1
|
Shiina T, Suzuki Y, Horii K, Sawamura T, Yuki N, Horii Y, Shimizu Y. Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats. J Physiol Sci 2024; 74:26. [PMID: 38654149 PMCID: PMC11036717 DOI: 10.1186/s12576-024-00916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer. Exogenous application of ATP (10-100 μM) evoked relaxation of the esophageal smooth muscle in a longitudinal direction under the condition of carbachol (1 μM) -induced precontraction. Pretreatment with a non-selective P2 receptor antagonist, suramin (500 μM), and a P2Y receptor antagonist, cibacron blue F3GA (200 μM), inhibited the ATP (100 μM) -induced relaxation, but a P2X receptor antagonist, pyridoxal phosphate-6-azophenyl-2,4-disulfonic acid (50 μM), did not affect it. A blocker of ATP-dependent potassium channels (KATP channels), glibenclamide (200 μM), inhibited the ATP-induced relaxation and application of an opener of KATP channels, nicorandil (50 μM), produced relaxation. The findings suggest that ATP is involved in inhibitory regulation of the longitudinal smooth muscle in the muscularis mucosae of the rat esophagus via activation of P2Y receptors and then opening of KATP channels.
Collapse
Affiliation(s)
- Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.
| | - Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazuhiro Horii
- Division of Biological Principles, Department of Physiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Tomoya Sawamura
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Natsufu Yuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuuki Horii
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
2
|
Suzuki Y, Shimizu Y, Shiina T. ATP-Induced Contractile Response of Esophageal Smooth Muscle in Mice. Int J Mol Sci 2024; 25:1985. [PMID: 38396664 PMCID: PMC10888660 DOI: 10.3390/ijms25041985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The tunica muscularis of mammalian esophagi is composed of striated muscle and smooth muscle. Contraction of the esophageal striated muscle portion is mainly controlled by cholinergic neurons. On the other hand, smooth muscle contraction and relaxation are controlled not only by cholinergic components but also by non-cholinergic components in the esophagus. Adenosine triphosphate (ATP) is known to regulate smooth muscle contraction and relaxation in the gastrointestinal tract via purinergic receptors. However, the precise mechanism of purinergic regulation in the esophagus is still unclear. Therefore, the aim of the present study was to clarify the effects of ATP on the mechanical responses of the esophageal muscle in mice. An isolated segment of the mouse esophagus was placed in a Magnus's tube and longitudinal mechanical responses were recorded. Exogenous application of ATP induced contractile responses in the esophageal preparations. Tetrodotoxin, a blocker of voltage-dependent sodium channels in neurons and striated muscle, did not affect the ATP-induced contraction. The ATP-evoked contraction was blocked by pretreatment with suramin, a purinergic receptor antagonist. RT-PCR revealed the expression of mRNA of purinergic receptor genes in the mouse esophageal tissue. The findings suggest that purinergic signaling might regulate the motor activity of mouse esophageal smooth muscle.
Collapse
Grants
- 2021 Koshiyama Science & Technology foundation
- 2021 OGAWA Science and Technology Foundation
- 17K08122 Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K06409 Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 23K05553 Grants-in-Aid for Scientific Research (KAKENHI) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Yuji Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan (Y.S.)
| | - Yasutake Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan (Y.S.)
- Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takahiko Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan (Y.S.)
| |
Collapse
|
3
|
Zinsser-Krys J, Kapitza C, Böhnke L, van der Keylen P, Neuhuber WL, Wörl J. Neurochemical classification of serotonin-immunoreactive neurons co-innervating motor endplates in the mouse esophagus. Anat Rec (Hoboken) 2022; 306:960-971. [PMID: 35838072 DOI: 10.1002/ar.25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022]
Abstract
Serotonin immunoreactivity was previously found in myenteric neurons co-innervating motor endplates in the mouse esophagus striated muscle and an involvement in motility control was suggested. However, it is not known if other neuroactive substances are present in these neurons and to what extent they co-localize. First, vasoactive intestinal peptide (VIP) was established as a bona fide marker for putative inhibitory myenteric neurons by evaluating co-localization with neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY). Then, co-localization of serotonin and VIP was tested in co-innervating axons on motor endplates, which were visualized with α-bungarotoxin (α-BT) by multilabel immunofluorescence. Myenteric ganglia were also surveyed for co-localization in neuronal perikarya and varicosities. nNOS, NPY, and VIP were completely co-localized in enteric co-innervating nerve terminals on motor endplates. After co-staining with VIP, we found (a) serotonin (5-HT)-positive nerve endings without VIP (44% of 5-HT-positively innervated endplates), (b) 5-HT- and VIP-positive endings without co-localization (35%), and (c) 5-HT- and VIP-positive endings with co-localization (21%). About one-fifth of nerve terminals on motor endplates containing 5-HT originate from putative inhibitory peptidegic nitrergic neurons. However, the majority represents a different population presumably subserving different functions.
Collapse
Affiliation(s)
- Jillena Zinsser-Krys
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Kapitza
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lena Böhnke
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Piet van der Keylen
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Winfried L Neuhuber
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Wörl
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Chiocchetti R, Galiazzo G, Giancola F, Tagliavia C, Bernardini C, Forni M, Pietra M. Localization of the Serotonin Transporter in the Dog Intestine and Comparison to the Rat and Human Intestines. Front Vet Sci 2022; 8:802479. [PMID: 35071391 PMCID: PMC8766808 DOI: 10.3389/fvets.2021.802479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Serotonin is crucial in gastrointestinal functions, including motility, sensitivity, secretion, and the inflammatory response. The serotonin transporter (SERT), responsible for serotonin reuptake and signaling termination, plays a prominent role in gastrointestinal physiology, representing a promising therapeutic target in digestive disorders. Serotonin transporter expression has been poorly investigated in veterinary medicine, under both healthy and pathological conditions, including canine chronic enteropathy, in which the serotonin metabolism seems to be altered. The aim of the present study was to determine the distribution of SERT immunoreactivity (SERT-IR) in the dog intestine and to compare the findings with those obtained in the rat and human intestines. Serotonin transporter-IR was observed in canine enterocytes, enteric neurons, lamina propria cells and the tunica muscularis. Data obtained in dogs were consistent with those obtained in rats and humans. Since the majority of the serotonin produced by the body is synthesized in the gastrointestinal tract, SERT-expressing cells may exert a role in the mechanism of serotonin reuptake.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Ozzano dell'Emilia, Italy
| |
Collapse
|
5
|
Yang X, Lou J, Shan W, Ding J, Jin Z, Hu Y, Du Q, Liao Q, Xie R, Xu J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front Physiol 2021; 12:567650. [PMID: 34194334 PMCID: PMC8236819 DOI: 10.3389/fphys.2021.567650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitters are special molecules that serve as messengers in chemical synapses between neurons, cells, or receptors, including catecholamines, serotonin, dopamine, and other neurotransmitters, which play an important role in both human physiology and pathology. Compelling evidence has indicated that neurotransmitters have an important physiological role in various digestive diseases. They act as ligands in combination with central or peripheral receptors, and transmits signals through chemical synapses, which are involved in regulating the physiological and pathological processes of the digestive tract organs. For instance, neurotransmitters regulate blood circulation and affect intestinal movement, nutrient absorption, the gastrointestinal innate immune system, and the microbiome. In this review, we will focus on the role of neurotransmitters in the pathogenesis of digestive tract diseases to provide novel therapeutic targets for new drug development in digestive diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
6
|
Quelhas P, Baltazar G, Cairrao E. Characterization of culture from smooth muscle cells isolated from rat middle cerebral arteries. Tissue Cell 2020; 66:101400. [PMID: 32933705 DOI: 10.1016/j.tice.2020.101400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Although human brain represents only 2% of the body mass, it uses around 20 % of the organism energy. Due to the brain's limited energy storage, the oxygen and glucose necessary to support brain functions depends on the correct blood supply. The main components of the arteries are smooth muscle cells, which are considered the main regulators of vascular tone and blood flow distribution. The information currently available on the functioning of the cerebral arteries and their cell constituents is extremely scarce. Thus, the aim of this work was to develop an in vitro model of smooth muscle cells derived from rat middle cerebral artery. Explants were collected from rat middle cerebral artery and adhered to collagen-coated culture dishes. Immunocytochemical analysis showed that the cells present in the culture expressed α-actin, a protein characteristic of the contractile phenotype of these cells. In addition, these cells did not express the endothelial marker, vWF. To evaluate the functionality of these cells the response to contractile agents, serotonin and noradrenaline, and to relaxing agent, sodium nitroprusside was determine by Planar Cell Surface Area analysis. Together the data obtained show that the cell culture obtained through the procedure described resulted in cells presenting the markers characteristic of smooth muscle cells and maintaining the usual contractile response, indicating that the cells obtained through this may be used as a model for characterization and study of functional behavior of the middle cerebral artery, as well as interaction studies between vascular and neuronal system.
Collapse
Affiliation(s)
- Patricia Quelhas
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Graça Baltazar
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
7
|
Neuhuber WL, Wörl J. Enteric co-innervation of striated muscle in the esophagus: still enigmatic? Histochem Cell Biol 2016; 146:721-735. [PMID: 27678007 DOI: 10.1007/s00418-016-1500-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2016] [Indexed: 01/10/2023]
Abstract
The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus has represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been suggested repeatedly, it was not possible until recently to demonstrate this dual innervation. Twenty-two years ago, we were able to demonstrate that motor endplates in the rat esophagus receive dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Meanwhile, a considerable amount of data has been gathered on enteric co-innervation and its occurrence in the esophagus of a variety of species including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny and possible functional roles. These data underline the significance of this newly discovered innervation component, although its function in vivo is still largely unknown. The aim of this review, which is an update of our previous paper (Wörl and Neuhuber in Histochem Cell Biol 123(2):117-130. doi: 10.1007/s00418-005-0764-7 , 2005a), is to summarize the current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.
Collapse
Affiliation(s)
- Winfried L Neuhuber
- Institut für Anatomie I, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany.
| | - Jürgen Wörl
- Institut für Anatomie I, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| |
Collapse
|