1
|
D-Mannose Slows Glioma Growth by Modulating Myeloperoxidase Activity. Cancers (Basel) 2021; 13:cancers13246360. [PMID: 34944979 PMCID: PMC8699108 DOI: 10.3390/cancers13246360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Inflammation and oxidative stress are important host defense responses. However, while the host response can be cytotoxic and kill tumor cells, tumor cells can also alter and exploit the host immune environment to further their survival. Thus, the host response can impact both tumor suppression and progression. Modulating the tumor–host response interaction to favor tumor suppression would be highly desirable. D-mannose has been found to have anti-inflammatory properties and can block signaling related to myeloperoxidase (MPO), a highly oxidizing pro-inflammatory enzyme secreted in host defense. However, the effect of D-mannose on host immune response in the glioma microenvironment has not been explored. We found that D-mannose slowed glioma growth by increasing MPO activity and oxidative stress in the glioma microenvironment. Our findings revealed that D-mannose may be able to shift the host immune response toward tumor suppression and could be a potential new therapeutic direction for these difficult-to-treat tumors. Abstract Host immune response in the tumor microenvironment plays key roles in tumorigenesis. We hypothesized that D-mannose, a simple sugar with anti-inflammatory properties, could decrease oxidative stress and slow glioma progression. Using a glioma stem cell model in immunocompetent mice, we induced gliomas in the brain and tracked MPO activity in vivo with and without D-mannose treatment. As expected, we found that D-mannose treatment decreased the number of MPO+ cells and slowed glioma progression compared to PBS-treated control animals with gliomas. Unexpectedly, instead of decreasing MPO activity, D-mannose increased MPO activity in vivo, revealing that D-mannose boosted the MPO activity per MPO+ cell. On the other hand, D-glucose had no effect on MPO activity. To better understand this effect, we examined the effect of D-mannose on bone marrow-derived myeloid cells. We found that D-mannose modulated MPO activity via two mechanisms: directly via N-glycosylation of MPO, which boosted the MPO activity of each molecule, and indirectly by increasing H2O2 production, the main substrate for MPO. This increased host immune response acted to reduce tumor size, suggesting that increasing MPO activity such as through D-mannose administration may be a potential new therapeutic direction for glioma treatment.
Collapse
|
2
|
Tjondro HC, Ugonotti J, Kawahara R, Chatterjee S, Loke I, Chen S, Soltermann F, Hinneburg H, Parker BL, Venkatakrishnan V, Dieckmann R, Grant OC, Bylund J, Rodger A, Woods RJ, Karlsson-Bengtsson A, Struwe WB, Thaysen-Andersen M. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J Biol Chem 2021; 296:100144. [PMID: 33273015 PMCID: PMC7857493 DOI: 10.1074/jbc.ra120.016342] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Rebeca Kawahara
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Ian Loke
- Cordlife Group Limited, Singapore, Singapore
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Fabian Soltermann
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Hannes Hinneburg
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Benjamin L Parker
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Oliver C Grant
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alison Rodger
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Reiding KR, Franc V, Huitema MG, Brouwer E, Heeringa P, Heck AJR. Neutrophil myeloperoxidase harbors distinct site-specific peculiarities in its glycosylation. J Biol Chem 2019; 294:20233-20245. [PMID: 31719144 PMCID: PMC6937560 DOI: 10.1074/jbc.ra119.011098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Anti-neutrophil cytoplasmic autoantibodies (ANCAs) are directed against lysosomal components of neutrophils. ANCAs directed to proteinase 3 and myeloperoxidase (MPO) in particular are associated with distinct forms of small vessel vasculitides. MPO is an abundant neutrophil-derived heme protein that is part of the antimicrobial defense system. The protein is typically present in the azurophilic granules of neutrophils, but a large portion may also enter the extracellular space. It remains unclear why MPO is frequently the target of antibody-mediated autoimmune responses. MPO is a homodimeric glycoprotein, posttranslationally modified with complex sugars at specific sites. Glycosylation can strongly influence protein function, affecting its folding, receptor interaction, and backbone accessibility. MPO potentially can be heavily modified as it harbors 5 putative N-glycosylation sites (10 in the mature dimer). Although considered important for MPO structure and function, the full scope and relative abundance of the glycans attached to MPO is unknown. Here, combining bottom-up glycoproteomics and native MS approaches, we structurally characterized MPO from neutrophils of healthy human donors. We quantified the relative occupancy levels of the glycans at each of the five sites and observed complex heterogeneity and site-specific glycosylation. In particular, we detected glycosylation phenotypes uncommon for glycoproteins in the extracellular space, such as a high abundance of phosphorylated high-mannose species and severely truncated small glycans having the size of paucimannose or smaller. We hypothesize that the atypical glycosylation pattern found on MPO might contribute to its specific processing and presentation as a self-antigen by antigen-presenting cells.
Collapse
Affiliation(s)
- Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands .,Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Minke G Huitema
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
5
|
Guo R, Li S, Xia H, Feng Z, Tang Q, Peng C. Effects of Myeloperoxidase on Methicillin-Resistant Staphylococcus aureus-Colonized Burn Wounds in Rats. Adv Wound Care (New Rochelle) 2019; 8:271-280. [PMID: 31737417 DOI: 10.1089/wound.2018.0865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/14/2019] [Indexed: 01/10/2023] Open
Abstract
Objective: To achieve better therapeutic results in burn wound infections and to examine alternatives to antibiotics, we designed this study to elaborate the role of myeloperoxidase (MPO) on infected burn wounds in rats. Approach: We compared chemical properties as well as bacteriostatic ability of MPO in different concentrations with NeutroPhase. Subsequently, we applied MPO (MPO group), NeutroPhase (NeutroPhase group), NaCl+H2O2 (NaCl+H2O2 group), or NaCl (control group) on rat dorsal burn wounds inoculated with methicillin-resistant Staphylococcus aureus (MRSA). Their effects on MRSA-colonized wounds were evaluated by microscopy, histologic section, and Western blot. Results: MPO produced more H+ and HClO-, leading to a more acidic environment. Moreover, MPO inhibited the growth of MRSA more intensely after 6 h of inoculation ex vivo. In vivo the open wound rate in the MPO group was significantly lower, while the contraction rate and epithelialization rate of MPO group were higher than that of the control group, NaCl+H2O2 group, and NeutroPhase group on day 20. The hematoxylin and eosin staining of MPO group showed better wound healing than other groups. More vascular endothelial growth factor (VEGF) was expressed in wound tissue of MPO group by Western blot. Innovation: This is the first study to use MPO for MRSA-colonized burn wound therapy. Conclusion: MPO displayed more effective bacteriostatic ability, possibly beneficial for MRSA-colonized wound healing.
Collapse
Affiliation(s)
- Ren Guo
- Department of Plastic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuaihua Li
- Department of Cosmetic and Plastic Surgery, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Hansong Xia
- Department of Orthopedics, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhicai Feng
- Department of Plastic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiyu Tang
- Department of Plastic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Peng
- Department of Plastic Surgery, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Casciaro M, Di Salvo E, Pace E, Ventura-Spagnolo E, Navarra M, Gangemi S. Chlorinative stress in age-related diseases: a literature review. IMMUNITY & AGEING 2017; 14:21. [PMID: 29163665 PMCID: PMC5686828 DOI: 10.1186/s12979-017-0104-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 12/27/2022]
Abstract
Aging is an agglomerate of biological long-lasting processes that result being inevitable. Main actors in this scenario are both long-term inflammation and oxidative stress. It has been proved that oxidative stress induce alteration in proteins and this fact itself is critically important in the pathophysiological mechanisms leading to diseases typical of aging. Among reactive species, chlorine ones such as hypochlorous acid (HOCl) are cytotoxic oxidants produced by activated neutrophils during chronic inflammation processes. HOCl can also cause damages by reacting with biological molecules. HOCl is generated by myeloperoxidase (MPO) and augmented serum levels of MPO have been described in acute and chronic inflammatory conditions in cardiovascular patients and has been implicated in many inflammatory diseases such as atherosclerosis, neurodegenerative conditions, and some cancers. Due to these data, we decided to conduct an up-to-date review evaluating chlorinative stress effects on every age-related disease linked; potential anti-oxidant countermeasures were also assessed. Results obtained associated HOCl generation to the aging processes and confirmed its connection with diseases like neurodegenerative and cardiovascular pathologies, atherosclerosis and cancer; chlorination was mainly linked to diseases where molecular (protein) alteration constitute the major suspected cause: i.e. inflammation, tissue lesions, DNA damages, apoptosis and oxidative stress itself. According data collected, a healthy lifestyle together with some dietary suggestion and/or the administration of nutracetical antioxidant integrators could balance the effects of chlorinative stress and, in some cases, slow down or prevent the onset of age-releated diseases.
Collapse
Affiliation(s)
- Marco Casciaro
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Policlinico "G. Martino", University of Messina, Messina, Italy
| | - Eleonora Di Salvo
- IBIM-CNR Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy
| | - Elisabetta Pace
- IBIM-CNR Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy
| | - Elvira Ventura-Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Policlinico "G. Martino", University of Messina, Messina, Italy
| |
Collapse
|