1
|
Malekahmad M, Frazer A, Zoghi M, Jaberzadeh S. Transcranial pulsed current stimulation: A scoping review of the current literature on scope, nature, underlying mechanisms, and gaps. Psychophysiology 2024; 61:e14521. [PMID: 38200645 DOI: 10.1111/psyp.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/28/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024]
Abstract
Transcranial pulsed current stimulation (tPCS) is a noninvasive brain stimulation technique that has aroused considerable attention in recent years. This review aims to provide an overview of the existing literature on tPCS, examine the scope and nature of previous research, investigate its underlying mechanisms, and identify gaps in the literature. Searching online databases resulted in 36 published tPCS studies from inception until May 2023. These studies were categorized into three groups: human studies on healthy individuals, human studies on clinical conditions, and animal studies. The findings suggest that tPCS has the potential to modulate brain excitability by entraining neural oscillations and utilizing stochastic resonance. However, the underlying mechanisms of tPCS are not yet fully understood and require further investigation. Furthermore, the included studies indicate that tPCS may have therapeutic potential for neurological diseases. However, before tPCS can be applied in clinical settings, a better understanding of its mechanisms is crucial. Hence, the tPCS studies were categorized into four types of research: basic, strategic, applied, and experimental research, to identify the nature of the literature and gaps. Analysis of these categories revealed that tPCS, with its diverse parameters, effects, and mechanisms, presents a wide range of research opportunities for future investigations.
Collapse
Affiliation(s)
- Mona Malekahmad
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| | - Ashlyn Frazer
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| | - Maryam Zoghi
- Discipline of Physiotherapy, Federation University, Melbourne, Victoria, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Chen X, You J, Ma H, Zhou M, Huang C. Transcranial pulse stimulation in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14372. [PMID: 37469252 PMCID: PMC10848065 DOI: 10.1111/cns.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Transcranial pulse stimulation (TPS) is a novel noninvasive ultrasonic brain stimulation that can increase cortical and corticospinal excitability, induce neuroplasticity, and increase functional connectivity within the brain. Several trials have confirmed its potential in treating Alzheimer's disease (AD). OBJECTIVE To investigate the effect and safety of TPS on AD. DESIGN A systematic review. METHODS PubMed, Embase via Ovid, Web of Science, Cochrane Library, CNKI (China National Knowledge Infrastructure), VIP (China Science and Technology Journal Database), and WanFang were searched from inception to April 1, 2023. Study selection, data extraction, and quality evaluation of the studies were conducted by two reviewers independently, with any controversy resolved by consensus. The Methodological Index for Nonrandomized Studies was used to assess the risk of bias. RESULTS Five studies were included in this review, with a total of 99 patients with AD. For cognitive performance, TPS significantly improved the scores of the CERAD (Consortium to Establish a Registry for Alzheimer's Disease) test battery, Alzheimer's Disease Assessment Scale (cognitive), Montreal Cognitive Assessment, and Mini-Mental Status Examination. For depressive symptoms, TPS significantly reduced the scores of the Alzheimer's Disease Assessment Scale (affective), Geriatric Depression Score, and Beck Depression Inventory. By functional magnetic resonance imaging, studies have shown that TPS improved cognitive performance in AD patients by increasing functional connectivity in the hippocampus, parahippocampal cortex, precuneus, and parietal cortex, and activating cortical activity in the bilateral hippocampus. TPS alleviated depressive symptoms in AD patients by decreasing functional connectivity between the ventromedial network (left frontal orbital cortex) and the salience network (right anterior insula). Adverse events in this review, including headache, worsening mood, jaw pain, nausea, and drowsiness, were reversible and lasted no longer than 1 day. No serious adverse events or complications were observed. CONCLUSIONS TPS is promising in improving cognitive performance and reducing depressive symptoms in patients with AD. TPS may be a safe adjunct therapy in the treatment of AD. However, these findings lacked a sham control and were limited by the small sample size of the included studies. Further research may be needed to better explore the potential of TPS. PATIENT AND PUBLIC INVOLVEMENT Patients and the public were not involved in this study.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Jiuhong You
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Hui Ma
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Mei Zhou
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
- School of Rehabilitation SciencesWest China School of MedicineSichuan UniversityChengduSichuanChina
| | - Cheng Huang
- Department of Rehabilitation MedicineWest China HospitalSichuan UniversityChengduSichuanChina
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
3
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
4
|
Havlík M, Hlinka J, Klírová M, Adámek P, Horáček J. Towards causal mechanisms of consciousness through focused transcranial brain stimulation. Neurosci Conscious 2023; 2023:niad008. [PMID: 37089451 PMCID: PMC10120840 DOI: 10.1093/nc/niad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Conscious experience represents one of the most elusive problems of empirical science, namely neuroscience. The main objective of empirical studies of consciousness has been to describe the minimal sets of neural events necessary for a specific neuronal state to become consciously experienced. The current state of the art still does not meet this objective but rather consists of highly speculative theories based on correlates of consciousness and an ever-growing list of knowledge gaps. The current state of the art is defined by the limitations of past stimulation techniques and the emphasis on the observational approach. However, looking at the current stimulation technologies that are becoming more accurate, it is time to consider an alternative approach to studying consciousness, which builds on the methodology of causal explanations via causal alterations. The aim of this methodology is to move beyond the correlates of consciousness and focus directly on the mechanisms of consciousness with the help of the currently focused brain stimulation techniques, such as geodesic transcranial electric neuromodulation. This approach not only overcomes the limitations of the correlational methodology but will also become another firm step in the following science of consciousness.
Collapse
Affiliation(s)
- Marek Havlík
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | - Jaroslav Hlinka
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Pod Vodárenskou věží 271/2, Prague 182 07, Czech Republic
| | - Monika Klírová
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Petr Adámek
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Jiří Horáček
- Center for Advanced Studies of Brain and Consciousness, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
- Third Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
5
|
Shen Y, Liu J, Zhang X, Wu Q, Lou H. Experimental study of transcranial pulsed current stimulation on relieving athlete's mental fatigue. Front Psychol 2022; 13:957582. [PMID: 36389498 PMCID: PMC9641144 DOI: 10.3389/fpsyg.2022.957582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/26/2022] [Indexed: 11/03/2023] Open
Abstract
Objective To explore the effect of independently developed transcranial pulsed current stimulation (tPCS) on alleviating athlete's mental fatigue. Methods A total of 60 college athletes were randomly divided into the active stimulation group (current intensity:1.5 mA, lasting for 15 min) and the sham stimulation group. Subjective questionnaires, behavior test, and functional near-infrared spectroscopy (fNIRS) test were conducted before and after the experiment. Two-way ANOVA with repeated measures was used to compare the differences in mental fatigue indexes before and after the two experimental conditions. Results After 7 days of exercise training, there was a significant difference in the main effect of the time factor in all indexes of the two groups (p < 0.05). The scores of rated perceived exertion (RPE) scale, positive and negative affect schedule (PANAS), critical flicker frequency (CFF), and reaction time (RT), in the tPCS treatment group, were better than those in the sham stimulation group (p < 0.05). After 7 days of exercise training, all the subjects had different degrees of athlete's mental fatigue; the subjects in the active stimulation group have a good evaluation of the tPCS developed by the research group without adverse actions. Conclusion tPCS intervention can improve emotional state, reduce the subjective evaluation of fatigue, improve behavioral levels such as attention and reaction time and increase cerebral prefrontal blood flow and oxygen supply.
Collapse
Affiliation(s)
| | | | | | | | - Hu Lou
- School of Sports Science, Nantong University, Nantong, China
| |
Collapse
|
6
|
Wu Q, Fang G, Zhao J, Liu J. Effect of Transcranial Pulsed Current Stimulation on Fatigue Delay after Medium-Intensity Training. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127042. [PMID: 35742289 PMCID: PMC9222574 DOI: 10.3390/ijerph19127042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to investigate the effect of transcranial pulsed current stimulation (tPCS) on fatigue delay after medium-intensity training. Materials and Methods: Ninety healthy college athletes were randomly divided into an experimental group (n = 45) and control group (n = 45). The experimental group received medium-intensity training for a week. After each training, the experimental group received true stimulation of tPCS (continuous 15 min 1.5 mA current intensity stimulation). The control group received sham stimulation. The physiological and biochemical indicators of participants were tested before and after the experiment, and finally 30 participants in each group were included for data analysis. Results: In the experimental group, creatine kinase (CK), cortisol (C), time-domain heart rate variability indices root mean square of the successive differences (RMSSD), standard deviation of normal R-R intervals (SDNN), and frequency domain indicator low frequency (LF) all increased slowly after the intervention. Among these, CK, C, and SDNN values were significantly lower than those in the control group (p < 0.05). Testosterone (T), T/C, and heart rate variability frequency domain indicator high frequency (HF) in the experimental group decreased slowly after the intervention, and the HF value was significantly lower than that in the control group (p < 0.05). The changes in all of the indicators in the experimental group were smaller than those in the control group. Conclusion: The application of tPCS after medium-intensity training enhanced the adaptability to training and had a significant effect on the maintenance of physiological state. The application of tPCS can significantly promote the recovery of autonomic nervous system function, enhance the regulation of parasympathetic nerves, and delay the occurrence of fatigue.
Collapse
Affiliation(s)
- Qingchang Wu
- College of Sports Science, Nantong University, Nantong 226019, China;
| | - Guoliang Fang
- China Institute of Sport Science, Beijing 100061, China; (G.F.); (J.Z.)
| | - Jiexiu Zhao
- China Institute of Sport Science, Beijing 100061, China; (G.F.); (J.Z.)
| | - Jian Liu
- College of Sports Science, Nantong University, Nantong 226019, China;
- Correspondence:
| |
Collapse
|
7
|
Study on the Effect of Different Transcranial Pulse Current Stimulation Intervention Programs for Eliminating Physical Fatigue. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have reported the effect of transcranial pulsed current stimulation (tPCS) on eliminating cognitive fatigue, but there is little research on optimizing the intervention program of tPCS. The purpose of this study was to explore the effect of different tPCS intervention programs on the elimination of physical fatigue in college athletes. Accordingly, 40 healthy college athletes were randomly divided into two groups of 20, denoted as A and B. Both groups exercised on treadmills. There were 15 subjects in group A who met the criteria of moderate physical fatigue, and 15 subjects in group B who met the criteria of severe physical fatigue. The subjects in each group were intervened with five different intervention programs of tPCS (intervention programs I, II, III, IV and V). The heart rate variability (HRV) and concentrations of oxygenated hemoglobin (HbO2) were measured before and after each intervention to judge the elimination effects of different intervention programs on different degrees of physical fatigue; the measurement indicators of the HRV include RMSSD, SDNN, HF and LF. The results indicated that tPCS intervention can eliminate both moderate and severe physical fatigue. Programs II, III, and IV had a significant effect on eliminating the moderate physical fatigue of athletes (p < 0.05), among which program II, with a stimulation time of 30 min and a stimulation intensity of sensory intensity, had the best effect. Programs I, II, III, and IV all had significant effects on eliminating the severe physical fatigue of athletes (p < 0.05), among which program I, with a stimulation time of 30 min and a stimulation intensity of sensory intensity + 0.2 mA, had the best effect. We conclude that different tPCS intervention programs can have different effects on the elimination of physical fatigue. The effects of the five intervention programs on the elimination of physical fatigue in athletes are as follows: program II is most suitable for moderate physical fatigue, and program I is most suitable for severe physical fatigue.
Collapse
|
8
|
Ni R, Yuan Y, Yang L, Meng Q, Zhu Y, Zhong Y, Cao Z, Zhang S, Yao W, Lv D, Chen X, Chen X, Bu J. Novel Non-invasive Transcranial Electrical Stimulation for Parkinson's Disease. Front Aging Neurosci 2022; 14:880897. [PMID: 35493922 PMCID: PMC9039727 DOI: 10.3389/fnagi.2022.880897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Conventional transcranial electrical stimulation (tES) is a non-invasive method to modulate brain activity and has been extensively used in the treatment of Parkinson's disease (PD). Despite promising prospects, the efficacy of conventional tES in PD treatment is highly variable across different studies. Therefore, many have tried to optimize tES for an improved therapeutic efficacy by developing novel tES intervention strategies. Until now, these novel clinical interventions have not been discussed or reviewed in the context of PD therapy. In this review, we focused on the efficacy of these novel strategies in PD mitigation, classified them into three categories based on their distinct technical approach to circumvent conventional tES problems. The first category has novel stimulation modes to target different modulating mechanisms, expanding the rang of stimulation choices hence enabling the ability to modulate complex brain circuit or functional networks. The second category applies tES as a supplementary intervention for PD hence amplifies neurological or behavioral improvements. Lastly, the closed loop tES stimulation can provide self-adaptive individualized stimulation, which enables a more specialized intervention. In summary, these novel tES have validated potential in both alleviating PD symptoms and improving understanding of the pathophysiological mechanisms of PD. However, to assure wide clinical used of tES therapy for PD patients, further large-scale trials are required.
Collapse
Affiliation(s)
- Rui Ni
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ye Yuan
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Li Yang
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Qiujian Meng
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ying Zhu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Yiya Zhong
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Zhenqian Cao
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Shengzhao Zhang
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Wenjun Yao
- Department of Radiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Daping Lv
- Department of Neurology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Neurology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianwen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Junjie Bu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Neurosurgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Dissanayaka T, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of monophasic anodal transcranial pulsed current stimulation on corticospinal excitability and motor performance in healthy young adults: A randomized double-blind sham-controlled study. Brain Connect 2021; 12:260-274. [PMID: 34963309 DOI: 10.1089/brain.2020.0949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Transcranial pulsed current stimulation (tPCS) could be used to deliver electrical pulses at different frequencies to entrain the cortical neurons of the brain. Frequency dependence of these pulses in the induction of changes in corticospinal excitability (CSE) has not been reported. OBJECTIVE We aimed to assess the effect of anodal tPCS (a-tPCS) at theta (4 Hz), and gamma (75 Hz) frequencies on CSE as assessed by the peak-to-peak amplitude of transcranial magnetic stimulation (TMS) induced motor evoked potentials (MEPs) and motor performance. METHOD In a randomized double-blinded sham-controlled cross over design study, seventeen healthy participants attended three experimental sessions and received either a-tPCS at 4 Hz, 75 Hz, or sham a-tPCS with 1.5 mA for 15 min. The amplitude of TMS induced resting MEPs and time for completion of the grooved pegboard test were recorded at baseline, immediately after, and 30-min after a-tPCS. RESULTS Both a-tPCS at 75 Hz and 4 Hz showed significantly increased CSE compared to sham. The a-tPCS at 75 Hz induced significantly higher CSE changes compared to 4 Hz. There was a significant increase in intracortical facilitation and a significant reduction in short-interval intra-cortical inhibition with both 4 and 75 Hz stimulation. However, the inhibition and facilitation did not correlate with CSE. Motor performance was unaffected by the interventions. CONCLUSION The high CSE changes in M1 in a-tPCS at 75 Hz provides an initial understanding of the frequency-specific effect of a-tPCS. More research is needed to establish this concept and to assess its behavioural relevance.
Collapse
Affiliation(s)
- Thusharika Dissanayaka
- Monash University, 2541, 6/63, Frankston-flinders road, Frankston, Frankston, Victoria, Australia, 3199;
| | - Maryam Zoghi
- La Trobe University, 2080, Melbourne, Victoria, Australia;
| | - Michael Farrell
- Monash University, 2541, Medical Imaging and Radiation Sciences, Wellington Road, Clayton, Victoria, Australia, 3800.,Monash University;
| | - Gary Egan
- Monash University, Monash Biomedical Imaging; School of Psychological Sciences, Melbourne, Victoria, Australia.,ARC Centre of Excellence for Integrative Brain Function, Melbourne, Australia;
| | | |
Collapse
|
10
|
Liu Z, Dong S, Zhong S, Huang F, Zhang C, Zhou Y, Deng H. The effect of combined transcranial pulsed current stimulation and transcutaneous electrical nerve stimulation on lower limb spasticity in children with spastic cerebral palsy: a randomized and controlled clinical study. BMC Pediatr 2021; 21:141. [PMID: 33761932 PMCID: PMC7989146 DOI: 10.1186/s12887-021-02615-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/17/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In the current study, we applied a combination of non-invasive neuromodulation modalities concurrently with multiple stimulating electrodes. Specifically, we used transcranial pulsed current stimulation (tPCS) and transcutaneous electrical nerve stimulation (TENS) as a novel strategy for improving lower limb spasticity in children with spastic cerebral palsy (SCP) categorized on levels III-V of the Gross Motor Function Classification System (GMFCS) with minimal side effects. METHODS Sixty-three SCP children aged 2-12 years, who were classified on levels III-V of the GMFCS were randomly assigned to one of two groups, resulting in 32 children in the experimental group and 31 children in the control group. The experimental group underwent a combination therapy of tPCS (400 Hz, 1 mA cerebello-cerebral stimulation) and TENS (400 Hz, max 10 mA) for 30 min, followed by 30 min of physiotherapy five times per week for 12 weeks. The control group underwent physiotherapy only 30 mins per day five times per week for 12 weeks. In total, all groups underwent 60 treatment sessions. The primary outcome measures were the Modified Ashworth Scale (MAS) and Modified Tardieu Scale (MTS). Evaluations were performed 3 days before and after treatment. RESULTS We found a significant improvement in MAS and MTS scores of the lower limbs in the experimental group compared to the control group in the hip adductors (Left: p = 0.002; Right: p = 0.002), hamstrings (Left: p = 0.001; Right: p < 0.001, and gastrocnemius (Left: p = 0.001; Right: p = 0.000). Moreover, MTS scores of R1, R2 and R2-R1 in left and right hip adduction, knee joint, and ankle joint all showed significant improvements (p ≤ 0.05). Analysis of MAS and MTS scores compared to baseline scores showed significant improvements in the experimental group but declines in the control group. CONCLUSION These results are among the first to demonstrate that a combination of tPCS and TENS can significantly improve lower limb spasticity in SCP children classified on GMFCS levels III-V with minimal side effects, presenting a novel strategy for addressing spasticity challenges in children with severe SCP. TRIAL REGISTRATION ChiCTR.org, ChiCTR1800020283, Registration: 22 December 2018 (URL: http://www.chictr.org.cn/showproj.aspx?proj=33953 ).
Collapse
Affiliation(s)
- Zhenhuan Liu
- Department of Pediatric Rehabilitation, Nanhai Maternity and Children's Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong Province, China.
| | - Shangsheng Dong
- Department of Pediatric Rehabilitation, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, Guangdong Province, China
| | - Sandra Zhong
- Guangzhou Yirui Charitable Foundation, Guangzhou, Guangdong Province, China
| | - Fang Huang
- Department of Pediatric Rehabilitation, Guangzhou City Social Welfare Institute Rehabilitation Hospital, Guangzhou, Guangdong Province, China
| | - Chuntao Zhang
- Department of Pediatric Rehabilitation, Nanhai Maternity and Children's Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong Province, China
| | - Yuan Zhou
- Department of Pediatric Rehabilitation, Nanhai Maternity and Children's Hospital Affiliated to Guangzhou University of Traditional Chinese Medicine, Foshan, Guangdong Province, China
| | - Haorong Deng
- Department of Pediatric Rehabilitation, Guangzhou City Social Welfare Institute Rehabilitation Hospital, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Dissanayaka T, Zoghi M, Farrell M, Egan G, Jaberzadeh S. The effects of a single-session cathodal transcranial pulsed current stimulation on corticospinal excitability: A randomized sham-controlled double-blinded study. Eur J Neurosci 2020; 52:4908-4922. [PMID: 33128480 DOI: 10.1111/ejn.14916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 06/16/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) of the human motor cortex has received much attention in recent years. Although the effect of anodal tPCS with different frequencies has been investigated, the effect of cathodal tPCS (c-tPCS) has not been explored yet. Therefore, the aim of the present study was to investigate the effect of c-tPCS at 4 and 75 Hz frequencies on corticospinal excitability (CSE) and motor performance. In a randomized sham-controlled crossover design, fifteen healthy participants attended three experimental sessions and received either c-tPCS at 75 Hz, 4 Hz or sham with 1.5 mA for 15 min. Transcranial magnetic stimulation and grooved pegboard test were performed before, immediately after and 30 min after the completion of stimulation at rest. The findings indicate that c-tPCS at both 4 and 75 Hz significantly increased CSE compared to sham. Both c-tPCS at 75 and 4 Hz showed a significant increase in intracortical facilitation compared to sham, whereas the effect on short-interval intracortical inhibition was not significant. The c-tPCS at 4 Hz but not 75 Hz induced modulation of intracortical facilitation correlated with the CSE. Motor performance did not show any significant changes. These results suggest that, compared with sham stimulation, c-tPCS at both 4 and 75 Hz induces an increase in CSE.
Collapse
Affiliation(s)
- Thusharika Dissanayaka
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied health, La Trobe University, Bundoora, Melbourne, Vic., Australia
| | - Michael Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Vic., Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Vic., Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Vic., Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
12
|
Dissanayaka T, Zoghi M, Hill AT, Farrell M, Egan G, Jaberzadeh S. The Effect of Transcranial Pulsed Current Stimulation at 4 and 75 Hz on Electroencephalography Theta and High Gamma Band Power: A Pilot Study. Brain Connect 2020; 10:520-531. [PMID: 32962422 DOI: 10.1089/brain.2020.0756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Transcranial pulsed current stimulation (tPCS) is an emerging noninvasive brain stimulation technique that has shown significant effects on cortical excitability. To date, electrophysiological measures of the efficiency of monophasic tPCS have not been reported. Objective: We aimed to explore the effects of monophasic anodal and cathodal-tPCS (a-tPCS/c-tPCS) at theta (4 Hz) and gamma (75 Hz) frequencies on theta and high gamma electroencephalography (EEG) oscillatory power. Methods: In a single-blind, randomized, sham-controlled crossover design, 15 healthy participants were randomly assigned into 5 experimental sessions in which they received a-PCS/c-tPCS at 4 and 75 Hz or sham stimulation over the left primary motor cortex (M1) for 15 min at an intensity of 1.5 mA. Changes in theta and high gamma oscillatory power were recorded at baseline, immediately after, and 30 min after stimulation using EEG at rest with eyes open. Results: a-tPCS at 4 Hz showed a significant increase in theta power compared with sham, whereas c-tPCS at 4 Hz had no significant effect on theta power. a-tPCS at 75 Hz produced no changes in high gamma power compared with sham. Importantly, c-tPCS at 75 Hz led to a significant reduction in high gamma power compared with baseline, as well as compared with c-tPCS at 4 Hz and sham stimulation. Conclusion: The results demonstrate the modulation of oscillatory brain activity by monophasic tPCS, and highlight the need for future studies on a larger scale to confirm these initial findings. Impact statement Transcranial pulsed current stimulation (tPCS) is a novel brain stimulation technique. Recently, tPCS has been introduced to directly modulate brain oscillations by applying pulsatile current over the target brain area. Using both anodal and cathodal monophasic tPCS at theta and gamma frequencies, we demonstrate the ability of the stimulation to modulate brain activity. The present findings are the first direct electroencephalography evidence of an interaction between tPCS and ongoing oscillatory activity in the human motor cortex. Our work recommends tPCS as a tool for investigating human brain oscillations and open more studies in this area.
Collapse
Affiliation(s)
- Thusharika Dissanayaka
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Michael Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Australia.,Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
13
|
Singh A, Trapp NT, De Corte B, Cao S, Kingyon J, Boes AD, Parker KL. Cerebellar Theta Frequency Transcranial Pulsed Stimulation Increases Frontal Theta Oscillations in Patients with Schizophrenia. THE CEREBELLUM 2019; 18:489-499. [PMID: 30825131 DOI: 10.1007/s12311-019-01013-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cognitive dysfunction is a pervasive and disabling aspect of schizophrenia without adequate treatments. A recognized correlate to cognitive dysfunction in schizophrenia is attenuated frontal theta oscillations. Neuromodulation to normalize these frontal rhythms represents a potential novel therapeutic strategy. Here, we evaluate whether noninvasive neuromodulation of the cerebellum in patients with schizophrenia can enhance frontal theta oscillations, with the future goal of targeting the cerebellum as a possible therapy for cognitive dysfunction in schizophrenia. We stimulated the midline cerebellum using transcranial pulsed current stimulation (tPCS), a noninvasive transcranial direct current that can be delivered in a frequency-specific manner. A single 20-min session of theta frequency stimulation was delivered in nine patients with schizophrenia (cathode on right shoulder). Delta frequency tPCS was also delivered as a control to evaluate for frequency-specific effects. EEG signals from midfrontal electrode Cz were analyzed before and after cerebellar tPCS while patients estimated the passage of 3- and 12-s intervals. Theta oscillations were significantly larger following theta frequency cerebellar tPCS in the midfrontal region, which was not seen with delta frequency stimulation. As previously reported, patients with schizophrenia showed a baseline reduction in accuracy estimating 3- and 12-s intervals relative to control subjects, which did not significantly improve following a single-session theta or delta frequency cerebellar tPCS. These preliminary results suggest that single-session theta frequency cerebellar tPCS may modulate task-related oscillatory activity in the frontal cortex in a frequency-specific manner. These preliminary findings warrant further investigation to evaluate whether multiple sessions delivered daily may have an impact on cognitive performance and have therapeutic implications for schizophrenia.
Collapse
Affiliation(s)
- Arun Singh
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas T Trapp
- Department of Psychiatry, University of Iowa, 169 Newton Road, 2336 PBDB, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin De Corte
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Scarlett Cao
- University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Johnathon Kingyon
- University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Aaron D Boes
- Department of Pediatrics, Neurology and Psychiatry, University of Iowa, Iowa City, IA, 52242, USA.,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Krystal L Parker
- Department of Psychiatry, University of Iowa, 169 Newton Road, 2336 PBDB, Iowa City, IA, 52242, USA. .,Iowa Neuroscience Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Ma Z, Du X, Wang F, Ding R, Li Y, Liu A, Wei L, Hou S, Chen F, Hu Q, Guo C, Jiao Q, Liu S, Fang B, Shen H. Cortical Plasticity Induced by Anodal Transcranial Pulsed Current Stimulation Investigated by Combining Two-Photon Imaging and Electrophysiological Recording. Front Cell Neurosci 2019; 13:400. [PMID: 31555097 PMCID: PMC6727068 DOI: 10.3389/fncel.2019.00400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Anodal-transcranial pulsed current stimulation (a-tPCS) has been used in human studies to modulate cortical excitability or improve behavioral performance in recent years. Multiple studies show crucial roles of astrocytes in cortical plasticity. The calcium activity in astrocytes could regulate synaptic transmission and synaptic plasticity. Whether the astrocytic activity is involved in a-tPCS-induced cortical plasticity is presently unknown. The purpose of this study is to investigate the calcium responses in neurons and astrocytes evoked by a-tPCS with different current intensities, and thereby provides some indication of the mechanisms underlying a-tPCS-induced cortical plasticity. Two-photon calcium imaging was used to record the calcium responses of neurons and astrocytes in mouse somatosensory cortex. Local field potential (LFP) evoked by sensory stimulation was used to assess the effects of a-tPCS on plasticity. We found that long-duration a-tPCS with high-intensity current could evoke large-amplitude calcium responses in both neurons and astrocytes, whereas long-duration a-tPCS with low-intensity current evoked large-amplitude calcium responses only in astrocytes. The astrocytic Ca2+ elevations are driven by noradrenergic-dependent activation of the alpha-1 adrenergic receptors (A1ARs), while the intense Ca2+ responses of neurons are driven by action potentials. LFP recordings demonstrated that low-intensity a-tPCS led to enhancement of cortical excitability while high-intensity a-tPCS resulted in diminution of cortical excitability. The results provide some evidence that the enhancement of a-tPCS-induced cortical excitability might be partly associated with calcium elevation in astrocytes, whereas the diminution of a-tPCS-induced cortical excitability might be caused by excessive calcium activity in neurons. These findings indicate that the appropriate current intensity should be used in the application of a-tPCS.
Collapse
Affiliation(s)
- Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xiaolang Du
- Department of Pharmacy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feifei Wang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Ran Ding
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shaowei Hou
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qi Hu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shujing Liu
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Bei Fang
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Mansouri F, Fettes P, Schulze L, Giacobbe P, Zariffa J, Downar J. A Real-Time Phase-Locking System for Non-invasive Brain Stimulation. Front Neurosci 2018; 12:877. [PMID: 30559641 PMCID: PMC6287008 DOI: 10.3389/fnins.2018.00877] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Non-invasive brain stimulation techniques are entering widespread use for the investigation and treatment of a range of neurological and neuropsychiatric disorders. However, most current techniques are ‘open-loop’, without feedback from target brain region activity; this limitation could contribute to heterogeneous effects seen for nominally ‘inhibitory’ and ‘excitatory’ protocols across individuals. More potent and consistent effects may ensue from closed-loop and, in particular, phase-locked brain stimulation. In this work, a closed-loop brain stimulation system is introduced that can analyze EEG data in real-time, provide a forecast of the phase of an underlying brain rhythm of interest, and control pulsed transcranial electromagnetic stimulation to deliver pulses at a specific phase of the target frequency band. The technique was implemented using readily available equipment such as a basic EEG system, a low-cost Arduino board and MATLAB scripts. The phase-locked brain stimulation method was tested in 5 healthy volunteers and its phase-locking performance evaluated at 0, 90, 180, and 270 degree phases in theta and alpha frequency bands. On average phase locking values of 0.55° ± 0.11° and 0.52° ± 0.14° and error angles of 11° ± 11° and 3.3° ± 18° were achieved for theta and alpha stimulation, respectively. Despite the low-cost hardware implementation, signal processing time generated a phase delay of only 3.8° for theta and 57° for alpha stimulation, both readily accommodated in the pulse trigger algorithm. This work lays the methodological steps for achieving phase-locked brain stimulation for brief-pulse transcranial electrical stimulation (tES) and repetitive transcranial magnetic stimulation (rTMS), facilitating further research on the effect of stimulation phase for these techniques.
Collapse
Affiliation(s)
- Farrokh Mansouri
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Peter Fettes
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laura Schulze
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jose Zariffa
- Institute of Biomaterial and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Jonathan Downar
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Carvalho S, French M, Thibaut A, Lima W, Simis M, Leite J, Fregni F. Median nerve stimulation induced motor learning in healthy adults: A study of timing of stimulation and type of learning. Eur J Neurosci 2018; 48:1667-1679. [PMID: 29885268 DOI: 10.1111/ejn.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023]
Abstract
Median nerve stimulation (MNS) has been shown to change brain metaplasticity over the somatosensory networks, based on a bottom-up mechanism and may improve motor learning. This exploratory study aimed to test the effects of MNS on implicit and explicit motor learning as measured by the serial reaction time task (SRTT) using a double-blind, sham-controlled, randomized trial, in which participants were allocated to one of three groups: (a) online active MNS during acquisition, (b) offline active MNS during early consolidation and (c) sham MNS. SRTT was performed at baseline, during the training phase (acquisition period), and 30 min after training. We assessed the effects of MNS on explicit and implicit motor learning at the end of the training/acquisition period and at retest. The group receiving online MNS (during acquisition) showed a significantly higher learning index for the explicit sequences compared to the offline group (MNS during early consolidation) and the sham group. The offline group also showed a higher learning index as compared to sham. Additionally, participants receiving online MNS recalled the explicit sentence significantly more than the offline MNS and sham groups. MNS effects on motor learning have a specific effect on type of learning (explicit vs. implicit) and are dependent on timing of stimulation (during acquisition vs. early consolidation). More research is needed to understand and optimize the effects of peripheral electrical stimulation on motor learning. Taken together, our results show that MNS, especially when applied during the acquisition phase, is a promising tool to modulate motor leaning.
Collapse
Affiliation(s)
- Sandra Carvalho
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Melanie French
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aurore Thibaut
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Coma Science Group, GIGA-Consciousness, University and University Hospital of Liege, Liege, Belgium
| | - Wilrama Lima
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, Brazil
| | - Jorge Leite
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Neurotherapeutics and Experimental Psychopatology Group, Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
- Univ Portucalense, Portucalense Institute for Human Development - INPP, Oporto, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Patterns of brain oscillations across different electrode montages in transcranial pulsed current stimulation. Neuroreport 2018; 28:421-425. [PMID: 28394781 DOI: 10.1097/wnr.0000000000000772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) is a neuromodulatory technique that has been studied in the last decade. Several parameters have been assessed independently to optimize the effects. Our aim was to explore the effects of tPCS using different montages on cortical brain oscillations indexed by power spectrum and interhemispheric coherence in different electroencephalography frequency bands. Twenty healthy individuals were randomized to receive either active tPCS or sham intervention using the following bilateral montages: ear clip (conventional), ear hook, or mastoid placement. Electroencephalography was recorded before and after the electroencephalography intervention to assess tPCS-induced after effects. Our results showed that active tPCS with bimastoid montage increased significantly alpha absolute power (P=0.0166) and low alpha (P=0.0014) in the frontal region, as well as in the low alpha power spectrum in the central (P=0.0001) and parieto-occipital regions (P=0.0068) compared with the other montages. For interhemispheric coherence analysis, the Kruskal-Wallis test showed a significant main effect of group for theta (P=0.0012) in the frontal region, mainly for ear-clip montage. Our findings evidenced that tPCS delivered through different electrode montages exert different effects on cortical brain oscillations and thus have a different neural signature. We discuss the implications of these findings as well as potential clinical explorations of this technique.
Collapse
|
18
|
Thibaut A, French M, Vasquez A, Fregni F. Optimization of Noninvasive Brain Stimulation Clinical Trials. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Thibaut A, Russo C, Hurtado-Puerto AM, Morales-Quezada JL, Deitos A, Petrozza JC, Freedman S, Fregni F. Effects of Transcranial Direct Current Stimulation, Transcranial Pulsed Current Stimulation, and Their Combination on Brain Oscillations in Patients with Chronic Visceral Pain: A Pilot Crossover Randomized Controlled Study. Front Neurol 2017; 8:576. [PMID: 29163341 PMCID: PMC5672558 DOI: 10.3389/fneur.2017.00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Chronic visceral pain (CVP) syndromes are persistently painful disorders with a remarkable lack of effective treatment options. This study aimed at evaluating the effects of different neuromodulation techniques in patients with CVP on cortical activity, through electreocephalography (EEG) and on pain perception, through clinical tests. DESIGN A pilot crossover randomized controlled study. SETTINGS Out-patient. SUBJECTS Adults with CVP (>3 months). METHODS Participants received four interventions in a randomized order: (1) transcranial pulsed current stimulation (tPCS) and active transcranial direct current stimulation (tDCS) combined, (2) tPCS alone, (3) tDCS alone, and (4) sham condition. Resting state quantitative electroencephalography (qEEG) and pain assessments were performed before and after each intervention. Results were compared with a cohort of 47 healthy controls. RESULTS We enrolled six patients with CVP for a total of 21 visits completed. Compared with healthy participants, patients with CVP showed altered cortical activity characterized by increased power in theta, alpha and beta bands, and a significant reduction in the alpha/beta ratio. Regarding tES, the combination of tDCS with tPCS had no effect on power in any of the bandwidths, nor brain regions. Comparing tPCS with tDCS alone, we found that tPCS induced higher increase in power within the theta and alpha bandwidths. CONCLUSION This study confirms that patients with CVP present abnormal EEG-indexed cortical activity compared with healthy controls. Moreover, we showed that combining two types of neurostimulation techniques had no effect, whereas the two interventions, when applied individually, have different neural signatures.
Collapse
Affiliation(s)
- Aurore Thibaut
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Coma Science Group, GIGA-Research, University and University Hospital of Liege, Liege, Belgium
| | - Cristina Russo
- Department of Psychology, Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milano, Italy
| | - Aura Maria Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Jorge Leon Morales-Quezada
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Center for Integrative Medicine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Alícia Deitos
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - John Christopher Petrozza
- Department of Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Steven Freedman
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Thibaut A, Russo C, Morales-Quezada L, Hurtado-Puerto A, Deitos A, Freedman S, Carvalho S, Fregni F. Neural signature of tDCS, tPCS and their combination: Comparing the effects on neural plasticity. Neurosci Lett 2017; 637:207-214. [PMID: 27765610 PMCID: PMC5541936 DOI: 10.1016/j.neulet.2016.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
Transcranial pulsed current stimulation (tPCS) and transcranial direct current stimulation (tDCS) are two noninvasive neuromodulatory brain stimulation techniques whose effects on human brain and behavior have been studied individually. In the present study we aimed to quantify the effects of tDCS and tPCS, individually and in combination, on cortical activity, sensitivity and pain-related assessments in healthy individuals in order to understand their neurophysiological mechanisms and potential applications in clinical populations. A total of 48 healthy individuals participated in this randomized double blind sham controlled study. Participants were randomized to receive a single stimulation session of either: active or sham tPCS and active or sham tDCS. Quantitative electroencephalography (qEEG), sensitivity and pain assessments were used before and after each stimulation session. We observed that tPCS had a higher effect on power, as compared to tDCS, in several bandwidths on various cortical regions: the theta band in the parietal region (p=0.021), the alpha band in the temporal (p=0.009), parietal (p=0.0063), and occipital (p<0.0001) regions. We found that the combination of tPCS and tDCS significantly decreased power in the low beta bandwidth of the frontal (p=0.0006), central (p=0.0001), and occipital (p=0.0003) regions, when compared to sham stimulation. Additionally, tDCS significantly increased power in high beta over the temporal (p=0.0015) and parietal (p=0.0007) regions, as compared to sham. We found no effect on sensitivity or pain-related assessments. We concluded that tPCS and tDCS have different neurophysiological mechanisms, elicit distinct signatures, and that the combination of the two leads to no effect or a decrease on qEEG power. Further studies are required to examine the effects of these techniques on clinical populations in which EEG signatures have been found altered.
Collapse
Affiliation(s)
- Aurore Thibaut
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Coma Science Group, GIGA-Research, University and University Hospital of Liege, Liege, Belgium
| | - Cristina Russo
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Department of Psychology and Milan Center for Neuroscience-NeuroMi, University of Milano-Bicocca, Milano, Italy
| | - Leon Morales-Quezada
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Aura Hurtado-Puerto
- Laboratory for Neuropsychiatry and Neuromodulation, Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Boston, USA
| | - Alícia Deitos
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratory of Pain and Neuromodulation at UFRGS, Porto Alegre, Brazil
| | - Steven Freedman
- Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sandra Carvalho
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA; Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Felipe Fregni
- Spaulding-Labuschagne Neuromodulation Center, Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|