1
|
Almaimani G, Jabbar AAJ, Ibrahim IAA, Alzahrani AR, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Azlina MFN. Anise (Pimpinella anisum L.) attenuates azoxymethane-induced colorectal cancer by antioxidant, anti-inflammatory, and anti-apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4439-4452. [PMID: 38103135 DOI: 10.1007/s11356-023-31349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Herbal medicine is one of the most common fields explored for combating colon cancers, and Pimpinella anisum L. seeds (PAS) have been utilized widely as medicinal agents because of their increased essential oil (trans-anethole) contents. In this essence, our study investigates the toxic effect and chemoprotective potentials of PAS against azoxymethane (AOM)-induced colon cancer in rats. The toxicity trial for PAS conducted by clustering fifteen rats into three groups (five rats each): A, normal control had 10% Tween 20; B, ingested with 2 g/kg PAS; and C, supplemented with 4 g/kg PAS. The in vivo cancer trial was performed by using 30 rats (Sprague-Dawley) that were randomly adapted in five steel cages (six rats each): group A, normal controls received two subcutaneous injections of normal saline 0.09% and ingested orally 10% Tween 20; groups B-E, rats received two injections of 15 mg/kg of azoxymethane (AOM) subcutaneously in 2 weeks and treated orally with 10% Tween 20 (group B) or intraperitoneal injection of 5-fluorouracil (35 mg/kg) (group C), or orally given 200 mg/kg PAS (group D) and 400 mg/kg PAS (group E) for 8 weeks. After the scarification of rats, the colon tissues were dissected for gross and histopathological evaluations. The acute toxicity trial showed the absence of any toxic signs in rats even after 14 days of ingesting 4 g/kg of PAS. The chemoprotective experiment revealed significant inhibitory potentials (65.93%) of PAS (400 mg/kg) against aberrant crypto foci incidence that could be correlated with its positive modulation of the immunohistochemically proteins represented by a significant up-regulation of the Bax protein and a decrease of the Bcl-2 protein expressions in colon tissues. Furthermore, PAS-treated rats had notably lower oxidative stress in colon tissues evidenced by decreased MDA levels and increased antiradical defense enzymes (SOD, CAT, and GPx). The outcomes suggest 400 mg/kg PAS as a viable additive for the development of potential pharmaceuticals against colorectal cancer.
Collapse
Affiliation(s)
- Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607, Makkah, Saudi Arabia
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
2
|
Wu J, Cao Z, Hassan SSU, Zhang H, Ishaq M, Yu X, Yan S, Xiao X, Jin HZ. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules 2023; 28:molecules28041571. [PMID: 36838559 PMCID: PMC9959726 DOI: 10.3390/molecules28041571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evolved over eons to encode biological assays, plants-derived natural products are still the first dawn of drugs. Most researchers have focused on natural compounds derived from commonly used Pimpinella species, such as P. anisum, P. thellungiana, P. saxifrage, and P. brachycarpa, to investigate their antioxidant, antibacterial, and anti-inflammatory properties. Ethnopharmacological studies demonstrated that the genus Pimpinella has the homology characteristics of medicine and food and mainly in the therapy of gastrointestinal dysfunction, respiratory diseases, deworming, and diuresis. The natural product investigation of Pimpinella spp. revealed numerous natural products containing phenylpropanoids, terpenoids, flavonoids, coumarins, sterols, and organic acids. These natural products have the potential to provide future drugs against crucial diseases, such as cancer, hypertension, microbial and insectile infections, and severe inflammations. It is an upcoming field of research to probe a novel and pharmaceutically clinical value on compounds from the genus Pimpinella. In this review, we attempt to summarize the present knowledge on the traditional applications, phytochemistry, and pharmacology of more than twenty-five species of the genus Pimpinella.
Collapse
Affiliation(s)
- Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Cao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haozhen Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| |
Collapse
|
3
|
Shrief AI, Abdel-Hamid AAM, Moustafa A, El-Mohandes E. The possible protective role of pimpinella anisum oil versus selenium on aspartame induced changes in rat cerebellar cortex: histological, immunohistochemical and electron microscopic study. Ultrastruct Pathol 2022; 46:497-510. [PMID: 36273246 DOI: 10.1080/01913123.2022.2136809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aspartame (ASP) is an artificial sweeter. Chronic use of ASP has a harmful effect on cerebellar cortex. Anisum oil and selenium (SE) are antioxidant substances. Therefore, the present study was performed to study the possible protective role of anisum oil versus selenium on aspartame-induced changes in rat cerebellar cortex. Rats were divided into four main groups. Group I (Control group). Group II received 250 mg/kg/day aspartame once daily for 2 months. Group III received 0.5 ml/kg/day anisum 2 h before aspartame administration. Group IV received 0.5 mg/kg/day selenium 2 h before aspartame administration. The administration of Asp for 2 months (group II) resulted in cerebellar histopathological changes in the form of deformed Purkinje and granule cells. Ultrastructurally, Purkinje cells had irregular nuclei, dilated cisternae of rough endoplasmic reticulum, dilated saccules of Golgi apparatus, mitochondria with destroyed cristae. In addition, granule cells appeared shrunken with irregular nuclei. Aspartame and anisum oil treated group (group III) showed partial improvement. Examination of ASP and SE treated group (group IV) showed that cerebellar cortex was nearly similar to control. In conclusion, Anisum oil and selenium could protect against ASP-induced cerebellar damage. The protective effect of selenium is better than anisum oil.
Collapse
Affiliation(s)
- Amira I Shrief
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| | - Ahmed A M Abdel-Hamid
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| | - Am Moustafa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| | - E El-Mohandes
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Al Mansoura, Egypt
| |
Collapse
|
4
|
Mariano LNB, Boeing T, da Silva RDCV, da Silva LM, Gasparotto-Júnior A, Cechinel-Filho V, de Souza P. Exotic Medicinal Plants Used in Brazil with Diuretic Properties: A Review. Chem Biodivers 2022; 19:e202200258. [PMID: 35544364 DOI: 10.1002/cbdv.202200258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 11/05/2022]
Abstract
Several exotic plants (non-native) are used in Brazilian traditional medicine and are known worldwide for their possible diuretic actions. Among the wide variety of plants, standing out Achillea millefolium L., Camellia sinensis L. Kuntze, Crocus sativus L., Hibiscus sabdariffa Linn., Petroselinum crispum (Mill.) A.W. Hill, Taraxacum officinale (L.) Weber, and Urtica dioica L., whose effects have already been the subject of some scientific study. In addition, we also discussed other exotic species in Brazil used popularly, but that still lack scientific studies, like the species Arctium lappa L., Carica papaya L., Catharanthus roseus (L.) G. Don, Centella asiatica (L.) Urb, Citrus aurantium L., and Persea americana Mill. However, generally, clinical studies on these plants are scarce. In this context, different plant species can be designated for further comprehensive studies, therefore, promoting support for developing an effective medicine to induce diuresis.
Collapse
Affiliation(s)
- Luísa Nathália Bolda Mariano
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Thaise Boeing
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Rita de Cássia Vilhena da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Luisa Mota da Silva
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Arquimedes Gasparotto-Júnior
- Laboratório de Eletrofisiologia e Farmacologia Cardiovascular, Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Valdir Cechinel-Filho
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí, Rua Uruguai, 458, Centro, 88302-901, Itajaí, Brazil
| |
Collapse
|
5
|
Ungur RA, Borda IM, Codea RA, Ciortea VM, Năsui BA, Muste S, Sarpataky O, Filip M, Irsay L, Crăciun EC, Căinap S, Jivănescu DB, Pop AL, Singurean VE, Crișan M, Groza OB, Martiș (Petruț) GS. A Flavonoid-Rich Extract of Sambucus nigra L. Reduced Lipid Peroxidation in a Rat Experimental Model of Gentamicin Nephrotoxicity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:772. [PMID: 35160718 PMCID: PMC8837157 DOI: 10.3390/ma15030772] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The use of gentamicin (GM) is limited due to its nephrotoxicity mediated by oxidative stress. This study aimed to evaluate the capacity of a flavonoid-rich extract of Sambucus nigra L. elderflower (SN) to inhibit lipoperoxidation in GM-induced nephrotoxicity. The HPLC analysis of the SN extract recorded high contents of rutin (463.2 ± 0.0 mg mL-1), epicatechin (9.0 ± 1.1 µg mL-1), and ferulic (1.5 ± 0.3 µg mL-1) and caffeic acid (3.6 ± 0.1 µg mL-1). Thirty-two Wistar male rats were randomized into four groups: a control group (C) (no treatment), GM group (100 mg kg-1 bw day-1 GM), GM+SN group (100 mg kg-1 bw day-1 GM and 1 mL SN extract day-1), and SN group (1 mL SN extract day-1). Lipid peroxidation, evaluated by malondialdehyde (MDA), and antioxidant enzymes activity-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX)-were recorded in renal tissue after ten days of experimental treatment. The MDA level was significantly higher in the GM group compared to the control group (p < 0.0001), and was significantly reduced by SN in the GM+SN group compared to the GM group (p = 0.021). SN extract failed to improve SOD, CAT, and GPX activity in the GM+SN group compared to the GM group (p > 0.05), and its action was most probably due to the ability of flavonoids (rutin, epicatechin) and ferulic and caffeic acids to inhibit synthesis and neutralize reactive species, to reduce the redox-active iron pool, and to inhibit lipid peroxidation. In this study, we propose an innovative method for counteracting GM nephrotoxicity with a high efficiency and low cost, but with the disadvantage of the multifactorial environmental variability of the content of SN extracts.
Collapse
Affiliation(s)
- Rodica Ana Ungur
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Ileana Monica Borda
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Răzvan Andrei Codea
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Viorela Mihaela Ciortea
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Bogdana Adriana Năsui
- Department of Community Health, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Sevastița Muste
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| | - Orsolya Sarpataky
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Miuța Filip
- Raluca Ripan Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania;
| | - Laszlo Irsay
- Department of Medical Specialties, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.A.U.); (V.M.C.); (L.I.)
| | - Elena Cristina Crăciun
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Simona Căinap
- Department of Mother and Child, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Delia Bunea Jivănescu
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Food Safety, Nutrition, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania;
| | - Victoria Emilia Singurean
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Maria Crișan
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Oana Bianca Groza
- Department of Morphological Sciences, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (V.E.S.); (M.C.); (O.B.G.)
| | - Georgiana Smaranda Martiș (Petruț)
- Food Engineering Department, University of Agricultural Sciences and Veterinary Medicine, 64 Calea Floresti, 400509 Cluj-Napoca, Romania; (S.M.); (G.S.M.)
| |
Collapse
|
6
|
Amirpour-Najafabadi B, Hosseini SS, Sam-Sani P, Rezaei E, Ramezani M, Changizi-Ashtiyani S. The glycocalyx, a novel key in understanding of mechanism of diabetic nephropathy: a commentary. J Diabetes Metab Disord 2021; 20:2049-2053. [PMID: 34900840 DOI: 10.1007/s40200-021-00826-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Introduction Diabetes is a chronic and progressive disease that usually causes disrupts the function of the body's organs and can eventually lead to cardiomyopathy, nephropathy, retinopathy, and neuropathy. Diabetic nephropathy (DN) is the most common cause of chronic kidney disease and causes chronic structural changes in different parts of the affected kidney. Glycocalyx layer is one of the most important components of the vascular base found in the endothelium throughout the body's arteries and it has been shown that glycocalyx is also damaged during diabetic nephropathy. Our goal is to conduct this systematic review study is to find the cause-and-effect relationship between glycocalyx and diabetic nephropathy and also to clarify the role of the endothelial renal glycocalyx in understanding of mechanism of the course of diabetic nephropathy, and to provide an accurate background for further important studies. Methods All databases included MEDLINE (PubMed), Science Direct, Scopus, Ovid and Google Scholar were systematically searched for related published articles. In all databases, the following search strategy was implemented and these key words (in the title/abstract) were used: "diabetes" AND "glycocalyx" OR "diabetic nephropathy" AND "glycocalyx". Results and discussion A total of 19 articles were retrieved from all databases using search strategy. After screening based on the title and abstract, number of 17 of them selected for full text assessment. Finally, after extracting the key points and making connections between the articles, we came up with new points to consider. It can be said that diabetes with the action of reactive oxygen species through oxidative stress, increases ICAM-1 and TNF-α and decreases heparanase enzyme, it affects the glomerular endothelium and eventually leads to albuminuria and destruction of the Glx layer. Conclusion Diabetes causes super-structural changes in the kidney nephrons at the glomerular level. The glomerular filter barrier, which includes the epithelial cell called the podocyte, endothelial pore cells, and basal membrane of the glomerulus, plays a major role in stabilizing the selective glomerular function in healthy individuals. Diabetic nephropathy also causes changes in endothelial glycocalyx.
Collapse
Affiliation(s)
- Behnam Amirpour-Najafabadi
- Faculty of Para-Medicine, Arak University of Medical Sciences, Arak, Iran.,Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | | | - Parnian Sam-Sani
- Faculty of Para-Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Erfan Rezaei
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Majid Ramezani
- Department of Internal Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Changizi-Ashtiyani
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.,Faculty of Para-Medicine, Department of Physiology, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Moeini R, Memariani Z, Enayati A, Gorji N, Kolangi F. Nephrotonic and Nephroprotective medicinal herbs in traditional Persian Medicine: Review and assessment of scientific evidence. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211118145406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The tendency to use herbal and complementary therapies has been increased dramatically in last decades. The aim of this study is reviewing nephrotonic and nephroprotective medicinal herbs in traditional Persian Medicine (TPM) historical books, and assessment of relevant scientific evidence and possible mechanisms of action. In this study, seven major references among pharmaceutical books of PM from the 11th to 19th centuries were selected and were searched with key words equivalent to “nephroprotection”. To find new studies, the scientific name of medicinal herbs which were repeated twice or more were searched using data bases including PubMed, and Google scholar with keywords of nephroprotective, renal disorder, renal failure and kidney. Also, probable effective mechanisms were explored with key words including oxidative stress, antioxidant, inflammation, anti-inflammatory and angiotensin-converting-enzyme inhibitor. 210 herbal remedies were found with kidney strengthening, nephroprotective, and atrophy prevention effects in reviewed books. The most repeated herbs were 41 Results of scientific evidence showed that the possible functional mechanisms of these plants include anti-inflammatory, anti-oxidative, blood pressure/glucose-lowering effect as well as improvement of glomerular filtration, prevention of tissue damage, and enhancing the reconstructive power of cells. The list of medicinal herbs in this study can be used as a base of future studies on production of new medicines for prevention or treatment of renal failure and for the enhancement of renal performance.
Collapse
Affiliation(s)
- Reihaneh Moeini
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Narjes Gorji
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Kolangi
- Counseling and Reproductive Health Research Centre,Department of Persian Medicine, School of Persian Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
8
|
Pacheco LF, de Castro CH, Dutra JBR, de Souza Lino Junior R, Ferreira PM, Dos Santos RAS, Ulhoa CJ. Oral Treatment with Angiotensin-(1-7) Attenuates the Kidney Injury Induced by Gentamicin in Wistar Rats. Protein Pept Lett 2021; 28:1425-1433. [PMID: 34792000 DOI: 10.2174/0929866528666211118091810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acute Kidney Injury (AKI), a common disease of the urinary system, can be induced by high doses of gentamicin (GM). The Renin-Angiotensin System exerts a key role in the progression of the AKI since elevated intrarenal levels of Ang II, and ACE activity is found in this condition. However, it is unknown whether oral administration of Ang-(1-7), a heptapeptide that evokes opposite effects of Ang II, may attenuate the renal injuries induced by gentamicin. OBJECTIVES To evaluate the effects of Ang (1-7) on GM-induced renal dysfunction in rats. METHODS AKI was induced by subcutaneous administration of GM (80 mg/Kg) for 5 days. Simultaneously, Ang-(1-7) included in hydroxypropyl β-cyclodextrin (HPβCD) was administered by gavage [46 μg/kg HPβCD + 30 μg/kg Ang- (1-7)]. At the end of the treatment period (sixth day), the rats were housed in metabolic cages for renal function evaluation. Thereafter, blood and kidney samples were collected. RESULTS The Ang-(1-7) attenuated the increase of the plasmatic creatinine and proteinuria caused by GM but did not change the glomerular filtration rate nor tubular necrosis. Ang-(1-7) attenuated the increased urinary flow and the fractional excretion of H2O and potassium observed in GM rats but intensified the elevated excretion of sodium in these animals. Morphological analysis showed that Ang-(1-7) also reduced the tubular vacuolization in kidneys from GM rats. CONCLUSION Ang-(1-7) promotes selective beneficial effects in renal injuries induced by GM.
Collapse
Affiliation(s)
- Lílian Fernanda Pacheco
- Superior School of Physical Education and Physiotherapy of the State of Goiás, State University of Goiás (UEG), Goiânia-Goiás. Brazil
| | - Carlos Henrique de Castro
- Department of Physiology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia-GO. Brazil
| | - João Batista Rodrigues Dutra
- Department of Physiology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia-GO. Brazil
| | - Ruy de Souza Lino Junior
- Department of Biosciences and Technology, Tropical Pathology and Public Health Institute, Federal University of Goiás (UFG), Goiânia. Brazil
| | - Patrícia Maria Ferreira
- Department of Physiology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia-GO. Brazil
| | - Robson Augusto Souza Dos Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences. Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais. Brazil
| | - Cirano José Ulhoa
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia, Goiás. Brazil
| |
Collapse
|
9
|
Anti-inflammatory and antioxidative properties of date pollen in the gentamicin-induced renal toxicity. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Damiano S, Andretta E, Longobardi C, Prisco F, Paciello O, Squillacioti C, Mirabella N, Florio S, Ciarcia R. Effects of Curcumin on the Renal Toxicity Induced by Ochratoxin A in Rats. Antioxidants (Basel) 2020; 9:antiox9040332. [PMID: 32325727 PMCID: PMC7222377 DOI: 10.3390/antiox9040332] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022] Open
Abstract
Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA-induced oxidative damage in the kidneys of rats.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
- Correspondence: ; Tel.: +39-081-2536127
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli” Naples, Largo Madonna delle Grazie, 1, 80138 Napoli, Italy;
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Caterina Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Nicola Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Via Delpino, 1, 80137 Napoli, Italy; (E.A.); (F.P.); (O.P.); (C.S.); (N.M.); (S.F.); (R.C.)
| |
Collapse
|
12
|
Hashemnia M, Nikousefat Z, Mohammadalipour A, Zangeneh MM, Zangeneh A. Wound healing activity of Pimpinella anisum methanolic extract in streptozotocin-induced diabetic rats. J Wound Care 2020; 28:S26-S36. [PMID: 31600102 DOI: 10.12968/jowc.2019.28.sup10.s26] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To assess the wound healing potential of Pimpinella anisum on cutaneous wounds in diabetic rats. METHOD Full-thickness excisional wounds were made on the back of male, Sprague-Dawley rats with diabetes. The rats were randomly allocated into four treatment groups: 1ml basal cream; tetracycline (3%); Pimpinella anisum 10% for 14 days; and a control group. At days seven, 14 and 21 post-injury, five animals of each group were euthanised, and wounds were assessed through gross, histopathological and oxidant/antioxidant evaluations. Additionally, the dry matter and hydroxyproline contents of the skin samples were measured. RESULTS A total of 60 rats were used in the study. A significant decrease in the wound size was observed in treated animals with Pimpinella anisum compared with other groups during the experiment. Additionally, treatment with Pimpinella anisum decreased the number of lymphocytes and improved the number of fibroblasts at the earlier stages and increased a number of fibrocytes at the later stages of wound healing. Other parameters such as re-epithelialisation, tissue alignment, greater maturity of collagen fibres and large capillary-sized blood vessels revealed significant changes when compared with the control. Pimpinella anisum significantly reverted oxidative changes of total antioxidant capacity, malondialdehyde and glutathione peroxidase induced by diabetic wounds (p<0.05). Furthermore, it significantly increased the dry matter and hydroxyproline contents at various stages of wound healing (p<0.05). CONCLUSION The present study showed that application of Pimpinella anisum extract promotes wound healing activity in diabetic rats. The wound-healing property of Pimpinella anisum can be attributed to the phytoconstituents present in the plant.
Collapse
Affiliation(s)
- Mohammad Hashemnia
- 1 Department of Pathobiology, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Zahra Nikousefat
- 2 Department of Clinical Sciences, Veterinary Medicine Faculty, Razi University, Kermanshah, Iran
| | - Adel Mohammadalipour
- 3 Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad-Mahdi Zangeneh
- 4 Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.,5 Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Akram Zangeneh
- 4 Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.,5 Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
13
|
Sun W, Shahrajabian MH, Cheng Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. ACTA ACUST UNITED AC 2019. [DOI: 10.1080/23312025.2019.1673688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Nitrogen Fixation Laboratory, Qi Institute, Building C4, No.555 Chuangye Road, Jiaxing, Zhejiang 314000, China
| | - Mohamad Hesam Shahrajabian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Nitrogen Fixation Laboratory, Qi Institute, Building C4, No.555 Chuangye Road, Jiaxing, Zhejiang 314000, China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Nitrogen Fixation Laboratory, Qi Institute, Building C4, No.555 Chuangye Road, Jiaxing, Zhejiang 314000, China
| |
Collapse
|
14
|
Abdel-Magied N, Elkady AA. Possible curative role of curcumin and silymarin against nephrotoxicity induced by gamma-rays in rats. Exp Mol Pathol 2019; 111:104299. [PMID: 31442446 DOI: 10.1016/j.yexmp.2019.104299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Curcumin (CUR) and silymarin (SLM) are powerful antioxidant and anti-inflammatory compounds with beneficial protective effects against renal diseases. The purpose of this study was to evaluate the efficacy of CUR and SLM alone or in combination on radiation (IR) induced kidney injury. The results showed that CUR and SLM alone or in combination attenuated the oxidative stress denoted by a reduction in the level of malondialdehyde (MDA), hydrogen peroxide (H2O2) and advanced oxidation protein products (AOPP) along with a marked increase of glutathione GSH content and total antioxidant capacity (TAC). Additionally, a significant decrease in the level of blood urea nitrogen (BUN), creatinine, Cystatin-C (CYT-C), neutrophil gelatinase-associated lipocalin (N-GAL) and Kidney Injury Molecule-1 (Kim-1) was recorded. Moreover, the treatment resulted in a remarkable decline in the serum levels of interleukin-18(IL-18), tumor necrosis factor- alpha (TNF-α), C reactive protein (CRP), BCL2 associated X protein (Bax), Factor-related Apoptosis (FAS) and the activity of Caspase-3 associated by an increase of B-cell CLL/lymphoma 2 (Bcl2) level. The results were confirmed with the histopathological examination. Kidney of irradiated showed glomerular atrophy, massive necrotic changes of expanded tubules with hyaline cast inside some tubules and apoptotic changes were recorded in some renal tubules. While irradiated rats treated with CUR and SLM exhibited marked preservation of the cellular structure of their kidney tissue. In conclusion, the combination of CUR and SLM could be more potent than a single agent on the biochemical and histological changes of the irradiated rat renal tissue.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- Radiation Biology Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| | - Ahmed A Elkady
- Health Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|
15
|
Hakimi F, Choopani R, Asghari M, Namdar H, Parsa E, Jafari P, Movahhed M. A Historical Review of Persian Medicine Studies into Saliva Manifestations for Potential Applications for Diagnosis and Management of Metabolic Syndrome. Endocr Metab Immune Disord Drug Targets 2019; 20:182-188. [PMID: 31237220 DOI: 10.2174/1871530319666190618155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Regarding the development of diagnostic tests based on saliva and the prevalence of metabolic syndrome (MetS), the aim of this study is to review Persian Medicine manuscripts in the field of saliva manifestations, its relation to metabolic syndrome, and treatment recommendations. METHODS This study is a mini-review. We investigated the canon of medicine and some important Persian medical or pharmaceutical manuscripts from the 9th to the 19th centuries. PubMed and Google Scholar databases were explored for finding relevant information about the relationship between saliva and metabolic syndrome and its treatment. RESULTS Studies have suggested that maldigestion is one of the important causes of MetS. Sialorrhea may be an early symptom of maldigestion. Attention to sialorrhea and its treatment may be useful in the prevention and treatment of metabolic syndrome based on PM sources. In PM, sialorrhea is treated with 3 major approaches: lifestyle modification along with simple or compound medicines. CONCLUSION Saliva manifestations could be considered as early symptoms of metabolic syndrome. As mentioned in WHO strategies, traditional medicine can be used along with modern medicine due to its effectiveness in the management of various ailments.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasool Choopani
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Asghari
- Traditional Medicine Research Center, School of Traditional Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hasan Namdar
- Department of Traditional Medicine, School of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Elham Parsa
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Jafari
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Movahhed
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Asgharian S, Lorigooini Z, Rafieian R, Rafieian-Kopaei M, Kheiri S, Nasri H. The preventive effect of Berberis vulgaris extract on contrastinduced acute kidney injury. J Nephropathol 2017. [DOI: 10.15171/jnp.2017.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|