1
|
Rigoard P, Ounajim A, Bouche B, Moens M, Goudman L, Eldabe S, Roulaud M, Lorgeoux B, Baron S, Nivole K, Many M, Lampert L, David R, Billot M. Comparison of Spinal Cord Stimulation, Dorsal Root Ganglion Stimulation, and Association of Both in Patients With Refractory Chronic Back and/or Lower Limb Neuropathic Pain: A Prospective, Randomized, Double-Blind, Cross-Over Trial (BOOST-DRG Study). Neuromodulation 2025; 28:283-296. [PMID: 39580743 DOI: 10.1016/j.neurom.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRGS) have individually shown efficacy in relieving pain in patients with persistent spinal pain syndrome after spinal surgery (PSPS-T2). Combining SCS and DRGS simultaneously, along with Burst stimulation programming, may enhance the responder rate of patients with PSPS-T2. MATERIAL AND METHODS This study aimed to compare the pain relief (≥50%) responder rates in SCS, DRGS, and SCS+DGRS (DUAL) through a three-month randomized cross-over trial in patients with PSPS-T2. After the cross-over period, stimulation programming was switched to Burst. Secondary objectives included evaluating the clinical efficacy at three-, four-, six-, and 12-month follow-ups, assessing pain intensity, area of pain, area of paresthesia coverage, quality of life, functional disability, psychologic distress, medication intake, and the Multidimensional Clinical Response Index (MCRI). RESULTS The responder rate of pain relief was similar in SCS, DRGS, and DUAL (60%, p = 0.84) at the end of the cross-over period, increasing to 80% with the ability to switch between stimulation possibilities. Burst programming did not provide additional pain relief at the four-month follow-up (p = 0.99). Clinical outcomes significantly improved until 12-month follow-up compared with baseline. Considering a clinically significant increase of 1.05 of the MCRI, all patients were responders at three-, four-, and six- month follow-up, and 80% were responders at 12 months compared with baseline. CONCLUSIONS The full option to stimulate different neural structures, separately or simultaneously, led to improved responder rates, allowing patients to personalize treatment. A multidimensional assessment is essential to reveal the full potential benefits of neuromodulation in patients with chronic pain.
Collapse
Affiliation(s)
- Philippe Rigoard
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France; CHU de Poitiers, Department of Spine Neurosurgery and Neuromodulation, F-86000 Poitiers, France; Université de Poitiers, Prime Institute UPR, CNRS, ISAE-ENSMA, Poitiers, France
| | - Amine Ounajim
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Bénédicte Bouche
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France; CHU de Poitiers, Department of Spine Neurosurgery and Neuromodulation, F-86000 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium; STIMULUS consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Brussels, Belgium; Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium; STIMULUS consortium (reSearch and TeachIng neuroModULation Uz bruSsel), Vrije Universiteit Brussel, Brussels, Belgium; Cluster Neurosciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium; Research Foundation-Flanders, Brussels, Belgium
| | - Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough, UK
| | - Manuel Roulaud
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Bertille Lorgeoux
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Sandrine Baron
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Kévin Nivole
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Mathilde Many
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Lucie Lampert
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France
| | - Romain David
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France; CHU de Poitiers, Department of Physical Medicine and Rehabilitation, F-86000 Poitiers, France
| | - Maxime Billot
- CHU de Poitiers, Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery Lab, F-86000 Poitiers, France; Université de Poitiers and Université François Rabelais de Tours, Centre de Recherche sur la Cognition et l'Apprentissage, CNRS, F-86000 Poitiers, France.
| |
Collapse
|
2
|
de Geus TJ, Franken G, Joosten EAJ. Spinal Cord Stimulation Paradigms and Alleviation of Neuropathic Pain Behavior in Experimental Painful Diabetic Polyneuropathy. Neuromodulation 2024; 27:1330-1337. [PMID: 39033461 DOI: 10.1016/j.neurom.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/01/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVES Spinal cord stimulation (SCS) is an alternative treatment option for painful diabetic polyneuropathy (PDPN). Differential target multiplexed (DTM)-SCS is proposed to be more effective than conventional (Con)-SCS. Animal studies are essential for understanding SCS mechanisms in PDPN pain relief. Although the Von Frey (VF) test is the gold standard for preclinical pain research, it has limitations. Operant testing using the conditioned place preference (CPP) test provides insights into spontaneous neuropathic pain relief and enhances the translatability of findings. This study aims to 1) use the CPP test to evaluate Con- and DTM-SCS effects on spontaneous neuropathic pain relief in PDPN animals and 2) investigate the correlation between mechanical hypersensitivity alleviation and spontaneous neuropathic pain relief. MATERIAL AND METHODS Diabetes was induced through streptozotocin injection in 32 rats; 16 animals developed PDPN and were implanted with a quadripolar lead. Rats were conditioned for Con-SCS (n = 8) or DTM-SCS (n = 7), and a preference score compared with sham was determined. After conditioning, a 30-minute SCS protocol was conducted. Mechanical sensitivity was assessed using VF before, during, and after SCS. RESULTS There were no significant chamber preference changes for DTM-SCS (p = 0.3449) or Con-SCS (p = 0.3632). Subgroups of responders and nonresponders were identified with significant increases in preference score for responders for both DTM-SCS (-266.6 to 119.8; p = 0.0238; n = 4) and Con-SCS (-350.7 to 88.46; p = 0.0148; n = 3). No strong correlation between SCS-induced spontaneous neuropathic pain relief and effects on mechanical hypersensitivity in PDPN animals is noted. CONCLUSIONS The CPP test is a valuable tool to test the efficacy of the pain-relieving potential of various SCS paradigms in PDPN animals. The results of this study show no differences in spontaneous neuropathic pain relief between DTM- and Con-SCS in PDPN animals. Furthermore, there is no correlation between the effect of SCS in spontaneous pain relief and hind paw mechanical hypersensitivity.
Collapse
Affiliation(s)
- Thomas J de Geus
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre, Maastricht, The Netherlands; Mental Health and Neuroscience Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Karcz M, Abd-Elsayed A, Chakravarthy K, Aman MM, Strand N, Malinowski MN, Latif U, Dickerson D, Suvar T, Lubenow T, Peskin E, D’Souza R, Cornidez E, Dudas A, Lam C, Farrell II M, Sim GY, Sebai M, Garcia R, Bracero L, Ibrahim Y, Mahmood SJ, Lawandy M, Jimenez D, Shahgholi L, Sochacki K, Ramadan ME, Tieppo Francio V, Sayed D, Deer T. Pathophysiology of Pain and Mechanisms of Neuromodulation: A Narrative Review (A Neuron Project). J Pain Res 2024; 17:3757-3790. [PMID: 39583192 PMCID: PMC11581984 DOI: 10.2147/jpr.s475351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Pain serves as a vital innate defense mechanism that can significantly impact an individual's quality of life. Understanding the physiological effects of pain well plays an important role in developing novel pain treatments. Nociceptor neurons play a key role in pain and inflammation. Interactions between nociceptors and the immune system occur both at the site of injury and within the central nervous system. Modulating chemical mediators and nociceptor activity offers promising new approaches to pain management. Essentially, the sensory nervous system is essential for modulating the body's protective response, making it critical to understand these interactions to discover new pain treatment strategies. New innovations in neuromodulation have led to alternatives to opioids individuals with chronic pain with consequent improvement in disease-based treatment and nerve targeting. New neural targets from cellular and structural perspectives have revolutionized the field of neuromodulation. This narrative review aims to elucidate the mechanisms of pain transmission and processing, examine the characteristics and properties of nociceptors, and explore how the immune system influences pain perception. It further provides an updated overview of the physiology of pain and neuromodulatory mechanisms essential for managing acute and chronic pain. We assess the current understanding of different pain types, focusing on key molecules involved in each type and their physiological effects. Additionally, we compare painful and painless neuropathies and discuss the neuroimmune interactions involved in pain manifestation.
Collapse
Affiliation(s)
- Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | | | - Mansoor M Aman
- Aurora Pain Management, Aurora Health Care, Oshkosh, WI, USA
| | - Natalie Strand
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mark N Malinowski
- OhioHealth Neurological Physicians, OhioHealth Inc, Columbus, OH, USA
| | - Usman Latif
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David Dickerson
- Department of Pain Medicine, Northshore University Health System, Skokie, IL, USA
| | - Tolga Suvar
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Timothy Lubenow
- Department of Anesthesiology and Pain Medicine, Rush University Medical Center, Oak Park, IL, USA
| | - Evan Peskin
- Department of Pain Management, Insight Institute of Neurosurgery & Neuroscience, Flint, MI, USA
| | - Ryan D’Souza
- Anesthesiology and Perioperative Medicine, Mayo Clinic, Phoenix, AZ, USA
| | | | - Andrew Dudas
- Mays and Schnapp Neurospine and Pain, Memphis, TN, USA
| | - Christopher Lam
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael Farrell II
- Department of Pain Management, Erie County Medical Center, Buffalo, NY, USA
| | - Geum Yeon Sim
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Bayview Medical Center, Baltimore, MD, USA
| | - Mohamad Sebai
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosa Garcia
- Department of Physical Medicine & Rehabilitation, Larkin Hospital Health System, Miami, FL, USA
| | - Lucas Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Yussr Ibrahim
- Department of Pain Management at Northern Light Health – Eastern Maine Medical Center, Bangor, ME, USA
| | - Syed Jafar Mahmood
- Department of Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Marco Lawandy
- Department of Physical Medicine & Rehabilitation, Montefiore Medical Center, Bronx, NY, USA
| | - Daniel Jimenez
- Department of Physical Medicine & Rehabilitation, Michigan State University, Lansing, MI, USA
| | - Leili Shahgholi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kamil Sochacki
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson, New Brunswick, NJ, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vinicius Tieppo Francio
- Division of Pain Medicine, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawood Sayed
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
4
|
Osmanlıoğlu HÖ, Nazıroğlu M. Resveratrol Modulates Diabetes-Induced Neuropathic Pain, Apoptosis, and Oxidative Neurotoxicity in Mice Through TRPV4 Channel Inhibition. Mol Neurobiol 2024; 61:7269-7286. [PMID: 38976129 PMCID: PMC11339089 DOI: 10.1007/s12035-024-04311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is caused by several factors, including reactive free oxygen radicals (ROS)-induced excessive Ca2+ influx. Transient receptor potential (TRP) vanilloid 4 (TRPV4) is a member of the Ca2+-permeable TRP superfamily. Resveratrol (RESV) has been extensively utilized in TRP channel regulation due to its pharmacological properties, which include antioxidant and TRP inhibitory effects. The protective function of RESV and the contribution of TRPV4 to streptozotocin (STZ)-induced neuropathic pain in mice are still unclear. Here, we evaluated the effects of RESV through the modulation of TRPV4 on Ca2+ influx, ROS-mediated pain, apoptosis, and oxidative damage in the mouse dorsal root ganglion (DRGs). From the 32 mice, four groups were induced: control, RESV, STZ, and STZ + RESV. We found that the injection of RESV reduced the changes caused by the STZ-induced stimulation of TRPV4, which in turn increased mechanical/thermal neuropathic pain, cytosolic Ca2+ influx, TRPV4 current density, oxidants (lipid peroxidation, mitochondrial ROS, and cytosolic ROS), and apoptotic markers (caspase-3, -8, and -9). The RESV injection also increased the STZ-mediated reduction of viability of DRG and the amounts of glutathione, glutathione peroxidase, vitamin A, β-carotene, and vitamin E in the brain, erythrocytes, plasma, liver, and kidney. All of these findings suggest that TRPV4 stimulation generates oxidative neurotoxicity, neuropathic pain, and apoptosis in the STZ-induced diabetic mice. On the other hand, neurotoxicity and apoptosis were reduced due to the downregulation of TRPV4 carried out through the RESV injection.
Collapse
Affiliation(s)
- Haci Ömer Osmanlıoğlu
- Department of Anesthesiology and Reanimation, Medical Faculty, Suleyman Demirel University, 32260, Isparta, Türkiye
| | - Mustafa Nazıroğlu
- Neuroscience Application and Research Center (NOROBAM), Suleyman Demirel University, Isparta, Türkiye.
- BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture, and Industry Ltd, Isparta, Türkiye.
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Türkiye.
| |
Collapse
|
5
|
Mittal R, McKenna K, Keith G, McKenna E, Sinha R, Lemos JRN, Hirani K. Systematic review of translational insights: Neuromodulation in animal models for Diabetic Peripheral Neuropathy. PLoS One 2024; 19:e0308556. [PMID: 39116099 PMCID: PMC11309513 DOI: 10.1371/journal.pone.0308556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Diabetic Peripheral Neuropathy (DPN) is a prevalent and debilitating complication of diabetes, affecting a significant proportion of the diabetic population. Neuromodulation, an emerging therapeutic approach, has shown promise in the management of DPN symptoms. This systematic review aims to synthesize and analyze the current advancements in neuromodulation techniques for the treatment of DPN utilizing studies with preclinical animal models. A comprehensive search was conducted across multiple databases, including PubMed, Scopus, and Web of Science. Inclusion criteria were focused on studies utilizing preclinical animal models for DPN that investigated the efficacy of various neuromodulation techniques, such as spinal cord stimulation, transcranial magnetic stimulation, and peripheral nerve stimulation. The findings suggest that neuromodulation significantly alleviated pain symptoms associated with DPN. Moreover, some studies reported improvements in nerve conduction velocity and reduction in nerve damage. The mechanisms underlying these effects appeared to involve modulation of pain pathways and enhancement of neurotrophic factors. However, the review also highlights the variability in methodology and stimulation parameters across studies, highlighting the need for standardization in future research. Additionally, while the results are promising, the translation of these findings from animal models to human clinical practice requires careful consideration. This review concludes that neuromodulation presents a potentially effective therapeutic strategy for DPN, but further research is necessary to optimize protocols and understand the underlying molecular mechanisms. It also emphasizes the importance of bridging the gap between preclinical findings and clinical applications to improve the management of DPN in diabetic patients.
Collapse
Affiliation(s)
- Rahul Mittal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Keelin McKenna
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Grant Keith
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Evan McKenna
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Rahul Sinha
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Joana R. N. Lemos
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Khemraj Hirani
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| |
Collapse
|
6
|
Chen J, Frizzi K, Zardouz S, Province-Azalde R, Furnish T, Wallace M, Castellanos J, Tayerani A, Halter K, Lam K, Banducci S, Chieu A, Calcutt N. High-frequency spinal cord stimulation (10 kHz) alters sensory function and nerve fiber density in painful diabetic neuropathy: a pilot prospective open-label study. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:S33-S40. [PMID: 37833050 DOI: 10.1093/pm/pnad096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/06/2023] [Accepted: 06/29/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE Spinal cord stimulation at 10 kHz has provided effective pain relief and improved function in painful diabetic peripheral neuropathy. This study aims to confirm the clinical outcomes for 10-kHz spinal cord stimulation treatment of painful diabetic peripheral neuropathy and explore its impact on objective quantitative measures of nerve pathology and function. METHODS This single-academic center, prospective, open-label, observational study examined the pain relief success of 10-kHz spinal cord stimulation in patients >18 years of age with diabetic peripheral neuropathy. Patients underwent skin biopsies to measure intra-epidermal nerve fiber densities and corneal confocal microscopy measurements before implantation and at the 3-, 6-, and 12-month follow-up visits. Numerical rating scale for pain, visual analog scale, neuropathy pain scale, Short Form-36, and Neuropen (pin prick and monofilament) assessments were also conducted. RESULTS Eight patients met the criteria and were enrolled in the study. A successful trial was achieved in 7 subjects, and 6 completed the study. Significant pain relief (P < .001) was achieved at all follow-up visits. Neurological assessments showed reduced numbers of "absent" responses and increased "normal" responses from baseline to 12 months. Both proximal and distal intra-epidermal nerve fiber densities were higher at 12 months than at baseline (P < .01). Confocal microscopy measurements showed a steady increase in nerve density from baseline (188.8% increase at 12 months; P = .029). CONCLUSIONS We observed pain relief and improvements in sensory function after stimulation that were accompanied by increases in lower-limb intra-epidermal nerve fiber density and corneal nerve density. Further evaluation with a blinded and controlled study is needed to confirm the preliminary findings in this study.
Collapse
Affiliation(s)
- Jeffrey Chen
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | - Katie Frizzi
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | - Shawn Zardouz
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | | | - Tim Furnish
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | - Mark Wallace
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | - Joel Castellanos
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | - Alireza Tayerani
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| | - Kenneth Halter
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | - Katie Lam
- Department of Anesthesiology, Center for Pain Medicine, University of California San Diego, La Jolla, CA, United States
| | | | - Alex Chieu
- Nevro Corp, Redwood City, CA, United States
| | - Nigel Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
7
|
Chapman KB, Sayed D, Lamer T, Hunter C, Weisbein J, Patel KV, Dickerson D, Hagedorn JM, Lee DW, Amirdelfan K, Deer T, Chakravarthy K. Best Practices for Dorsal Root Ganglion Stimulation for Chronic Pain: Guidelines from the American Society of Pain and Neuroscience. J Pain Res 2023; 16:839-879. [PMID: 36942306 PMCID: PMC10024474 DOI: 10.2147/jpr.s364370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 01/17/2023] [Indexed: 03/14/2023] Open
Abstract
With continued innovations in neuromodulation comes the need for evolving reviews of best practices. Dorsal root ganglion stimulation (DRG-S) has significantly improved the treatment of complex regional pain syndrome (CRPS), and it has broad applicability across a wide range of other conditions. Through funding and organizational leadership by the American Society for Pain and Neuroscience (ASPN), this best practices consensus document has been developed for the selection, implantation, and use of DRG stimulation for the treatment of chronic pain syndromes. This document is composed of a comprehensive narrative literature review that has been performed regarding the role of the DRG in chronic pain and the clinical evidence for DRG-S as a treatment for multiple pain etiologies. Best practice recommendations encompass safety management, implantation techniques, and mitigation of the potential complications reported in the literature. Looking to the future of neuromodulation, DRG-S holds promise as a robust intervention for otherwise intractable pain.
Collapse
Affiliation(s)
- Kenneth B Chapman
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - Dawood Sayed
- Department of Anesthesiology, The University of Kansas Medical Center (KUMC), Kansas City, KS, USA
| | - Tim Lamer
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey Hunter
- Ainsworth Institute of Pain Management, New York, NY, USA
| | | | - Kiran V Patel
- The Spine & Pain Institute of New York, New York, NY, USA
- Department of Anesthesiology, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA
- Department of Anesthesiology, NYU Langone Medical Center, New York, NY, USA
| | - David Dickerson
- Department of Anesthesiology, Critical Care and Pain Medicine, NorthShore University Health System, Evanston, IL, USA
- Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, USA
| | | | - David W Lee
- Fullerton Orthopedic Surgery Medical Group, Fullerton, CA, USA
| | | | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Krishnan Chakravarthy
- Department of Anesthesiology and Pain Medicine, University of California San Diego Health Sciences, San Diego, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
8
|
|
9
|
Staudt MD, Prabhala T, Sheldon BL, Quaranta N, Zakher M, Bhullar R, Pilitsis JG, Argoff CE. Current Strategies for the Management of Painful Diabetic Neuropathy. J Diabetes Sci Technol 2022; 16:341-352. [PMID: 32856490 PMCID: PMC8861791 DOI: 10.1177/1932296820951829] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of painful diabetic neuropathy (PDN) is a common complication of chronic diabetes that can be associated with significant disability and healthcare costs. Prompt symptom identification and aggressive glycemic control is essential in controlling the development of neuropathic complications; however, adequate pain relief remains challenging and there are considerable unmet needs in this patient population. Although guidelines have been established regarding the pharmacological management of PDN, pain control is inadequate or refractory in a high proportion of patients. Pharmacotherapy with anticonvulsants (pregabalin, gabapentin) and antidepressants (duloxetine) are common first-line agents. The use of oral opioids is associated with considerable morbidity and mortality and can also lead to opioid-induced hyperalgesia. Their use is therefore discouraged. There is an emerging role for neuromodulation treatment modalities including intrathecal drug delivery, spinal cord stimulation, and dorsal root ganglion stimulation. Furthermore, consideration of holistic alternative therapies such as yoga and acupuncture may augment a multidisciplinary treatment approach. This aim of this review is to focus on the current management strategies for the treatment of PDN, with a discussion of treatment rationale and practical considerations for their implementation.
Collapse
Affiliation(s)
- Michael D Staudt
- Department of Neurosurgery, Albany Medical College, Albany, New York, USA
| | - Tarun Prabhala
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Breanna L Sheldon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Nicholas Quaranta
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Michael Zakher
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Ravneet Bhullar
- Department of Anesthesiology, Albany Medical College, Albany, New York, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, Albany Medical College, Albany, New York, USA
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany NY, USA
| | - Charles E Argoff
- Department of Neurology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
10
|
Chen JL, Hesseltine AW, Nashi SE, Sills SM, McJunkin TL, Patil S, Bharara M, Caraway DL, Brooks ES. A Real-World Analysis of High-Frequency 10 kHz Spinal Cord Stimulation for the Treatment of Painful Diabetic Peripheral Neuropathy. J Diabetes Sci Technol 2022; 16:282-288. [PMID: 34842489 PMCID: PMC8861794 DOI: 10.1177/19322968211060316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is one of the most prevalent chronic health conditions and diabetic neuropathy one of its most prevalent and debilitating complications. While there are treatments available for painful diabetic peripheral neuropathy (pDPN), their effectiveness is limited. METHOD This retrospective, multi-center, real-world review assessed pain relief and functional improvements for consecutive patients with diabetic neuropathy aged ≥18 years of age who were permanently implanted with a high-frequency (10 kHz) spinal cord stimulation (SCS) device. Available data were extracted from a commercial database. RESULTS In total 89 patients consented to being included in the analysis. Sixty-one percent (54/89) of participants were male and the average age was 64.4 years (SD = 9.1). Most patients (78.7%, 70/89) identified pain primarily in their feet or legs bilaterally. At the last assessment, 79.5% (58/73) of patients were treatment responders, defined as having at least 50% patient-reported pain relief from baseline. The average time of follow-up was 21.8 months (range: 4.3 to 46.3 months). A majority of patients reported improvements in sleep and overall function relative to their baseline. CONCLUSIONS This real-world study in typical clinical practices found 10 kHz SCS provided meaningful pain relief for a substantial proportion of patients refractory to current pDPN management, similar to published literature. This patient population has tremendous unmet needs and this study helps demonstrate the potential for 10 kHz SCS to provide an alternative pain management approach.
Collapse
Affiliation(s)
- Jeffrey L. Chen
- Center for Pain, University of
California San Diego, San Diego, CA, USA
- Jeffrey Chen, MD, MHS, Associate Professor
of Anesthesiology, Center for Pain, University of California San Diego, 9300
Campus Point Dr., MC 7651, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bhandari R, Sharma A, Kuhad A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front Endocrinol (Lausanne) 2022; 12:790747. [PMID: 35211091 PMCID: PMC8862660 DOI: 10.3389/fendo.2021.790747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022] Open
Abstract
Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects the distal foot and toes, which then gradually approaches the lower part of the legs. Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus. Long-term diabetes leads to hyperglycemia, which is the utmost contributor to neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium channels in the dorsal root ganglion (DRG) was often observed in models of neuropathic pain. DRG opening frequency increases intracellular sodium ion levels, which further causes increased calcium channel opening and stimulates other pathways leading to diabetic peripheral neuropathy (DPN). Currently, pain due to diabetic neuropathy is managed via antidepressants, opioids, gamma-aminobutyric acid (GABA) analogs, and topical agents such as capsaicin. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. Many factors contribute to this condition, such as lack of specificity and adverse effects such as light-headedness, languidness, and multiple daily doses. Therefore, nanotechnology outperforms in every aspect, providing several benefits compared to traditional therapy such as site-specific and targeted drug delivery. Nanotechnology is the branch of science that deals with the development of nanoscale materials and products, even smaller than 100 nm. Carriers can improve their efficacy with reduced side effects by incorporating drugs into the novel delivery systems. Thus, the utilization of nanotechnological approaches such as nanoparticles, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, gene therapy (siRNA and miRNA), and extracellular vesicles can extensively contribute to relieving neuropathic pain.
Collapse
Affiliation(s)
| | | | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Rigoard P, Roulaud M, Goudman L, Adjali N, Ounajim A, Voirin J, Perruchoud C, Bouche B, Page P, Guillevin R, Naudin M, Simoneau M, Lorgeoux B, Baron S, Nivole K, Many M, Maitre I, Rigoard R, David R, Moens M, Billot M. Comparison of Spinal Cord Stimulation vs. Dorsal Root Ganglion Stimulation vs. Association of Both in Patients with Refractory Chronic Back and/or Lower Limb Neuropathic Pain: An International, Prospective, Randomized, Double-Blinded, Crossover Trial (BOOST-DRG Study). MEDICINA (KAUNAS, LITHUANIA) 2021; 58:7. [PMID: 35056316 PMCID: PMC8780129 DOI: 10.3390/medicina58010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022]
Abstract
While spinal cord stimulation (SCS) is a well-established therapy to address refractory persistent spinal pain syndrome after spinal surgery (PSPS-T2), its lack of spatial selectivity and reported discomfort due to positional effects can be considered as significant limitations. As alternatives, new waveforms, such as burst stimulation and different spatial neural targets, such as dorsal root ganglion stimulation (DRGS), have shown promising results. Comparisons between DRGS and standard SCS, or their combination, have never been studied on the same patients. "BOOST DRG" is the first prospective, randomized, double-blinded, crossover study to compare SCS vs. DRGS vs. SCS+DRGS. Sixty-six PSPS-T2 patients will be recruited internationally in three centers. Before crossing over, patients will receive each stimulation modality for 1 month, using tonic conventional stimulation. After 3 months, stimulation will consist in switching to burst for 1 month, and patients will choose which modality/waveform they receive and will then be reassessed at 6 and 12 months. In addition to our primary outcome based on pain rating, this study is designed to assess quality of life, functional disability, psychological distress, pain surface coverage, global impression of change, medication quantification, adverse events, brain functional imaging and electroencephalography, with the objective being to provide a multidimensional insight based on composite pain assessment.
Collapse
Affiliation(s)
- Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France;
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, 86360 Chasseneuil-du-Poitou, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Lisa Goudman
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; (L.G.); (M.M.)
- STUMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Nihel Adjali
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Amine Ounajim
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Jimmy Voirin
- Department of Neurosurgery, Hopitaux Civils de Colmar, 68000 Colmar, France;
| | - Christophe Perruchoud
- Service of Anesthesiology and Pain Centre, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland;
| | - Bénédicte Bouche
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France;
| | - Philippe Page
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, 86021 Poitiers, France;
| | - Rémy Guillevin
- Department of Radiology, Poitiers University Hospital, 86021 Poitiers, France; (R.G.); (M.N.)
- UMR CNRS 7348, DACTIM-MIS/LMA Laboratory, University of Poitiers, 86000 Poitiers, France
| | - Mathieu Naudin
- Department of Radiology, Poitiers University Hospital, 86021 Poitiers, France; (R.G.); (M.N.)
- UMR CNRS 7348, DACTIM-MIS/LMA Laboratory, University of Poitiers, 86000 Poitiers, France
| | - Martin Simoneau
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS), Quebec, QC G1M 2S8, Canada
| | - Bertille Lorgeoux
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Sandrine Baron
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Kevin Nivole
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Mathilde Many
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Iona Maitre
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| | - Raphaël Rigoard
- CEA Cadarache, Département de Support Technique et Gestion, Service des Technologies de l’Information et de la Communication, 13108 Saint-Paul-Lez-Durance, France;
| | - Romain David
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
- Department of Physical and Rehabilitation Medicine, Poitiers University Hospital, University of Poitiers, 86021 Poitiers, France
| | - Maarten Moens
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium; (L.G.); (M.M.)
- STUMULUS Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery), Poitiers University Hospital, 86021 Poitiers, France; (M.R.); (N.A.); (A.O.); (B.B.); (B.L.); (S.B.); (K.N.); (M.M.); (I.M.); (R.D.); (M.B.)
| |
Collapse
|
13
|
Vuka I, Marciuš T, Kovačić D, Šarolić A, Puljak L, Sapunar D. Implantable, Programmable, and Wireless Device for Electrical Stimulation of the Dorsal Root Ganglion in Freely-Moving Rats: A Proof of Concept Study. J Pain Res 2021; 14:3759-3772. [PMID: 34916842 PMCID: PMC8668248 DOI: 10.2147/jpr.s332438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This was a proof of concept study, based on systematic reviews of the efficacy and safety of the dorsal root ganglion (DRG) stimulation. The main objective was to develop an implantable, programmable, and wireless device for electrical stimulation of DRG and a methodology that can be used in translational research, especially to understand the mechanism of neuromodulation and to test new treatment modalities in animal models of pain. Methods We developed and tested a stimulator that uses a battery-powered microelectronic circuit, to generate constant current square biphasic or monophasic pulsed waveform of variable amplitudes and duration. It is controlled by software and an external controller that allows radio frequency communication with the stimulator. The stimulator was implanted in Sprague–Dawley (SD) rats. The lead was positioned at the L5 DRG level, while the stimulator was placed in the skin pocket at the ipsilateral side. Forty-five animals were used and divided into six groups: spinal nerve ligation (SNL), chronic compression injury of the DRG (CCD), SNL + active DRG stimulation, intact control group, group with the implanted sham stimulator, and sham lead. Behavioral testing was performed on the day preceding surgery and three times postoperatively (1st, 3rd, and 7th day). Results In animals with SNL, neurostimulation reduced pain-related behavior, tested with pinprick hyperalgesia, pinprick withdrawal test, and cold test, while the leads per se did not cause DRG compression. The rats well tolerated the stimulator. It did not hinder animal movement, and it enabled the animals to be housed under regular conditions. Conclusion A proof-of-concept experiment with our stimulator verified the usability of the device. The stimulator enables a wide range of research applications from adjusting stimulation parameters for different pain conditions, studying new stimulation methods with different frequencies and waveforms to obtain knowledge about analgesic mechanisms of DRG stimulation.
Collapse
Affiliation(s)
- Ivana Vuka
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Tihana Marciuš
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| | - Damir Kovačić
- Laboratory for Biophysics and Medical Neuroelectronics, University of Split Faculty of Science, Split, Croatia
| | - Antonio Šarolić
- Laboratory for Applied Electromagnetics (EMLab), FESB, University of Split, Split, Croatia
| | - Livia Puljak
- Centre for Evidence-Based Medicine and Health Care, Catholic University of Croatia, Zagreb, Croatia
| | - Damir Sapunar
- Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
14
|
Malinowski MN, Chopra PR, Tieppo Francio V, Budwany R, Deer TR. A narrative review and future considerations of spinal cord stimulation, dorsal root ganglion stimulation and peripheral nerve stimulation. Curr Opin Anaesthesiol 2021; 34:774-780. [PMID: 34608057 DOI: 10.1097/aco.0000000000001072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In recent years, neuromodulation has experienced a renaissance. Novel waveforms and anatomic targets show potential improvements in therapy that may signify substantial benefits. New innovations in peripheral nerve stimulation and dorsal root ganglion stimulation have shown prospective evidence and sustainability of results. Sub-perception physiologic bursting, high-frequency stimulation and feedback loop mechanisms provide significant benefits over traditional tonic spinal cords stimulation (SCS) in peer reviewed investigations. We reviewed the themes associated with novel technology in the context of historical stalwart publications. RECENT FINDINGS New innovations have led to better nerve targeting, improvements in disease-based treatment, and opioid alternatives for those in chronic pain. In addition, new neural targets from both structural and cellular perspectives have changed the field of Neurostimulation. SUMMARY For many years, tonic SCS was representative of neuromodulation, but as this review examines, the progression of the field in the past decade has reshaped patient options.
Collapse
Affiliation(s)
- Mark N Malinowski
- OhioHealth Grant Medical Center, Ohio University Heritage COM, Columbus, Ohio
| | | | - Vinicius Tieppo Francio
- The University of Kansas Medical Center, Department of Rehabilitative Medicine, Kansas City, Kansas
| | - Ryan Budwany
- Center for Integrative Pain Management, West Virginia University School of Medicine, Morgantown
| | - Timothy Ray Deer
- The Spine and Nerve Center of The Virginias
- Anesthesiology and Pain Medicine, WVU School of Medicine
- American Society of Pain and Neuroscience, Charleston, West Virginia, USA
| |
Collapse
|
15
|
Franken G, Douven P, Debets J, Joosten EAJ. Conventional Dorsal Root Ganglion Stimulation in an Experimental Model of Painful Diabetic Peripheral Neuropathy: A Quantitative Immunocytochemical Analysis of Intracellular γ-Aminobutyric Acid in Dorsal Root Ganglion Neurons. Neuromodulation 2021; 24:639-645. [PMID: 33942947 PMCID: PMC8360133 DOI: 10.1111/ner.13398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
Background and Objective The sensory cell somata in the DRG contain all equipment necessary for extensive GABAergic signaling and are able to release GABA upon depolarization. With this study, we hypothesize that pain relief induced by conventional dorsal root ganglion stimulation (Con‐DRGS) in animals with experimental painful diabetic peripheral neuropathy is related to the release of GABA from DRG neurons. With use of quantitative immunocytochemistry, we hypothesize DRGS to result in a decreased intensity of intracellular GABA‐immunostaining in DRG somata. Materials and Methods Female Sprague‐Dawley rats (n = 31) were injected with streptozotocin (STZ) in order to induce Diabetes Mellitus. Animals that developed neuropathic pain after four weeks (Von Frey) were implanted with a unilateral DRGS device at L4 (n = 14). Animals were then stimulated for 30 min with Con‐DRGS (20 Hz, pulse width = 0.2 msec, amplitude = 67% of motor threshold, n = 8) or Sham‐DRGS (n = 6), while pain behavior (von Frey) was measured. DRGs were then collected and immunostained for GABA, and a relation to size of sensory cell soma diameter (small: 12–26 μm, assumed to be C‐fiber related sensory neurons; medium: 26–40 μm, assumed to be Aδ related sensory neurons; and large: 40–54 μm, assumed to be Aβ related sensory neurons) was made. Results DRGS treated animals showed significant reductions in STZ‐induced mechanical hypersensitivity. No significant differences in GABA immunostaining intensity per sensory neuron cell soma type (small‐, medium‐, or large‐sized) were noted in DRGs of stimulated (Con‐DRGS) animals versus Sham animals. No differences in GABA immunostaining intensity per sensory cell soma type in ipsi‐ as compared to contralateral DRGs were observed. Conclusion Con‐DRGS does not affect the average intracellular GABA immunofluorescence staining intensity in DRG sensory neurons of those animals which showed significant pain reduction. Similarly, no soma size related changes in intracellular GABA immunofluorescence were observed following Con‐DRGS.
Collapse
Affiliation(s)
- Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Perla Douven
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,Department of Surgery, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Jacques Debets
- School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Canna A, Lehto LJ, Wu L, Sang S, Laakso H, Ma J, Filip P, Zhang Y, Gröhn O, Esposito F, Chen CC, Lavrov I, Michaeli S, Mangia S. Brain fMRI during orientation selective epidural spinal cord stimulation. Sci Rep 2021; 11:5504. [PMID: 33750822 PMCID: PMC7943775 DOI: 10.1038/s41598-021-84873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.
Collapse
Affiliation(s)
- Antonietta Canna
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lauri J Lehto
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Lin Wu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Sheng Sang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Hanne Laakso
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yuan Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Igor Lavrov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
17
|
Kuwabara Y, Salavatian S, Howard-Quijano K, Yamaguchi T, Lundquist E, Mahajan A. Neuromodulation With Thoracic Dorsal Root Ganglion Stimulation Reduces Ventricular Arrhythmogenicity. Front Physiol 2021; 12:713717. [PMID: 34690795 PMCID: PMC8528951 DOI: 10.3389/fphys.2021.713717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Sympathetic hyperactivity is strongly associated with ventricular arrhythmias and sudden cardiac death. Neuromodulation provides therapeutic options for ventricular arrhythmias by modulating cardiospinal reflexes and reducing sympathetic output at the level of the spinal cord. Dorsal root ganglion stimulation (DRGS) is a recent neuromodulatory approach; however, its role in reducing ventricular arrhythmias has not been evaluated. The aim of this study was to determine if DRGS can reduce cardiac sympathoexcitation and the indices for ventricular arrhythmogenicity induced by programmed ventricular extrastimulation. We evaluated the efficacy of thoracic DRGS at both low (20 Hz) and high (1 kHz) stimulation frequencies. Methods: Cardiac sympathoexcitation was induced in Yorkshire pigs (n = 8) with ventricular extrastimulation (S1/S2 pacing), before and after DRGS. A DRG-stimulating catheter was placed at the left T2 spinal level, and animals were randomized to receive low-frequency (20 Hz and 0.4 ms) or high-frequency (1 kHz and 0.03 ms) DRGS for 30 min. High-fidelity cardiac electrophysiological recordings were performed with an epicardial electrode array measuring the indices of ventricular arrhythmogenicity-activation recovery intervals (ARIs), electrical restitution curve (Smax), and Tpeak-Tend interval (Tp-Te interval). Results: Dorsal root ganglion stimulation, at both 20 Hz and 1 kHz, decreased S1/S2 pacing-induced ARI shortening (20 Hz DRGS -21±7 ms, Control -50±9 ms, P = 0.007; 1 kHz DRGS -13 ± 2 ms, Control -46 ± 8 ms, P = 0.001). DRGS also reduced arrhythmogenicity as measured by a decrease in Smax (20 Hz DRGS 0.5 ± 0.07, Control 0.7 ± 0.04, P = 0.006; 1 kHz DRGS 0.5 ± 0.04, Control 0.7 ± 0.03, P = 0.007), and a decrease in Tp-Te interval/QTc (20 Hz DRGS 2.7 ± 0.13, Control 3.3 ± 0.12, P = 0.001; 1 kHz DRGS 2.8 ± 0.08, Control; 3.1 ± 0.03, P = 0.007). Conclusions: In a porcine model, we show that thoracic DRGS decreased cardiac sympathoexcitation and indices associated with ventricular arrhythmogenicity during programmed ventricular extrastimulation. In addition, we demonstrate that both low-frequency and high-frequency DRGS can be effective neuromodulatory approaches for reducing cardiac excitability during sympathetic hyperactivity.
Collapse
Affiliation(s)
- Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Eevanna Lundquist
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Aman Mahajan
| |
Collapse
|
18
|
Franken G, Debets J, Joosten EAJ. Nonlinear Relation Between Burst Dorsal Root Ganglion Stimulation Amplitude and Behavioral Outcome in an Experimental Model of Painful Diabetic Peripheral Neuropathy. Neuromodulation 2019; 23:158-166. [PMID: 31738474 PMCID: PMC7065114 DOI: 10.1111/ner.13070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Background and objective Dorsal root ganglion stimulation (DRGS) has recently emerged as a neuromodulation modality in the treatment of chronic neuropathic pain. The objective of this study was to compare the efficacy of different Burst‐DRGS amplitudes in an experimental model of painful diabetic peripheral neuropathy (PDPN). Methods Diabetes mellitus was induced in female Sprague–Dawley rats by intraperitoneal injection of streptozotocin (STZ, n = 28). Animals were tested for mechanical hypersensitivity (von Frey paw withdrawal test) before, and four weeks after STZ injection. PDPN rats (n = 13) were implanted with a unilateral bipolar electrode at the L5 DRG. Animals received Burst‐DRGS at 0%, 10%, 33%, 50%, 66%, and 80% of motor threshold (MT) in a randomized crossover design on post‐implantation days 2–7 (n = 9). Mechanical hypersensitivity was assessed before stimulation onset, 15 and 30 min during stimulation, and 15 and 30 min after stimulation. Results Burst‐DRGS at amplitudes of 33%, 50%, 66%, and 80% MT resulted in significant attenuation of STZ‐induced mechanical hypersensitivity at 15 and 30 min during stimulation, as well as 15 min after cessation of stimulation. No effect on mechanical hypersensitivity was observed for Burst‐DRGS at 0% MT and 10% MT. Optimal pain relief and highest responder rates were achieved with Burst‐DRGS at 50–66% MT, with an estimated optimum at 52% MT. Conclusion Our findings indicate a nonlinear relationship between Burst‐DRGS amplitude and behavioral outcome, with an estimated optimal amplitude of 52% MT. Further optimization and analysis of DRGS driven by insights into the underlying mechanisms related to the various stimulation paradigms is warranted.
Collapse
Affiliation(s)
- Glenn Franken
- Pain Management and Research Centre, Department of Anesthesiology and Pain Management, MUMC, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Jacques Debets
- Muroidean Facility, School of Cardiovascular Diseases, CARIM, Maastricht, The Netherlands
| | - Elbert A J Joosten
- Pain Management and Research Centre, Department of Anesthesiology and Pain Management, MUMC, Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
19
|
Koetsier E, Franken G, Debets J, van Kuijk SMJ, Linderoth B, Joosten EA, Maino P. Dorsal Root Ganglion Stimulation in Experimental Painful Diabetic Polyneuropathy: Delayed Wash-Out of Pain Relief After Low-Frequency (1Hz) Stimulation. Neuromodulation 2019; 23:177-184. [PMID: 31524325 DOI: 10.1111/ner.13048] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Up until now there is little data about the pain relieving effect of different frequency settings in DRGS. The aim of this study was to compare the pain relieving effect of DRGS at low-, mid-, and high-frequencies and Sham-DRGS in an animal model of painful diabetic neuropathy (PDPN). MATERIAL AND METHODS Diabetes mellitus was induced by an intraperitoneal injection of streptozotocin in 8-week-old female Sprague-Dawley rats (n = 24; glucose ≥15 mmol/L: n = 20; mechanical hypersensitivity: n = 15). Five weeks later, a DRGS device was implanted at the L5 DRG. Ten animals were included for stimulation, alternating 30 minutes of low (1 Hz)-, mid (20 Hz)-, and high (1000 Hz)-frequencies and Sham-DRGS during four days, with a pulse width of 0.2 msec (average amplitude: 0.19 ± 0.01 mA), using a randomized cross-over design. The effect on mechanical hypersensitivity of the hind paw to von Frey filaments was evaluated. RESULTS All DRGS frequencies resulted in a complete reversal of mechanical hypersensitivity and "a clinically relevant reduction" was achieved in 70-80% of animals. No significant differences in maximal pain relieving effect were found between the different frequency treatments (p = 0.24). Animals stimulated at 1000 and 20 Hz returned to baseline mechanical hypersensitivity values 15 and 30 min after stimulation cessation, respectively, while animals stimulated at 1 Hz did not. CONCLUSIONS These results show that DRGS is equally effective when applied at low-, mid-, and high-frequency in an animal model of PDPN. However, low-frequency-(1 Hz)-DRGS resulted in a delayed wash-out effect, which suggests that this is the most optimal frequency for pain therapy in PDPN as compared to mid- and high-frequency.
Collapse
Affiliation(s)
- Eva Koetsier
- Pain Management Center, Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Lugano, Switzerland.,Division of Anaesthesiology, Department of Acute Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| | - Glenn Franken
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNS), University of Maastricht, Maastricht, The Netherlands
| | - Jacques Debets
- Muroidean Facility, School of Cardiovascular Diseases (CARIM), Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elbert A Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience (MHeNS), University of Maastricht, Maastricht, The Netherlands
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Lugano, Switzerland.,Division of Anaesthesiology, Department of Acute Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| |
Collapse
|