1
|
Lioulios G, Fylaktou A, Xochelli A, Tourountzis T, Christodoulou M, Moysidou E, Stai S, Vagiotas L, Stangou M. Hemodiafiltration May Be Associated with Senescence-Related Phenotypic Alterations of Lymphocytes, Which May Predict Mortality in Patients Undergoing Dialysis. Int J Mol Sci 2024; 25:10925. [PMID: 39456708 PMCID: PMC11507245 DOI: 10.3390/ijms252010925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Senescence-resembling alterations on the lymphocytes of patients undergoing dialysis have been widely described. However, the pathophysiology behind these phenomena has not been clarified. In this study, we examined the impact of dialysis prescription on T and B lymphocytes, in patients undergoing dialysis.: T and B cell subsets were determined with flow cytometry in 36 patients undergoing hemodialysis and 26 patients undergoing hemodiafiltration, according to the expression of CD45RA, CCR7, CD31, CD28, CD57, and PD1 for T cells, and IgD and CD27 for B cells. The immune phenotype was associated with dialysis modality, hemofiltration volume, and mortality. Compared with hemodialysis, patients undergoing hemodiafiltration had a significantly decreased percentage of CD4+CD28-CD57- T cells [3.8 (2.4-5.3) vs. 2.1 (1.3-3.3)%, respectively, p = 0.002] and exhausted CD4+ T cells [14.1 (8.9-19.4) vs. 8.5 (6.8-11.7)%, respectively, p = 0.005]. Additionally, the hemofiltration volume was negatively correlated with CD8+ EMRA T cells (r = -0.46, p = 0.03). Finally, the increased exhausted CD4+ T cell percentage was associated with increased all-cause mortality in patients undergoing dialysis, independent of age. Hemodiafiltration, especially with high hemofiltration volume, may have beneficial effects on senescence-related immune phenotypes. Immune phenotypes may also be a predicting factor for mortality in patients undergoing dialysis.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, 424 Military Hospital of Thessaloniki, 56429 Thessaloniki, Greece;
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital Hippokration, 54642 Thessaloniki, Greece; (A.F.); (A.X.)
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, General Hospital Hippokration, 54642 Thessaloniki, Greece; (A.F.); (A.X.)
| | | | - Michalis Christodoulou
- First Department of Nephrology, General Hospital Hippokration, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (S.S.)
- School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Eleni Moysidou
- First Department of Nephrology, General Hospital Hippokration, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (S.S.)
- School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- First Department of Nephrology, General Hospital Hippokration, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (S.S.)
- School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Lampros Vagiotas
- Department of Transplant Surgery, General Hospital Hippokratio, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- First Department of Nephrology, General Hospital Hippokration, 54642 Thessaloniki, Greece; (M.C.); (E.M.); (S.S.)
- School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
2
|
Zibandeh N, Li Z, Ogg G, Bottomley MJ. Cutaneous adaptive immunity and uraemia: a narrative review. Front Immunol 2024; 15:1464338. [PMID: 39399503 PMCID: PMC11466824 DOI: 10.3389/fimmu.2024.1464338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Chronic kidney disease affects 1 in 10 people globally, with a prevalence twenty times that of cancer. A subset of individuals will progress to end-stage renal disease (ESRD) where renal replacement therapy is required to maintain health. Cutaneous disease, including xerosis and pruritus, are endemic amongst patients with ESRD. In the uraemia-associated immune deficiency of ESRD, impaired circulating immune responses contribute to increased infection risk and poorer vaccination response. Clinical manifestations of dysregulated adaptive immunity within the skin have been well-described and have been posited to play a role in cutaneous features of ESRD. However, our understanding of the mechanisms by which adaptive immunity within the skin is affected by uraemia is relatively limited. We provide an overview of how the cutaneous adaptive immune system is impacted both directly and indirectly by uraemia, highlighting that much work has been extrapolated from the circulating immune system and often has not been directly evaluated in the skin compartment. We identify knowledge gaps which may be addressed by future research. Ultimately, greater understanding of these pathways may facilitate novel therapeutic approaches to ameliorate widespread cutaneous symptomatology in ESRD.
Collapse
Affiliation(s)
- Noushin Zibandeh
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Zehua Li
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Graham Ogg
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- MRC Translational Immune Discovery Unit , University of Oxford, Oxford, United Kingdom
| | - Matthew J. Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Oxford Kidney and Transplant Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
3
|
Vagiotas L, Lioulios G, Panteli M, Ouranos K, Xochelli A, Kasimatis E, Nikolaidou V, Samali M, Daoudaki M, Katsanos G, Antoniadis N, Tsoulfas G, Stangou M, Fylaktou A. Kidney Transplantation and Cellular Immunity Dynamics: Immune Cell Alterations and Association with Clinical and Laboratory Parameters. J Clin Med 2024; 13:5093. [PMID: 39274306 PMCID: PMC11396483 DOI: 10.3390/jcm13175093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: The purpose of this study was to evaluate numerical changes in immune cells after successful kidney transplantation and associate their recovery with clinical and laboratory factors. Methods: In 112 kidney transplant recipients, we performed flow cytometry to evaluate counts of CD4+, CD8+, and regulatory T cells (Tregs), as well as natural killer (NK) cells, before kidney transplantation (T0) and three (T3), six (T6), and twelve (T12) months later. The results were associated with the recipient's age, cold ischemia time (CIT), the type of donor, dialysis method and vintage, and graft function in one year. Results: Total and CD8+ T cell counts increased gradually one year post transplantation in comparison with pre-transplantation levels, whereas the number of CD4+ T cells and Tregs increased, and the number of NK cells decreased in the first three months and remained stable thereafter. The recipient's age was negatively correlated with total, CD4+, and Treg counts at T12, whereas CIT affected only total and CD4+ T cell count. Moreover, recipients receiving kidneys from living donors presented better recovery of all T cell subsets at T12 in comparison with recipients receiving kidneys from cadaveric donors. Patients on peritoneal dialysis had increased numbers of total and CD8+ T cells, as well as NK cells. Finally, estimated glomerular filtration rate was positively correlated with Treg level and potentially CD4+ T cells one-year post transplantation. Conclusions: Successful kidney transplantation results in the recovery of most T cell subsets. Lower recipient age and better graft function contribute to increased T cell counts, whereas donor type and dialysis modality are the most important modifiable factors for optimal immune recovery.
Collapse
Affiliation(s)
- Lampros Vagiotas
- Department of Transplant Surgery, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- Department of Nephrology, 424 General Military Hospital of Thessaloniki, 56429 Thessaloníki, Greece
| | - Manolis Panteli
- 1st Department of Nephrology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Konstantinos Ouranos
- Department of Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Aliki Xochelli
- National Peripheral Histocompatibility Center, Department of Immunology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Efstratios Kasimatis
- 1st Department of Nephrology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Department of Immunology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Margarita Samali
- National Peripheral Histocompatibility Center, Department of Immunology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Maria Daoudaki
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece
| | - Georgios Katsanos
- Department of Transplant Surgery, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Georgios Tsoulfas
- Department of Transplant Surgery, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| | - Maria Stangou
- 1st Department of Nephrology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thessaloniki, Greece
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Department of Immunology, General Hospital Hippokratio, 54642 Thessaloniki, Greece
| |
Collapse
|
4
|
Wu W, Song A, Xie K, Lu J, Zhao B, Qian C, Wang M, Min L, Hong W, Pang H, Lu R, Gu L. Characteristics of T cell premature senescence in maintenance hemodialysis patients. Inflamm Res 2024; 73:1299-1309. [PMID: 38850344 DOI: 10.1007/s00011-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Uremia-associated immunodeficiency, mainly characterized by T cell dysfunction, exists in patients on maintenance hemodialysis (MHD) and promotes systemic inflammation. However, T cell senescence, one of the causes of T cell dysfunction, has not been clearly revealed yet. In this cross-sectional research, we aimed to study the manifestation of T cell premature senescence in MHD patients and further investigate the associated clinical factors. METHODS 76 MHD patients including 33 patients with cardiovascular diseases (CVD) and 28 patients with arteriovenous fistula (AVF) event history were enrolled in this study. Complementarity determining region 3 (CDR3) of T cell receptor (TCR) was analyzed by immune repertoire sequencing (IR-Seq). CD28- T cell subsets and expression of senescence marker p16 and p21 genes were detected by multicolor flow cytometry and RT-qPCR, respectively. RESULTS MHD patients had significantly decreased TCR diversity (P < 0.001), increased CDR3 clone proliferation (P = 0.001) and a left-skewed CDR3 length distribution. The proportion of CD4 + CD28- T cells increased in MHD patients (P = 0.014) and showed a negative correlation with TCR diversity (P = 0.001). p16 but not p21 expression in T cells was up-regulated in MHD patients (P = 0.039). Patients with CVD exhibited increased expression of p16 and p21 genes (P = 0.010 and 0.004, respectively), and patients with AVF events showed further TCR diversity and evenness reduction (P = 0.002 and 0.017, respectively) compared to patients without the comorbidities. Moreover, age, average convection volume, total cholesterol, high-density lipoprotein cholesterol and transferrin saturation were associated with TCR diversity or CD4 + CD28- T cell proportion (P < 0.05). CONCLUSIONS MHD patients undergo T cell premature senescence characterized by significant TCR diversity reduction and repertoire skew, as well as accumulation of the CD4 + CD28- subset and up-regulation of p16 gene. Patients with CVD or AVF events show higher level of immunosenescence. Furthermore, T cell senescence in MHD patients is associated with blood cholesterol and uremic toxin retention, suggesting potential intervention strategies in the future.
Collapse
Affiliation(s)
- Wangshu Wu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Ahui Song
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Kewei Xie
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Bingru Zhao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Cheng Qian
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Minzhou Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Lulin Min
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Wenkai Hong
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China
| | - Huihua Pang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China.
| | - Renhua Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China.
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Renji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, 160# Pujian Road, Building 1, 2nd Floor, Shanghai, 200127, China.
| |
Collapse
|
5
|
Lee TH, Chen JJ, Wu CY, Lin TY, Hung SC, Yang HY. Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management. Biomed J 2024; 47:100638. [PMID: 37524304 PMCID: PMC10979181 DOI: 10.1016/j.bj.2023.100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized by diminished immune response and chronic inflammation. Recent investigations have highlighted similar immune alterations in patients with reduced kidney function. The immune system and kidney function have been found to be closely interconnected. Studies have shown that as kidney function declines, both innate and adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD patients display shorter telomeres in both CD4+ and CD8+ T cells. Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the activation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing alterations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to immunosenescence.
Collapse
Affiliation(s)
- Tao Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, And Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Xiang F, Sun L, Cao X, Li Y, Chen X, Zhang Z, Zou J, Teng J, Shen B, Ding X. CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing hemodialysis. Clin Chim Acta 2024; 555:117791. [PMID: 38266969 DOI: 10.1016/j.cca.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND T cell dysfunction observed in patients undergoing hemodialysis (HD) has been linked to an extremely high morbidity of cardiovascular events (CVEs) and infections. The cell-surface 5'-nucleotidase CD73 sets the balance between pro-inflammatory nucleotides and anti-inflammatory adenosine. METHODS A total of 395 patients who had been receiving HD for at least six months were evaluated for proportions of CD73+ cells in both the CD4+ T cell and CD8+ T cell compartment and followed for one year to document CVEs and infections. Differences in the proportions of CD73-expressingT cells between healthy controls and patients undergoing HD were compared. The relationship between CD73+ T cells and clinical outcomes was analyzed using the Kaplan-Meier curve and Cox regression. RESULTS HD was significantly related to a lower fraction of CD4+CD73+ T cells. In patients on HD, lower proportions of CD4+ CD73+T cells and CD8+ CD73+T cells were both associated with systemic inflammation and T cell terminal differentiation. More importantly, a lower CD4+CD73+T cell ratio independently predicted CVEs and infection in these patients. CONCLUSION We identified CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing HD, which provides a potential target in future studies of uremia-related immune dysfunction.
Collapse
Affiliation(s)
- Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Lin Sun
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Nephrology, Zhongshan Hospital, Fudan University(Xiamen Branch), Xiamen, Fujian, China; Nephrology Clinical Quality Control Center of Xiamen, Xiamen, Fujian, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
7
|
Daikidou DV, Lioulios G, Sampani E, Xochelli A, Nikolaidou V, Moysidou E, Christodoulou M, Iosifidou A, Iosifidou M, Briza DI, Papagianni A, Fylaktou A, Stangou M. Prospective Analysis of B Lymphocyte Subtypes, before and after Initiation of Dialysis, in Patients with End-Stage Renal Disease. Life (Basel) 2023; 13:life13040860. [PMID: 37109388 PMCID: PMC10146774 DOI: 10.3390/life13040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
End-stage renal disease (ESRD) is followed by alterations in adaptive immunity. The aim of this study was to evaluate B lymphocyte subtypes in ESRD patients before and after hemodialysis (HD) or continuous ambulatory peritoneal dialysis (CAPD). PATIENTS AND METHODS CD5, CD27, BAFF, IgM and annexin were evaluated by flow cytometry on CD19+ cells in ESRD patients (n = 40), at time of initiating HD or CAPD (T0) and 6 months later (T6). RESULTS A significant reduction in ESRD-T0 compared to controls was noticed for CD19+, 70.8 (46.5) vs. 171 (249), p < 0.0001, CD19+CD5-, 68.6 (43) vs. 168.9 (106), p < 0.0001, CD19+CD27-, 31.2 (22.1) vs. 59.7 (88.4), p < 0.0001, CD19+CD27+, 42.1 (63.6) vs. 84.3 (78.1), p = 0.002, CD19+BAFF+, 59.7 (37.8) vs. 127.9 (123.7), p < 0.0001 and CD19+IgM+ cells, 48.9 (42.8) vs. 112.5 (81.7) (K/μL), p < 0.0001. The ratio of early/late apoptotic B lymphocytes was reduced (16.8 (10.9) vs. 110 (25.4), p = 0.03). CD19+CD5+ cells were the only cell type with an increased proportion in ESRD-T0 patients (2.7 (3.7) vs. 0.6 (1.1), p < 0.0001). After 6 months on CAPD or HD, CD19+CD27-(%) and early apoptotic lymphocytes were reduced further. The HD patients also showed a significant increase in late apoptotic lymphocytes, from 1.2 (5.7) to 4.2 (7.2) K/mL, p = 0.02. CONCLUSIONS B cells and most of their subtypes were significantly reduced in ESRD-T0 patients compared to controls, the only exception being CD19+CD5+ cells. Apoptotic changes were prominent in ESRD-T0 patients and were exacerbated by HD.
Collapse
Affiliation(s)
- Dimitra-Vasilia Daikidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Erasmia Sampani
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Artemis Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
| | - Myrto Iosifidou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
| | - Dimitria Ioanna Briza
- School of Informatics, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
| | - Aikaterini Papagianni
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 45636 Thesaloniki, Greece
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
8
|
Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders - Advances and challenges. Hum Vaccin Immunother 2022; 18:2035117. [PMID: 35240914 PMCID: PMC9009914 DOI: 10.1080/21645515.2022.2035117] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Autoimmune diseases are caused when immune cells act against self-protein. This biological self-non-self-discrimination phenomenon is controlled by a distinct group of lymphocytes known as regulatory T cells (Tregs), which are key inflammatory response regulators and play a pivotal role in immune tolerance and homeostasis. Treg-mediated robust immunosuppression provides self-tolerance and protection against autoimmune diseases. However, once this system fails to operate or poorly operate, it leads to an extreme situation where immune system reacts against self-antigens and destroys host organs, thus causing autoimmune diseases. Tregs can target both innate and adaptive immunity via modulating multiple immune cells such as neutrophils, monocytes, antigen-presenting cells, B cells, and T cells. This review highlights the Treg-mediated immunosuppression, role of several markers and their interplay during Treg development and differentiation, and advances in therapeutic aspects of Treg cells to reduce severity of autoimmunity-related conditions along with emphasizing limitations and challenges of their usages.
Collapse
Affiliation(s)
- Tapas Kumar Goswami
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mithilesh Singh
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, UK
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
9
|
Different Types of Chronic Inflammation Engender Distinctive Immunosenescent Profiles in Affected Patients. Int J Mol Sci 2022; 23:ijms232314688. [PMID: 36499016 PMCID: PMC9735546 DOI: 10.3390/ijms232314688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Immunosenescence encompasses a spectrum of lymphocyte phenotypic alterations. The aim of the study was to evaluate immunosenescent effect of two different forms of chronic inflammation, Systemic Lupus Erythematosous (SLE), a systemic autoimmune disease, and End-Stage Kidney Disease (ESKD), a chronic inflammatory disorder. Certain lymphocyte surface molecules, including CD31, CD45RA, CCR7, CD28, CD57, for T, and IgD, CD27 for B lymphocytes, were analyzed by flow cytometry in 30 SLE and 53 ESKD patients on hemodialysis (HD), and results were compared to 31 healthy controls (HC) of similar age, gender, and nationality. Significant Lymphopenia was evident in both SLE and ESKD-HD patients, compared to HC, affecting B cells 75.4 (14.4−520.8), 97 (32−341), and 214 (84−576) cells/μL, respectively, p < 0.0001, and CD4 cells 651.2 (71.1−1478.2), 713 (234−1509), and 986 (344−1591) cells/μL, respectively, p < 0.0001. The allocation of B cell subpopulations was remarkably different between SLE and ESKD-HD patients. SLE showed a clear shift to senescence (CD19IgD-CD27−) cells, compared to ESKD-HD and HC, 11.75 (10)% vs. 8 (6) vs. 8.1 (10), respectively. Regarding T lymphocytes, Central Memory CD8 cells predominated in both SLE and ESKD-HD patients compared to HC, 53 (50)%, 52 (63), and 24 (64)%, respectively, while ESKD-HD but not SLE patients also had increased expression of CD4CD28− and CD8CD28− cells. In conclusion, both diseases are followed by significant lymphopenia; however, the senescent phenomenon affects the B lymphocyte compartment in SLE patients and T lymphocytes in ESKD-HD patients.
Collapse
|
10
|
COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation. Life (Basel) 2022; 12:life12091358. [PMID: 36143394 PMCID: PMC9505388 DOI: 10.3390/life12091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 01/08/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with phenotypic and functional changes in the immune system, followed by detrimental clinical consequences, such as severe infections and defective response to vaccination. Two years of the pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have undoubtedly changed the world; however, all efforts to confront infection and provide new generation vaccines tremendously improved our understanding of the mechanisms of the immune response against infections and after vaccination. Humoral and cellular responses to vaccines, including mRNA vaccines, are apparently affected in CKD patients, as elimination of recent thymic emigrant and naïve lymphocytes and regulatory T-cells, together with contraction of T-cell repertoire and homeostatic proliferation rate, which characterized CKD patients are responsible for impaired immune activation. Successful renal transplantation will restore some of these changes, although several epigenetic changes are irreversible and even accelerated by the induction of immunosuppression. Response to vaccination is definitely impaired among both CKD and RT patients. In the present review, we analyzed the differences in immune response after vaccination between these patients and healthy individuals and depicted specific parameters, such as alterations in the immune system, predisposing to this deficient response.
Collapse
|
11
|
Di Lello FA, Martínez AP, Flichman DM. Insights into induction of the immune response by the hepatitis B vaccine. World J Gastroenterol 2022; 28:4249-4262. [PMID: 36159002 PMCID: PMC9453777 DOI: 10.3748/wjg.v28.i31.4249] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/21/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
After more than four decades of hepatitis B virus (HBV) vaccine implementation, its safety and efficacy in preventing HBV infection have been proven and several milestones have been achieved. Most countries have included HBV immunization schedules in their health policies and progress has been made regarding universalization of the first HBV vaccine dose at birth. All of these actions have significantly contributed to reducing both the incidence of HBV infection and its related complications. However, there are still many drawbacks to overcome. The main concerns are the deficient coverage rate of the dose at birth and the large adult population that has not been reached timely by universal immunization. Additionally, the current most widely used second-generation vaccines do not induce protective immunity in 5% to 10% of the population, particularly in people over 40-years-old, obese (body mass index > 25 kg/m2), heavy smokers, and patients undergoing dialysis or infection with human immunodeficiency virus. Recently developed and approved novel vaccine formulations using more potent adjuvants or multiple antigens have shown better performance, particularly in difficult settings. These advances re-launch the expectations of achieving the World Health Organization’s objective of completing hepatitis control by 2030.
Collapse
Affiliation(s)
- Federico Alejandro Di Lello
- Microbiology, Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular, Buenos Aires C1113AAD, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
| | - Alfredo Pedro Martínez
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno “CEMIC”, Buenos Aires C1431FWO, Argentina
| | - Diego Martín Flichman
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1425FQB, Argentina
- Microbiology, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
12
|
Stangou MJ, Fylaktou A, Ivanova-Shivarova MI, Theodorou I. Editorial: Immunosenescence and Immunoexhaustion in Chronic Kidney Disease and Renal Transplantation. Front Med (Lausanne) 2022; 9:874581. [PMID: 35479944 PMCID: PMC9037092 DOI: 10.3389/fmed.2022.874581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Affiliation(s)
- Maria J Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | | | | |
Collapse
|
13
|
Van Laecke S, Van Damme K, Dendooven A. Immunosenescence: an unexplored role in glomerulonephritis. Clin Transl Immunology 2022; 11:e1427. [PMID: 36420421 PMCID: PMC9676375 DOI: 10.1002/cti2.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
Immunosenescence is a natural ageing phenomenon with alterations in innate and especially adaptive immunity and contributes to reduced antimicrobial defence and chronic low‐grade inflammation. This is mostly reflected by an increase in organ‐directed and/or circulating reactive and cytolytic terminally differentiated T cells that have lost their expression of the costimulatory receptor CD28. Apart from being induced by a genetic predisposition, ageing or viral infections (particularly cytomegalovirus infection), immunosenescence is accelerated in many inflammatory diseases and uraemia. This translates into an enhancement of vascular inflammation and cardiovascular disease varying from endothelial dysfunction to plaque rupture. Emerging data point to a mechanistic role of CD28null T cells in glomerulonephritis, where they initiate and propagate local inflammation in concordance with dendritic cells and macrophages. They are suitably equipped to escape immunological dampening by the absence of homing to lymph nodes, anti‐apoptotic properties and resistance to suppression by regulatory T cells. Early accumulation of senescent CD28null T cells precedes glomerular or vascular injury, and targeting these cells could open avenues for early treatment interventions that aim at abrogating a detrimental vicious cycle.
Collapse
Affiliation(s)
| | - Karel Van Damme
- Renal Division Ghent University Hospital Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, Center for Inflammation Research VIB Center for Inflammation Research Ghent Belgium
| | | |
Collapse
|
14
|
Sampani E, Vagiotas L, Daikidou DV, Nikolaidou V, Xochelli A, Kasimatis E, Lioulios G, Dimitriadis C, Fylaktou A, Papagianni A, Stangou M. End stage renal disease has an early and continuous detrimental effect on regulatory T cells. Nephrology (Carlton) 2021; 27:281-287. [PMID: 34781412 DOI: 10.1111/nep.13996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
End stage renal disease (ESRD) is followed by disturbed adaptive immunity, together with alterations in T cell subsets, including CD4+CD25+FoxP3+ cells (Tregs). In the present study, we assessed the effect of haemodialysis (HD) on the Treg population. CD3+CD4+, CD3+CD8+ and CD4+CD25+FoxP3+ cells were estimated by flow cytometry in 142 ESRD patients (45 ESRD-preHD, 97 on HD) and 30 healthy controls (HC). Patients on HD were classified into three groups according to time on dialysis (HD vintage - HDV): A < 2 years, B: 2-5 years and C: >5 years on HD. The mean age of patients on HD (M/F 53/44) was 54.8 ± 14 years and the median HDV 58 (78) months. We observed a significant progressive reduction in the percentage and count of lymphocytes (p < .001, p < .001, respectively), CD3+CD4+ (p = .003 and, p < .001, respectively) and Tregs (p = .001 and, p < .001, respectively), between HC, ESRD-preHD and HD patients. HDV had a significant inverse correlation with total lymphocyte, CD3+CD4+ and Treg cell counts (p = .001, p < .001, p < .001, respectively) and, the percentage of lymphocytes and CD3+CD4+ cells (p = .005, p = .01, respectively). Furthermore, we stratified patients on HD into three groups according to HDV: A < 2 years, B: 2-5 years and C: >5 years on HD. Total lymphocytes and Tregs were significantly different among the three vintage groups (Kruskal-Wallis H test, p < .001, p < .001 respectively). CD3+CD4+ and CD3+CD8+ cells were also significantly affected (p < .001 and p = .001, respectively), after at least 2 years of HD. Tregs show prompt and significant reduction at the pre-dialysis stage, and continue to decrease gradually even after long-term HD, in a context of total lymphocyte reduction.
Collapse
Affiliation(s)
- Erasmia Sampani
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lampis Vagiotas
- Department of Transplant Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra-Vasilia Daikidou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Efstratios Kasimatis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Lioulios
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos Dimitriadis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
15
|
Lysitska A, Galanis N, Skandalos I, Nikolaidou C, Briza S, Fylaktou A, Lioulios G, Mitsoglou Z, Papadopoulou D, Antoniadis N, Papagianni A, Stangou M. Histology and Immunohistochemistry of Radial Arteries Are Suggestive of an Interaction between Calcification and Early Atherosclerotic Lesions in Chronic Kidney Disease. Medicina (B Aires) 2021; 57:medicina57111156. [PMID: 34833374 PMCID: PMC8619577 DOI: 10.3390/medicina57111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/01/2022] Open
Abstract
Background and Objectives: recent studies suggest an implication of immune mechanisms in atherosclerotic disease. In this paper, the interaction between inflammation, calcification, and atherosclerosis on the vessel walls of patients with chronic kidney disease (CKD) is described and evaluated. Materials and Methods: patients with stage V CKD, either on pre-dialysis (group A) or on hemodialysis (HD) for at least 2 years (group B), in whom a radiocephalic arteriovenous fistula (RCAVF) was created, were included in the study. The control group included healthy volunteers who received radial artery surgery after an accident. The expressions of inflammatory cells, myofibroblasts, and vascular calcification regulators on the vascular wall were estimated, and, moreover, morphometric analysis was performed. Results: the expressions of CD68(+) cells, matrix carboxyglutamic acid proteins (MGPs), the receptor activator of nuclear factor-kB (RANK) and RANK ligand (RANKL), and osteoprotegerin (OPG), were significantly increased in CKD patients compared to the controls p = 0.02; p = 0.006; p = 0.01; and p = 0.006, respectively. In morphometric analysis, the I/M and L/I ratios had significant differences between CKD patients and the controls 0.3534 ± 0.20 vs. 0.1520 ± 0.865, p = 0.003, and 2.1709 ± 1.568 vs. 4.9958 ± 3.2975, p = 0.03, respectively. The independent variables correlated with the degree of vascular calcification were the intensity of CD34(+), aSMA(+) cells, and OPG, R2 = 0.76, p < 0.0001, and, with intima-media thickness (IMT), the severity of RANKL expression R2 = 0.3, p < 0.0001. Conclusion: atherosclerosis and vascular calcification in CKD seem to be strongly regulated by an immunological and inflammatory activation on the vascular wall.
Collapse
Affiliation(s)
- Aikaterini Lysitska
- Department of Nephrology, Papageorgiou General Hospital, 56429 Thessaloniki, Greece; (A.L.); (D.P.)
| | - Nikiforos Galanis
- Department of Orhtopediscs, Papanikolaou General Hospital, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece;
| | - Ioannis Skandalos
- Department of Surgery, Agios Pavlos General Hospital, 55134 Thessaloniki, Greece;
| | - Christina Nikolaidou
- Department of Pathology, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Sophia Briza
- Departure of Architecture, School of Engineering, University of Thessaly, 38334 Thessaly, Greece;
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - George Lioulios
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (Z.M.); (A.P.)
| | - Zoi Mitsoglou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (Z.M.); (A.P.)
| | - Dorothea Papadopoulou
- Department of Nephrology, Papageorgiou General Hospital, 56429 Thessaloniki, Greece; (A.L.); (D.P.)
| | - Nikolaos Antoniadis
- Division of Transplantation, Department of Surgery, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (Z.M.); (A.P.)
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (G.L.); (Z.M.); (A.P.)
- Correspondence: ; Tel.:+30-6944820624
| |
Collapse
|
16
|
CD28null and Regulatory T Cells Are Substantially Disrupted in Patients with End-Stage Renal Disease Due to Diabetes Mellitus. Int J Mol Sci 2021; 22:ijms22062975. [PMID: 33804135 PMCID: PMC8001943 DOI: 10.3390/ijms22062975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Background: End-stage renal disease (ESRD) is associated with alterations in T-cell immunity, including increased CD28null and reduced regulatory T cells (Tregs). However, whether immune disturbances are due to ESRD or primary disease is not yet clear. As diabetes mellitus is the leading cause of ESRD, we evaluated its impact on the immune profile of ESRD patients. Methods: CD28null, Tregs, and natural killer cells were initially analyzed by flow cytometry in 30 predialysis ESRD patients due to diabetes (DM), 30 non-DM (NDM), and 25 healthy controls. Measurements were repeated after 6 months on hemodialysis (HD) or peritoneal dialysis (CAPD). Results: The percentage of CD4 + CD28null cells, CD8 + CD28null cells, and Tregs showed significant differences in DM, NDM, and controls; mean rank 33.71 vs. 25.68 vs. 18.88, p = 0.006, 37.79 vs. 28.82 vs. 17.08, p = 0.008, and 20.79 vs. 26.12 vs. 41.33, p = 0.001, respectively. DM vs. NDM had increased CD4 + CD28null and CD8 + CD28null cells, 11.5% (1.5%–24%) vs. 4.1% (0–42.3%), p = 0.02 and 61.3% (24%–76%) vs. 43% (5.7%–85%), p = 0.04, respectively. After 6 months on HD but not CAPD, DM showed a significant further increase in CD4 + CD28null cells, from 30 (14–100) to 52.7 (15–203), p = 0.02; and CD8 + CD28null cells, from 137 (56–275) to 266 (103–456), p = 0.01. Conclusions: Diabetes mellitus affects T-cell subtypes even at predialysis stage, though changes become more prominent after commencement on HD.
Collapse
|
17
|
Lioulios G, Fylaktou A, Papagianni A, Stangou M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin Immunol 2021; 225:108685. [PMID: 33549833 DOI: 10.1016/j.clim.2021.108685] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Aging results in substantial changes in almost all cellular subpopulations within the immune system, including functional and phenotypic alterations. T lymphocytes, as the main representative population of cellular immunity, have been extensively studied in terms of modifications and adjustments during aging. Phenotypic alterations are attributed to three main mechanisms; a reduction of naïve T cell population with a shift to more differentiated forms, a subsequent oligoclonal expansion of naïve T cells characterized by repertoire restriction, and replicative insufficiency after repetitive activation. These changes and the subsequent phenotypic disorders are comprised in the term "immunosenescence". Similar changes seem to occur in chronic kidney disease, with T cells of young patients resembling those of healthy older individuals. A broad range of surface markers can be utilized to identify immunosenescent T cells. In this review, we will discuss the most important senescence markers and their potential connection with impaired renal function.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|