of various lipid classes emerging in early stages of AD brains. Mechanistically, decades of discovery research have revealed multifaceted interactions between lipid metabolism and key AD pathogenic mechanisms including amyloidogenesis, bioenergetic deficit, oxidative stress, neuroinflammation, and myelin degeneration. In the present review, converging evidence defining lipid dyshomeostasis in AD is summarized, followed by discussions on mechanisms by which lipid metabolism contributes to pathogenesis and modifies disease risk. Furthermore, lipid-targeting therapeutic strategies, and the modification of their efficacy by disease stage, ApoE status, and metabolic and vascular profiles, are reviewed.
Collapse
Affiliation(s)
- Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
14
|
Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, Wang T, Jin Y, Brinton RD, Gu H, Yin F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab 2023; 5:445-465. [PMID: 36959514 PMCID: PMC10202034 DOI: 10.1038/s42255-023-00756-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/03/2023] [Indexed: 03/25/2023]
Abstract
Astrocytes provide key neuronal support, and their phenotypic transformation is implicated in neurodegenerative diseases. Metabolically, astrocytes possess low mitochondrial oxidative phosphorylation (OxPhos) activity, but its pathophysiological role in neurodegeneration remains unclear. Here, we show that the brain critically depends on astrocytic OxPhos to degrade fatty acids (FAs) and maintain lipid homeostasis. Aberrant astrocytic OxPhos induces lipid droplet (LD) accumulation followed by neurodegeneration that recapitulates key features of Alzheimer's disease (AD), including synaptic loss, neuroinflammation, demyelination and cognitive impairment. Mechanistically, when FA load overwhelms astrocytic OxPhos capacity, elevated acetyl-CoA levels induce astrocyte reactivity by enhancing STAT3 acetylation and activation. Intercellularly, lipid-laden reactive astrocytes stimulate neuronal FA oxidation and oxidative stress, activate microglia through IL-3 signalling, and inhibit the biosynthesis of FAs and phospholipids required for myelin replenishment. Along with LD accumulation and impaired FA degradation manifested in an AD mouse model, we reveal a lipid-centric, AD-resembling mechanism by which astrocytic mitochondrial dysfunction progressively induces neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Yashi Mi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Guoyuan Qi
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Adam C Raikes
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Tian Wang
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
| | - Yan Jin
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Roberta D Brinton
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA
- Department of Neurology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Haiwei Gu
- Center of Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Fei Yin
- Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, AZ, USA.
- Department of Pharmacology, College of Medicine Tucson, University of Arizona, Tucson, AZ, USA.
- Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Fehér J, Élő Á, István L, Nagy ZZ, Radák Z, Scuderi G, Artico M, Kovács I. Microbiota mitochondria disorders as hubs for early age-related macular degeneration. GeroScience 2022; 44:2623-2653. [PMID: 35978068 PMCID: PMC9385247 DOI: 10.1007/s11357-022-00620-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration (AMD) is a progressive neurodegenerative disease affecting the central area (macula lutea) of the retina. Research on the pathogenic mechanism of AMD showed complex cellular contribution governed by such risk factors as aging, genetic predisposition, diet, and lifestyle. Recent studies suggested that microbiota is a transducer and a modifier of risk factors for neurodegenerative diseases, and mitochondria may be one of the intracellular targets of microbial signaling molecules. This review explores studies supporting a new concept on the contribution of microbiota-mitochondria disorders to AMD. We discuss metabolic, vascular, immune, and neuronal mechanism in AMD as well as key alterations of photoreceptor cells, retinal pigment epithelium (RPE), Bruch's membrane, choriocapillaris endothelial, immune, and neuronal cells. Special attention was paid to alterations of mitochondria contact sites (MCSs), an organelle network of mitochondria, endoplasmic reticulum, lipid droplets (LDs), and peroxisomes being documented based on our own electron microscopic findings from surgically removed human eyes. Morphometry of Bruch's membrane lipids and proteoglycans has also been performed in early AMD and aged controls. Microbial metabolites (short-chain fatty acids, polyphenols, and secondary bile acids) and microbial compounds (lipopolysaccharide, peptidoglycan, and bacterial DNA)-now called postbiotics-in addition to local effects on resident microbiota and mucous membrane, regulate systemic metabolic, vascular, immune, and neuronal mechanisms in normal conditions and in various common diseases. We also discuss their antioxidant, anti-inflammatory, and metabolic effects as well as experimental and clinical observations on regulating the main processes of photoreceptor renewal, mitophagy, and autophagy in early AMD. These findings support an emerging concept that microbiota-mitochondria disorders may be a crucial pathogenic mechanism of early AMD; and similarly, to other age-related neurodegenerative diseases, new treatment approaches should be targeted at these disorders.
Collapse
Affiliation(s)
- János Fehér
- PRIMAVERA Program, Nutripharma Hungaria Ltd., Budapest, Hungary
| | - Ágnes Élő
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lilla István
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zsolt Radák
- grid.472475.70000 0000 9243 1481Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Gianluca Scuderi
- grid.7841.aOphthalmology Unit, NESMOS Department, Sant’Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Artico
- grid.417007.5Department of Sensory Organs, “Sapienza” University of Rome, Roma, Italy
| | - Illés Kovács
- grid.11804.3c0000 0001 0942 9821Department of Ophthalmology, Semmelweis University, Budapest, Hungary ,grid.5386.8000000041936877XDepartment of Ophthalmology, Weill Cornell Medical College, New York City, NY USA
| |
Collapse
|
16
|
de Eguileor M, Grimaldi A, Pulze L, Acquati F, Morsiani C, Capri M. Amyloid fil rouge from invertebrate up to human ageing: a focus on Alzheimer Disease. Mech Ageing Dev 2022; 206:111705. [DOI: 10.1016/j.mad.2022.111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
|
17
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
18
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids for energy metabolism, membrane synthesis and production of lipid-derived signaling molecules. While compositional differences in the phospholipid monolayer or neutral lipid core of LDs impact their metabolism and function, the proteome of LDs has emerged as a major influencer in all aspects of LD biology. The perilipins (PLINs) are the most studied and abundant proteins residing on the LD surface. This Cell Science at a Glance and the accompanying poster summarize our current knowledge of the common and unique features of the mammalian PLIN family of proteins, the mechanisms through which they affect cell metabolism and signaling, and their links to disease.
Collapse
Affiliation(s)
- Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mahima Devarajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Supplementation of Enriched Polyunsaturated Fatty Acids and CLA Cheese on High Fat Diet: Effects on Lipid Metabolism and Fat Profile. Foods 2022; 11:foods11030398. [PMID: 35159548 PMCID: PMC8834222 DOI: 10.3390/foods11030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies have demonstrated a positive relationship between dietary fat intake and the onset of several metabolic diseases. This association is particularly evident in a diet rich in saturated fatty acids, typical of animal foods, such as dairy products. However, these foods are the main source of fatty acids with a proven nutraceutical effect, such as the ω-3 fatty acid α-linolenic acid (ALA) and the conjugated linoleic acid (CLA), which have demonstrated important roles in the prevention of various diseases. In the present study, the effect of a supplementation with cheese enriched with ω-3 fatty acids and CLA on the metabolism and lipid profiles of C57bl/6 mice was evaluated. In particular, the analyses were conducted on different tissues, such as liver, muscle, adipose tissue and brain, known for their susceptibility to the effects of dietary fats. Supplementing cheese enriched in CLA and ω-3 fats reduced the level of saturated fat and increased the content of CLA and ALA in all tissues considered, except for the brain. Furthermore, the consumption of this cheese resulted in a tissue-specific response in the expression levels of genes involved in lipid and mitochondrial metabolism. As regards genes involved in the inflammatory response, the consumption of enriched cheese resulted in a reduction in the expression of inflammatory genes in all tissues analyzed. Considering the effects that chronic inflammation associated with a high-calorie and high-fat diet (meta-inflammation) or aging (inflammaging) has on the onset of chronic degenerative diseases, these data could be of great interest as they indicate the feasibility of modulating inflammation (thus avoiding/delaying these pathologies) with a nutritional and non-pharmacological intervention.
Collapse
|
20
|
Girard V, Jollivet F, Knittelfelder O, Celle M, Arsac JN, Chatelain G, Van den Brink DM, Baron T, Shevchenko A, Kühnlein RP, Davoust N, Mollereau B. Abnormal accumulation of lipid droplets in neurons induces the conversion of alpha-Synuclein to proteolytic resistant forms in a Drosophila model of Parkinson's disease. PLoS Genet 2021; 17:e1009921. [PMID: 34788284 PMCID: PMC8635402 DOI: 10.1371/journal.pgen.1009921] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/01/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein (αSyn) aggregation and associated with abnormalities in lipid metabolism. The accumulation of lipids in cytoplasmic organelles called lipid droplets (LDs) was observed in cellular models of PD. To investigate the pathophysiological consequences of interactions between αSyn and proteins that regulate the homeostasis of LDs, we used a transgenic Drosophila model of PD, in which human αSyn is specifically expressed in photoreceptor neurons. We first found that overexpression of the LD-coating proteins Perilipin 1 or 2 (dPlin1/2), which limit the access of lipases to LDs, markedly increased triacylglyclerol (TG) loaded LDs in neurons. However, dPlin-induced-LDs in neurons are independent of lipid anabolic (diacylglycerol acyltransferase 1/midway, fatty acid transport protein/dFatp) and catabolic (brummer TG lipase) enzymes, indicating that alternative mechanisms regulate neuronal LD homeostasis. Interestingly, the accumulation of LDs induced by various LD proteins (dPlin1, dPlin2, CG7900 or KlarsichtLD-BD) was synergistically amplified by the co-expression of αSyn, which localized to LDs in both Drosophila photoreceptor neurons and in human neuroblastoma cells. Finally, the accumulation of LDs increased the resistance of αSyn to proteolytic digestion, a characteristic of αSyn aggregation in human neurons. We propose that αSyn cooperates with LD proteins to inhibit lipolysis and that binding of αSyn to LDs contributes to the pathogenic misfolding and aggregation of αSyn in neurons. Parkinson’s disease (PD) is a neurodegenerative disease characterized by the neurotoxic aggregation of the alpha-synuclein (αSyn) protein. Cellular models of the disease are also associated with an abnormal fat storage in the form of lipid droplets (LDs). However, in which cells, neuron or glial cells, LDs accumulate in the organism remains unknown. To understand the relationship between αSyn and the accumulation of LDs, we used a Drosophila (fruit fly) model of PD. We found that, in the presence of a protein that coats LDs, perilipin, LDs accumulate in photoreceptor neurons of the fly. Interestingly, the accumulation of LDs induced by perilipin or other LD-coating proteins was enhanced in the presence of αSyn. Using human neuronal cell lines and the fly, we could show that LD-coating and αSyn proteins localize at the surface of LDs. Finally, we observed that the process of αSyn aggregation was enhanced in the presence of LDs by using a biochemical approach. We thus propose that the association of αSyn with LDs could contribute to αSyn aggregation and progression of the pathology.
Collapse
Affiliation(s)
- Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Florence Jollivet
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Oskar Knittelfelder
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marion Celle
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Jean-Noel Arsac
- Neurodegenerative Disease Unit; French Agency for Food, Environmental and Occupational Health & Safety Laboratory (Anses) of Lyon, University of Lyon, Lyon, France
| | - Gilles Chatelain
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
| | - Daan M. Van den Brink
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Thierry Baron
- Neurodegenerative Disease Unit; French Agency for Food, Environmental and Occupational Health & Safety Laboratory (Anses) of Lyon, University of Lyon, Lyon, France
| | - Andrej Shevchenko
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ronald P. Kühnlein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth—University of Graz, Graz, Austria
| | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- * E-mail: (ND); (BM)
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/ENS de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France
- * E-mail: (ND); (BM)
| |
Collapse
|