1
|
González-Fernández R, Martín-Ramírez R, Maeso MDC, Lázaro A, Ávila J, Martín-Vasallo P, Morales M. Changes in AmotL2 Expression in Cells of the Human Enteral Nervous System in Oxaliplatin-Induced Enteric Neuropathy. Biomedicines 2024; 12:1952. [PMID: 39335466 PMCID: PMC11429461 DOI: 10.3390/biomedicines12091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrointestinal (GI) toxicity is a common side effect in patients undergoing oxaliplatin (OxPt)-based chemotherapy for colorectal cancer (CRC). Frequently, this complication persists in the long term and could affect the efficacy of the treatment and the patient's life quality. This long-term GI toxicity is thought to be related to OxPt-induced enteral neuropathy. AmotL2 is a member of the Angiomotin family of proteins, which play a role in cell survival, neurite outgrowth, synaptic maturation, oxidative stress protection, and inflammation. In order to assess the role of AmotL2 in OxPt-induced enteral neuropathy, we studied the expression of AmotL2 in cells of the enteric nervous system (ENS) of untreated and OxPt-treated CRC patients and its relationship with inflammation, using immunofluorescence confocal microscopy. Our results in human samples show that the total number of neurons and glial cells decreased in OxPt-treated patients, and TNF-α and AmotL2 expression was increased and colocalized in both neurons and glia. AmotL2 differential expression between OxPt-treated and untreated CRC patients shows the involvement of this scaffold protein in the inflammatory component and toxicity by OxPt in the ENS.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Rita Martín-Ramírez
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - María-Del-Carmen Maeso
- Servicio de Patología, Hospital Universitario Nuestra Señora de la Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Alberto Lázaro
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de La Laguna, Av. Astrofísico Sánchez s/n, 38206 San Cristóbal de La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, C/Sta. María de la Soledad, Sección Medicina, 38071 San Cristóbal de La Laguna, Spain
| | - Manuel Morales
- Servicio de Oncología Médica, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| |
Collapse
|
2
|
Zhang F, Cui M, Zhang L, Ma B, Guo F, Wang G. GFRA4 improves the neurogenic potential of enteric neural crest stem cells via hedgehog pathway. Pediatr Res 2024:10.1038/s41390-024-03158-8. [PMID: 38658664 DOI: 10.1038/s41390-024-03158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital intestinal disease characterised by functional obstruction of the colon. Herein, we investigated the role and mechanism of the gene GFRA4 in HSCR. METHODS GFRA4 expression in the ganglionic and aganglionic segment tissues in patients with HSCR and healthy colon tissues were detected using qRT-PCR, western blot, and immunohistochemistry. Cell proliferation, cycle distribution, apoptosis, changes in mitochondrial membrane potential, and differentiation were assessed in mouse enteric neural crest stem cells (ENCSCs) using the CCK-8 assay, EdU staining, flow cytometry, JC-1 probe, and immunofluorescence, respectively. GSEA analysis was performed to screen the signaling pathways regulated by GFRA4. RESULTS GFRA4 was downregulated in aganglionic segment tissues compared to control and ganglionic segment tissues. GFRA4 overexpression promoted proliferation and differentiation, and inhibited apoptosis in ENCSCs, while GFRA4 down-regulation had the opposite result. GFRA4 activated the hedgehog pathway. GFRA4 overexpression enhanced the expression of key factors of the hedgehog pathway, including SMO, SHH, and GLI1. However, GFRA4 down-regulation reduced their expression. An antagonist of hedgehog pathway, cyclopamine, attenuated the effect of GFRA4 overexpression on proliferation, differentiation, and apoptosis of ENCSCs. CONCLUSION GFRA4 promotes proliferation and differentiation but inhibits apoptosis of ENCSCs via the hedgehog pathway in HSCR. IMPACT This study confirms that GFRA4 improves the proliferation and differentiation of ENCSCs via modulation of the hedgehog pathway. This study for the first time revealed the role and the mechanism of the action of GFRA4 in HSCR, which indicates that GFRA4 may play a role in the pathological development of HSCR. Our findings may lay the foundation for further investigation of the mechanisms underlying HSCR development and into targets of HSCR treatment.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Mingyu Cui
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bangzhen Ma
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Feng Guo
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| |
Collapse
|
3
|
Martel RD, Hoyos NA, Tapia-Laliena MÁ, Herrmann I, Herrmann M, Khasanov R, Schäfer KH. Intra-arterial delivery of neurospheres into isolated perfused porcine colons: a proof of concept. Biol Methods Protoc 2024; 9:bpae022. [PMID: 38628556 PMCID: PMC11018533 DOI: 10.1093/biomethods/bpae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
Cell replacement in aganglionic intestines is a promising, yet merely experimental tool for the therapy of congenital dysganglionosis of the enteric nervous system like Hirschsprung disease. While the injection of single cells or neurospheres to a defined and very restricted location is trivial, the translation to the clinical application, where large aganglionic or hypoganglionic areas need to be colonized (hundreds of square centimetres), afford a homogeneous distribution of multiple neurospheres all over the affected tissue areas. Reaching the entire aganglionic area in vivo is critical for the restoration of peristaltic function. The latter mainly depends on an intact nervous system that extends throughout the organ. Intra-arterial injection is a common method in cell therapy and may be the key to delivering cells or neurospheres into the capillary bed of the colon with area-wide distribution. We describe an experimental method for monitoring the distribution of a defined number of neurospheres into porcine recta ex vivo, immediately after intra-arterial injection. We designed this method to localize grafting sites of single neurospheres in precise biopsies which can further be examined in explant cultures. The isolated perfused porcine rectum allowed us to continuously monitor the perfusion pressure. A blockage of too many capillaries would lead to an ischaemic situation and an increase of perfusion pressure. Since we could demonstrate that the area-wide delivery of neurospheres did not alter the overall vascular resistance, we showed that the delivery does not significantly impair the local circulation.
Collapse
Affiliation(s)
- Richard D Martel
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Nicolas A Hoyos
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Irmgard Herrmann
- Department of Medicine 3, Universitäts-Klinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Medicine 3, Universitäts-Klinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| |
Collapse
|
4
|
Sunardi M, Cirillo C. Mini-review: "Enteric glia functions in nervous tissue repair: Therapeutic target or tool?". Neurosci Lett 2023; 812:137360. [PMID: 37393007 DOI: 10.1016/j.neulet.2023.137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
In the body, nerve tissue is not only present in the central nervous system, but also in the periphery. The enteric nervous system (ENS) is a highly organized intrinsic network of neurons and glial cells grouped to form interconnected ganglia. Glial cells in the ENS are a fascinating cell population: their neurotrophic role is well established, as well as their plasticity in specific circumstances. Gene expression profiling studies indicate that ENS glia retain neurogenic potential. The identification of neurogenic glial subtype(s) and the molecular basis of glia-derived neurogenesis may have profound biological and clinical implications. In this review, we discuss the potential of using gene-editing for ENS glia and cell transplantation as therapies for enteric neuropathies. Glia in the ENS: target or tool for nerve tissue repair?
Collapse
Affiliation(s)
- Mukhamad Sunardi
- Division of Neural Differentiation and Regeneration (NDR), Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | - Carla Cirillo
- Division of Neural Differentiation and Regeneration (NDR), Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan; Toulouse NeuroImaging Center (ToNIC), National Institute of Health and Medical Research (INSERM), Toulouse University Paul Sabatier, Toulouse, France.
| |
Collapse
|
5
|
Alhawaj AF. Stem cell-based therapy for hirschsprung disease, do we have the guts to treat? Gene Ther 2022; 29:578-587. [PMID: 34121091 PMCID: PMC9684071 DOI: 10.1038/s41434-021-00268-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital anomaly of the colon that results from failure of enteric nervous system formation, leading to a constricted dysfunctional segment of the colon with variable lengths, and necessitating surgical intervention. The underlying pathophysiology includes a defect in neural crest cells migration, proliferation and differentiation, which are partially explained by identified genetic and epigenetic alterations. Despite the high success rate of the curative surgeries, they are associated with significant adverse outcomes such as enterocolitis, fecal soiling, and chronic constipation. In addition, some patients suffer from extensive lethal variants of the disease, all of which justify the need for an alternative cure. During the last 5 years, there has been considerable progress in HSCR stem cell-based therapy research. However, many major issues remain unsolved. This review will provide concise background information on HSCR, outline the future approaches of stem cell-based HSCR therapy, review recent key publications, discuss technical and ethical challenges the field faces prior to clinical translation, and tackle such challenges by proposing solutions and evaluating existing approaches to progress further.
Collapse
Affiliation(s)
- Ali Fouad Alhawaj
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom.
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
6
|
Lui KNC, NGAN ESW. Human Pluripotent Stem Cell-Based Models for Hirschsprung Disease: From 2-D Cell to 3-D Organoid Model. Cells 2022; 11:cells11213428. [PMID: 36359824 PMCID: PMC9657902 DOI: 10.3390/cells11213428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Hirschsprung disease (HSCR) is a complex congenital disorder caused by defects in the development of the enteric nervous system (ENS). It is attributed to failures of the enteric neural crest stem cells (ENCCs) to proliferate, differentiate and/or migrate, leading to the absence of enteric neurons in the distal colon, resulting in colonic motility dysfunction. Due to the oligogenic nature of the disease, some HSCR conditions could not be phenocopied in animal models. Building the patient-based disease model using human induced pluripotent stem cells (hPSC) has opened up a new opportunity to untangle the unknowns of the disease. The expanding armamentarium of hPSC-based therapies provides needed new tools for developing cell-replacement therapy for HSCR. Here we summarize the recent studies of hPSC-based models of ENS in 2-D and 3-D culture systems. These studies have highlighted how hPSC-based models complement the population-based genetic screens and bioinformatic approaches for the discovery of new HSCR susceptibility genes and provide a human model for the close-to-physiological functional studies. We will also discuss the potential applications of these hPSC-based models in translational medicines and their advantages and limitations. The use of these hPSC-based models for drug discovery or cell replacement therapy likely leads to new treatment strategies for HSCR in the future. Further improvements in incorporating hPSC-based models with the human-mouse chimera model and organ-on-a-chip system for establishing a better disease model of HSCR and for drug discovery will further propel us to success in the development of an efficacious treatment for HSCR.
Collapse
|
7
|
Enteric neurosphere cells injected into rectal submucosa might migrate caudorostrally to reconstitute enteric ganglia along the entire length of postnatal colon. STEM CELL RESEARCH & THERAPY 2022; 13:498. [PMID: 36210457 PMCID: PMC9549611 DOI: 10.1186/s13287-022-03187-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
Abstract
Background In enteric neural stem cell (ENSC) therapy for enteric neuropathy, the gut is ostensibly accessible via laparotomy, laparoscopy or endoscopy, whereas its elongated configuration and multilayered structures substantially complicate the targeting of ENSC delivery. This study aimed to evaluate the feasibility of ENSC delivery via trans-anal rectal submucosal injection. Methods ENSC transplantation was conducted in an immunologically compatible model of FVB/NCrl-Tg(Pgk1-EGFP)01Narl into FVB/N murine strain combination. Enteric neurospheres were mass-produced by the cultivation of dispersed enterocytes harvested from gestational day 14 FVB/NCrl-Tg(Pgk1-EGFP)01Narl murine fetuses. Dissociated neurosphere cells were injected into rectal submucosa of adult FVB/N mice after artificial prolapse of rectal mucosa. Ganglion reconstitution in recipients’ colon was examined by immunohistochemcal and immunofluorescence staining. Results Cell spreading and ganglion assembly in recipients’ colorectum were examined one week after transplantation. Donor ENSCs migrated rostrally within the colonic wall to intermuscularly repopulate the neighboring colorectum and assemble myenteric ganglia. It contributed to a chimeric state of myenteric plexuses with donor-origin ganglia of 41.2–67.5%. Two months later, transplanted ENSCs had undergone long-distance caudorostral migration almost up to the cecum to reconstitute myenteric and submucosal ganglia along the entire length of the colon. Conclusion This proof-of-principle study provided a viable justification for minimally invasive rectal ENSC transplantation to create long-term and long-range reconstitution of enteric ganglia. It opens up the new approach to ENSC delivery in laboratory animals and casts light on the feasibility of replacing damaged or replenishing missing enteric neurons by trans-anal rectal ENSC transplantation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03187-2.
Collapse
|
8
|
Pan W, Goldstein AM, Hotta R. Opportunities for novel diagnostic and cell-based therapies for Hirschsprung disease. J Pediatr Surg 2022; 57:61-68. [PMID: 34852916 PMCID: PMC9068833 DOI: 10.1016/j.jpedsurg.2021.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 12/26/2022]
Abstract
Despite significant progress in our understanding of the etiology and pathophysiology of Hirschsprung disease (HSCR), early and accurate diagnosis and operative management can be challenging. Moreover, long-term morbidity following surgery, including fecal incontinence, constipation, and Hirschsprung-associated enterocolitis (HAEC), remains problematic. Recent advances applying state-of-the art imaging for visualization of the enteric nervous system and utilizing neuronal stem cells to replace the missing enteric neurons and glial cells offer the possibility of a promising new future for patients with HSCR. In this review, we summarize recent research advances that may one day offer novel approaches for the diagnosis and management of this disease.
Collapse
Affiliation(s)
- Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA; Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, 185 Cambridge St, CPZN 6-215, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Tullie L, Jones BC, De Coppi P, Li VSW. Building gut from scratch - progress and update of intestinal tissue engineering. Nat Rev Gastroenterol Hepatol 2022; 19:417-431. [PMID: 35241800 DOI: 10.1038/s41575-022-00586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Short bowel syndrome (SBS), a condition defined by insufficient absorptive intestinal epithelium, is a rare disease, with an estimated prevalence up to 0.4 in 10,000 people. However, it has substantial morbidity and mortality for affected patients. The mainstay of treatment in SBS is supportive, in the form of intravenous parenteral nutrition, with the aim of achieving intestinal autonomy. The lack of a definitive curative therapy has led to attempts to harness innate developmental and regenerative mechanisms to engineer neo-intestine as an alternative approach to addressing this unmet clinical need. Exciting advances have been made in the field of intestinal tissue engineering (ITE) over the past decade, making a review in this field timely. In this Review, we discuss the latest advances in the components required to engineer intestinal grafts and summarize the progress of ITE. We also explore some key factors to consider and challenges to overcome when transitioning tissue-engineered intestine towards clinical translation, and provide the future outlook of ITE in therapeutic applications and beyond.
Collapse
Affiliation(s)
- Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.,Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK. .,Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
10
|
Gardner-Russell J, Kuriakose J, Hao MM, Stamp LA. Upper Gastrointestinal Motility, Disease and Potential of Stem Cell Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:319-328. [PMID: 36587169 DOI: 10.1007/978-3-031-05843-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many gastrointestinal motility disorders arise due to defects in the enteric nervous system. Achalasia and gastroparesis are two extremely debilitating digestive diseases of the upper gastrointestinal tract caused in part by damage or loss of the nitrergic neurons in the esophagus and stomach. Most current pharmacological and surgical interventions provide no long-term relief from symptoms, and none address the cause. Stem cell therapy, to replace the missing neurons and restore normal gut motility, is an attractive alternative therapy. However, there are a number of hurdles that must be overcome to bring this exciting research from the bench to the bedside.
Collapse
Affiliation(s)
- Jesse Gardner-Russell
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Jakob Kuriakose
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Marlene M Hao
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Lincon A Stamp
- Department of Anatomy & Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
11
|
Calcium imaging reveals depressive- and manic-phase-specific brain neural activity patterns in a murine model of bipolar disorder: a pilot study. Transl Psychiatry 2021; 11:619. [PMID: 34876553 PMCID: PMC8651770 DOI: 10.1038/s41398-021-01750-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Brain pathological features during manic/hypomanic and depressive episodes in the same patients with bipolar disorder (BPD) have not been described precisely. The study aimed to investigate depressive and manic-phase-specific brain neural activity patterns of BPD in the same murine model to provide information guiding investigation of the mechanism of phase switching and tailored prevention and treatment for patients with BPD. In vivo two-photon imaging was used to observe brain activity alterations in the depressive and manic phases in the same murine model of BPD. Two-photon imaging showed significantly reduced Ca2+ activity in temporal cortex pyramidal neurons in the depression phase in mice exposed to chronic unpredictable mild stress (CUMS), but not in the manic phase in mice exposed to CUMS and ketamine. Total integrated calcium values correlated significantly with immobility times. Brain Ca2+ hypoactivity was observed in the depression and manic phases in the same mice exposed to CUMS and ketamine relative to naïve controls. The novel object recognition preference ratio correlated negatively with the immobility time in the depression phase and the total distance traveled in the manic phase. With recognition of its limitations, this study revealed brain neural activity impairment indicating that intrinsic emotional network disturbance is a mechanism of BPD and that brain neural activity is associated with cognitive impairment in the depressive and manic phases of this disorder. These findings are consistent with those from macro-imaging studies of patients with BPD. The observed correlation of brain neural activity with the severity of depressive, but not manic, symptoms need to be investigated further.
Collapse
|
12
|
Roles of Enteric Neural Stem Cell Niche and Enteric Nervous System Development in Hirschsprung Disease. Int J Mol Sci 2021; 22:ijms22189659. [PMID: 34575824 PMCID: PMC8465795 DOI: 10.3390/ijms22189659] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
The development of the enteric nervous system (ENS) is highly modulated by the synchronized interaction between the enteric neural crest cells (ENCCs) and the neural stem cell niche comprising the gut microenvironment. Genetic defects dysregulating the cellular behaviour(s) of the ENCCs result in incomplete innervation and hence ENS dysfunction. Hirschsprung disease (HSCR) is a rare complex neurocristopathy in which the enteric neural crest-derived cells fail to colonize the distal colon. In addition to ENS defects, increasing evidence suggests that HSCR patients may have intrinsic defects in the niche impairing the extracellular matrix (ECM)-cell interaction and/or dysregulating the cellular niche factors necessary for controlling stem cell behaviour. The niche defects in patients may compromise the regenerative capacity of the stem cell-based therapy and advocate for drug- and niche-based therapies as complementary therapeutic strategies to alleviate/enhance niche-cell interaction. Here, we provide a summary of the current understandings of the role of the enteric neural stem cell niche in modulating the development of the ENS and in the pathogenesis of HSCR. Deciphering the contribution of the niche to HSCR may provide important implications to the development of regenerative medicine for HSCR.
Collapse
|
13
|
Dynamic integration of enteric neural stem cells in ex vivo organotypic colon cultures. Sci Rep 2021; 11:15889. [PMID: 34354183 PMCID: PMC8342505 DOI: 10.1038/s41598-021-95434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/26/2021] [Indexed: 11/12/2022] Open
Abstract
Enteric neural stem cells (ENSC) have been identified as a possible treatment for enteric neuropathies. After in vivo transplantation, ENSC and their derivatives have been shown to engraft within colonic tissue, migrate and populate endogenous ganglia, and functionally integrate with the enteric nervous system. However, the mechanisms underlying the integration of donor ENSC, in recipient tissues, remain unclear. Therefore, we aimed to examine ENSC integration using an adapted ex vivo organotypic culture system. Donor ENSC were obtained from Wnt1cre/+;R26RYFP/YFP mice allowing specific labelling, selection and fate-mapping of cells. YFP+ neurospheres were transplanted to C57BL6/J (6–8-week-old) colonic tissue and maintained in organotypic culture for up to 21 days. We analysed and quantified donor cell integration within recipient tissues at 7, 14 and 21 days, along with assessing the structural and molecular consequences of ENSC integration. We found that organotypically cultured tissues were well preserved up to 21-days in ex vivo culture, which allowed for assessment of donor cell integration after transplantation. Donor ENSC-derived cells integrated across the colonic wall in a dynamic fashion, across a three-week period. Following transplantation, donor cells displayed two integrative patterns; longitudinal migration and medial invasion which allowed donor cells to populate colonic tissue. Moreover, significant remodelling of the intestinal ECM and musculature occurred upon transplantation, to facilitate donor cell integration within endogenous enteric ganglia. These results provide critical evidence on the timescale and mechanisms, which regulate donor ENSC integration, within recipient gut tissue, which are important considerations in the future clinical translation of stem cell therapies for enteric disease.
Collapse
|
14
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
15
|
Jevans B, James ND, Burnside E, McCann CJ, Thapar N, Bradbury EJ, Burns AJ. Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology. Stem Cell Res Ther 2021; 12:10. [PMID: 33407795 PMCID: PMC7789480 DOI: 10.1186/s13287-020-02031-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) presents a significant challenge for the field of neurotherapeutics. Stem cells have shown promise in replenishing the cells lost to the injury process, but the release of axon growth-inhibitory molecules such as chondroitin sulfate proteoglycans (CSPGs) by activated cells within the injury site hinders the integration of transplanted cells. We hypothesised that simultaneous application of enteric neural stem cells (ENSCs) isolated from the gastrointestinal tract, with a lentivirus (LV) containing the enzyme chondroitinase ABC (ChABC), would enhance the regenerative potential of ENSCs after transplantation into the injured spinal cord. METHODS ENSCs were harvested from the GI tract of p7 rats, expanded in vitro and characterised. Adult rats bearing a contusion injury were randomly assigned to one of four groups: no treatment, LV-ChABC injection only, ENSC transplantation only or ENSC transplantation+LV-ChABC injection. After 16 weeks, rats were sacrificed and the harvested spinal cords examined for evidence of repair. RESULTS ENSC cultures contained a variety of neuronal subtypes suitable for replenishing cells lost through SCI. Following injury, transplanted ENSC-derived cells survived and ChABC successfully degraded CSPGs. We observed significant reductions in the injured tissue and cavity area, with the greatest improvements seen in the combined treatment group. ENSC-derived cells extended projections across the injury site into both the rostral and caudal host spinal cord, and ENSC transplantation significantly increased the number of cells extending axons across the injury site. Furthermore, the combined treatment resulted in a modest, but significant functional improvement by week 16, and we found no evidence of the spread of transplanted cells to ectopic locations or formation of tumours. CONCLUSIONS Regenerative effects of a combined treatment with ENSCs and ChABC surpassed either treatment alone, highlighting the importance of further research into combinatorial therapies for SCI. Our work provides evidence that stem cells taken from the adult gastrointestinal tract, an easily accessible source for autologous transplantation, could be strongly considered for the repair of central nervous system disorders.
Collapse
Affiliation(s)
- Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Present Address: German Centre for Neurodegenerative diseases (DZNE), Bonn, Germany
| | - Nicholas D James
- Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Guy's Campus, London, UK
| | - Emily Burnside
- Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Guy's Campus, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
- Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital, London, UK
- Present Address: Department of Paediatric Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
| | - Elizabeth J Bradbury
- Regeneration Group, The Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Guy's Campus, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
- Present Address: Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Cambridge, USA.
| |
Collapse
|
16
|
Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2020; 10:E47. [PMID: 33396231 PMCID: PMC7823798 DOI: 10.3390/cells10010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasishave gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursorsenherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung's diseases.
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany;
| |
Collapse
|
17
|
Thomas AL, Taylor JS, Dunn JCY. Human skin-derived precursor cells xenografted in aganglionic bowel. J Pediatr Surg 2020; 55:2791-2796. [PMID: 32253016 DOI: 10.1016/j.jpedsurg.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE One in 5000 newborns is diagnosed with Hirschsprung disease each year in the United States. The potential of employing neural crest stem cells to restore the enteric nervous system has been investigated. Skin-derived precursor cells (SKPs) are multipotent progenitor cells that can differentiate into neurons and gliocytes in vitro and generate enteric ganglion-like structures in rodents. Here we examined the behavior of human SKPs (hSKPs) after their transplantation into a large animal model of colonic aganglionosis. METHODS Juvenile minipigs underwent a chemical denervation of the colon to establish an aganglionosis model. The hSKPs were generated from human foreskin and were cultured in neuroglial-selective medium. Cells were labeled with a fluorescent dye and were injected into the porcine aganglionic colon. After one week, transplanted hSKPs were assessed by immunofluorescence for markers of multipotency and neuroglial differentiation. RESULTS In culture, hSKPs expressed nestin and S100b indicative of neuroglial precursors. After xenografting in pigs, hSKPs were identified in the myenteric and submucosal plexuses of the colons. The hSKPs expressed nestin and early neuroglial differentiation markers. CONCLUSIONS Human SKPs transplanted into aganglionic colon demonstrated immunophenotypes of neuroglial progenitors, suggesting their potential use for Hirschsprung disease.
Collapse
Affiliation(s)
- Anne-Laure Thomas
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Division of Pediatric Surgery, 300 Pasteur Drive, Alway M116, Stanford, CA 94305
| | - Jordan S Taylor
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Division of Pediatric Surgery, 300 Pasteur Drive, Alway M116, Stanford, CA 94305
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University, Division of Pediatric Surgery, 300 Pasteur Drive, Alway M116, Stanford, CA 94305.
| |
Collapse
|
18
|
McCallum S, Obata Y, Fourli E, Boeing S, Peddie CJ, Xu Q, Horswell S, Kelsh RN, Collinson L, Wilkinson D, Pin C, Pachnis V, Heanue TA. Enteric glia as a source of neural progenitors in adult zebrafish. eLife 2020; 9:e56086. [PMID: 32851974 PMCID: PMC7521928 DOI: 10.7554/elife.56086] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
The presence and identity of neural progenitors in the enteric nervous system (ENS) of vertebrates is a matter of intense debate. Here, we demonstrate that the non-neuronal ENS cell compartment of teleosts shares molecular and morphological characteristics with mammalian enteric glia but cannot be identified by the expression of canonical glial markers. However, unlike their mammalian counterparts, which are generally quiescent and do not undergo neuronal differentiation during homeostasis, we show that a relatively high proportion of zebrafish enteric glia proliferate under physiological conditions giving rise to progeny that differentiate into enteric neurons. We also provide evidence that, similar to brain neural stem cells, the activation and neuronal differentiation of enteric glia are regulated by Notch signalling. Our experiments reveal remarkable similarities between enteric glia and brain neural stem cells in teleosts and open new possibilities for use of mammalian enteric glia as a potential source of neurons to restore the activity of intestinal neural circuits compromised by injury or disease.
Collapse
Affiliation(s)
- Sarah McCallum
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Yuuki Obata
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Evangelia Fourli
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefan Boeing
- Bionformatics & Biostatistics Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Christopher J Peddie
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stuart Horswell
- Bionformatics & Biostatistics Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of BathBathUnited Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick InstituteLondonUnited Kingdom
| | - David Wilkinson
- Neural Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carmen Pin
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaCambridgeUnited Kingdom
| | - Vassilis Pachnis
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Tiffany A Heanue
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
19
|
Frith TJR, Gogolou A, Hackland JOS, Hewitt ZA, Moore HD, Barbaric I, Thapar N, Burns AJ, Andrews PW, Tsakiridis A, McCann CJ. Retinoic Acid Accelerates the Specification of Enteric Neural Progenitors from In-Vitro-Derived Neural Crest. Stem Cell Reports 2020; 15:557-565. [PMID: 32857978 PMCID: PMC7486303 DOI: 10.1016/j.stemcr.2020.07.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS. Retinoic acid alters the axial identity of hPSC-derived neural crest cells ENS progenitor markers are upregulated in response to RA ENS progenitors are capable of generating enteric neurons in vitro hPSC ENS progenitors colonize the ENS of mice following long-term transplantation
Collapse
Affiliation(s)
- Thomas J R Frith
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Antigoni Gogolou
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - James O S Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Zoe A Hewitt
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Harry D Moore
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Ivana Barbaric
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Neurogastroenterology and Motility Unit, Great Ormond Street Hospital, London, UK; Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia; Prince Abdullah Ben Khalid Celiac Research Chair, College of Medicine, King Saud University, Riyadh, KSA
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter W Andrews
- University of Sheffield, Department of Biomedical Science, Sheffield, UK
| | - Anestis Tsakiridis
- University of Sheffield, Department of Biomedical Science, Sheffield, UK.
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
20
|
Chng SH, Pachnis V. Enteric Nervous System: lessons from neurogenesis for reverse engineering and disease modelling and treatment. Curr Opin Pharmacol 2020; 50:100-106. [DOI: 10.1016/j.coph.2020.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/28/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022]
|
21
|
Thomas AL, Taylor JS, Huynh N, Dubrovsky G, Chadarevian JP, Chen A, Baker S, Dunn JCY. Autologous Transplantation of Skin-Derived Precursor Cells in a Porcine Model. J Pediatr Surg 2020; 55:194-200. [PMID: 31704043 DOI: 10.1016/j.jpedsurg.2019.09.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Hirschprung's disease is characterized by aganglionic bowel and often requires surgical resection. Cell-based therapies have been investigated as potential alternatives to restore functioning neurons. Skin-derived precursor cells (SKPs) differentiate into neural and glial cells in vitro and generate ganglion-like structures in rodents. In this report, we aimed to translate this approach into a large animal model of aganglionosis using autologous transplantation of SKPs. METHODS Juvenile pigs underwent skin procurement from the shoulder and simultaneous chemical denervation of an isolated colonic segment. Skin cells were cultured in neuroglial-selective medium and labeled with fluorescent dye for later identification. The cultured SKPs were then injected into the aganglionic segments of colon, and the specimens were retrieved within seven days after transplantation. SKPs in vitro and in vivo were assessed with histologic samples for various immunofluorescent markers of multipotency and differentiation. SKPs from the time of harvest were compared to those at the time of injection using PCR. RESULTS Prior to transplantation, 72% of SKPs stained positive for nestin and S100b, markers of neural and glial precursor cells of neural crest origin, respectively. Markers of differentiated neurons and gliocytes, TUJ1 and GFAP, were detected in 47% of cultured SKPs. After transplantation, SKPs were identified in both myenteric and submucosal plexuses of the treated colon. Nestin co-expression was detected in the SKPs within the aganglionic colon in vivo. Injected SKPs appeared to migrate and express early neuroglial differentiation markers. CONCLUSIONS Autologous SKPs implanted into aganglionic bowel demonstrated immunophenotypes of neuroglial progenitors. Our results suggest that autologous SKPs may be potentially useful for cell-based therapy for patients with enteric nervous system disorders. TYPE OF STUDY Basic science.
Collapse
Affiliation(s)
- Anne-Laure Thomas
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles; Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University
| | - Jordan S Taylor
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University
| | - Nhan Huynh
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles; Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University
| | - Genia Dubrovsky
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Jean-Paul Chadarevian
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Angela Chen
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles
| | - Samuel Baker
- Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University
| | - James C Y Dunn
- Division of Pediatric Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles; Division of Pediatric Surgery, Department of Surgery, School of Medicine, Stanford University.
| |
Collapse
|
22
|
Jaroy EG, Acosta-Jimenez L, Hotta R, Goldstein AM, Emblem R, Klungland A, Ougland R. "Too much guts and not enough brains": (epi)genetic mechanisms and future therapies of Hirschsprung disease - a review. Clin Epigenetics 2019; 11:135. [PMID: 31519213 PMCID: PMC6743154 DOI: 10.1186/s13148-019-0718-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hirschsprung disease is a neurocristopathy, characterized by aganglionosis in the distal bowel. It is caused by failure of the enteric nervous system progenitors to migrate, proliferate, and differentiate in the gut. Development of an enteric nervous system is a tightly regulated process. Both the neural crest cells and the surrounding environment are regulated by different genes, signaling pathways, and morphogens. For this process to be successful, the timing of gene expression is crucial. Hence, alterations in expression of genes specific for the enteric nervous system may contribute to the pathogenesis of Hirschsprung’s disease. Several epigenetic mechanisms contribute to regulate gene expression, such as modifications of DNA and RNA, histone modifications, and microRNAs. Here, we review the current knowledge of epigenetic and epitranscriptomic regulation in the development of the enteric nervous system and its potential significance for the pathogenesis of Hirschsprung’s disease. We also discuss possible future therapies and how targeting epigenetic and epitranscriptomic mechanisms may open new avenues for novel treatment.
Collapse
Affiliation(s)
- Emilie G Jaroy
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.,Department of Pediatric Surgery, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Lourdes Acosta-Jimenez
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.,Department of Pediatric Surgery, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ragnhild Emblem
- Department of Pediatric Surgery, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0317, Oslo, Norway
| | - Arne Klungland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - Rune Ougland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway. .,Department of Surgery, Baerum Hospital, Vestre Viken Hospital Trust, 3004, Drammen, Norway.
| |
Collapse
|
23
|
Grundmann D, Loris E, Maas-Omlor S, Schäfer KH. Enteric Neurogenesis During Life Span Under Physiological and Pathophysiological Conditions. Anat Rec (Hoboken) 2019; 302:1345-1353. [PMID: 30950581 DOI: 10.1002/ar.24124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022]
Abstract
The enteric nervous system (ENS) controls gastrointestinal key functions and is mainly characterized by two ganglionated plexus located in the gut wall: the myenteric plexus and the submucous plexus. The ENS harbors a high number and diversity of enteric neurons and glial cells, which generate neuronal circuitry to regulate intestinal physiology. In the past few years, the pivotal role of enteric neurons in the underlying mechanism of several intestinal diseases was revealed. Intestinal diseases are associated with neuronal death that could in turn compromise intestinal functionality. Enteric neurogenesis and regeneration is therefore a crucial aspect within the ENS and could be revealed not only during embryogenesis and early postnatal periods, but also in the adulthood. Enteric glia and/or enteric neural precursor/progenitor cells differentiate into enteric neurons, both under homeostatic and pathologic conditions beyond the perinatal period. The unique role of the intestinal microbiota and serotonin signaling in postnatal and adult neurogenesis has been shown by several studies in health and disease. In this review article, we will mainly focus on different recent studies, which advanced the concept of postnatal and adult ENS neurogenesis. Moreover, we will discuss the key factors and underlying mechanisms, which promote enteric neurogenesis. Finally, we will shortly describe neurogenesis of transplanted enteric neural progenitor cells. Anat Rec, 302:1345-1353, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Grundmann
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Eva Loris
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Silke Maas-Omlor
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany
| | - Karl-Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern, Zweibrucken, Germany.,Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
24
|
van Lennep M, Singendonk MMJ, Dall'Oglio L, Gottrand F, Krishnan U, Terheggen-Lagro SWJ, Omari TI, Benninga MA, van Wijk MP. Oesophageal atresia. Nat Rev Dis Primers 2019; 5:26. [PMID: 31000707 DOI: 10.1038/s41572-019-0077-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Oesophageal atresia (EA) is a congenital abnormality of the oesophagus that is caused by incomplete embryonic compartmentalization of the foregut. EA commonly occurs with a tracheo-oesophageal fistula (TEF). Associated birth defects or anomalies, such as VACTERL association, trisomy 18 or 21 and CHARGE syndrome, occur in the majority of patients born with EA. Although several studies have revealed signalling pathways and genes potentially involved in the development of EA, our understanding of the pathophysiology of EA lags behind the improvements in surgical and clinical care of patients born with this anomaly. EA is treated surgically to restore the oesophageal interruption and, if present, ligate and divide the TEF. Survival is now ~90% in those born with EA with severe associated anomalies and even higher in those born with EA alone. Despite these achievements, long-term gastrointestinal and respiratory complications and comorbidities in patients born with EA are common and lead to decreased quality of life. Oesophageal motility disorders are probably ubiquitous in patients after undergoing EA repair and often underlie these complications and comorbidities. The implementation of several new diagnostic and screening tools in clinical care, including high-resolution impedance manometry, pH-multichannel intraluminal impedance testing and disease-specific quality of life questionnaires now provide better insight into these problems and may contribute to better long-term outcomes in the future.
Collapse
Affiliation(s)
- Marinde van Lennep
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology and Nutrition, Amsterdam, The Netherlands
| | - Maartje M J Singendonk
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology and Nutrition, Amsterdam, The Netherlands
| | - Luigi Dall'Oglio
- Digestive Endoscopy and Surgery Unit, Bambino Gesu Children's Hospital-IRCCS, Rome, Italy
| | - Fréderic Gottrand
- CHU Lille, University Lille, National Reference Center for Congenital Malformation of the Esophagus, Department of Pediatric Gastroenterology Hepatology and Nutrition, Lille, France
| | - Usha Krishnan
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, Sydney, New South Wales, Australia
- Discipline of Paediatrics, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Suzanne W J Terheggen-Lagro
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Pulmonology, Amsterdam, The Netherlands
| | - Taher I Omari
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Center for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Marc A Benninga
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology and Nutrition, Amsterdam, The Netherlands.
| | - Michiel P van Wijk
- Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Gastroenterology and Nutrition, Amsterdam, The Netherlands
- Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit, Pediatric Gastroenterology, Amsterdam, The Netherlands
| |
Collapse
|
25
|
McCann CJ, Alves MM, Brosens E, Natarajan D, Perin S, Chapman C, Hofstra RM, Burns AJ, Thapar N. Neuronal Development and Onset of Electrical Activity in the Human Enteric Nervous System. Gastroenterology 2019; 156:1483-1495.e6. [PMID: 30610864 DOI: 10.1053/j.gastro.2018.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/07/2018] [Accepted: 12/24/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS) is the largest branch of the peripheral nervous system, comprising complex networks of neurons and glia, which are present throughout the gastrointestinal tract. Although development of a fully functional ENS is required for gastrointestinal motility, little is known about the ontogeny of ENS function in humans. We studied the development of neuronal subtypes and the emergence of evoked electrical activity in the developing human ENS. METHODS Human fetal gut samples (obtained via the MRC-Wellcome Trust Human Developmental Biology Resource-UK) were characterized by immunohistochemistry, calcium imaging, RNA sequencing, and quantitative real-time polymerase chain reaction analyses. RESULTS Human fetal colon samples have dense neuronal networks at the level of the myenteric plexus by embryonic week (EW) 12, with expression of excitatory neurotransmitter and synaptic markers. By contrast, markers of inhibitory neurotransmitters were not observed until EW14. Electrical train stimulation of internodal strands did not evoke activity in the ENS of EW12 or EW14 tissues. However, compound calcium activation was observed at EW16, which was blocked by the addition of 1 μmol/L tetrodotoxin. Expression analyses showed that this activity was coincident with increases in expression of genes encoding proteins involved in neurotransmission and action potential generation. CONCLUSIONS In analyses of human fetal intestinal samples, we followed development of neuronal diversity, electrical excitability, and network formation in the ENS. These processes are required to establish the functional enteric circuitry. Further studies could increase our understanding of the pathogenesis of a range of congenital enteric neuropathies.
Collapse
Affiliation(s)
- Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Silvia Perin
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Chey Chapman
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robert M Hofstra
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK; Prince Abdullah Ben Khalid Celiac Research Chair, College of Medicine, King Saud University, Riyadh, KSA; Department of Gastroenterology, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
26
|
McCann CJ, Borrelli O, Thapar N. Stem cell therapy in severe pediatric motility disorders. Curr Opin Pharmacol 2018; 43:145-149. [DOI: 10.1016/j.coph.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/11/2018] [Indexed: 01/15/2023]
|
27
|
Pesce M, Borrelli O, Saliakellis E, Thapar N. Gastrointestinal Neuropathies: New Insights and Emerging Therapies. Gastroenterol Clin North Am 2018; 47:877-894. [PMID: 30337038 DOI: 10.1016/j.gtc.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The bewildering complexity of the enteric nervous system makes it susceptible to develop a wide array of motility disorders, collectively called enteric neuropathies. These gastrointestinal conditions are among the most challenging to manage, mainly given poor characterization of their etiopathophysiology and outcomes. Not surprisingly, therefore, targeted or curative therapies for enteric neuropathies are lacking and management is largely symptomatic. Nonetheless, recent advances in neurogastroenterology have witnessed improvements in established strategies, such as intestinal transplantation and the emergence of new treatments including novel drugs, electrical pacing, and manipulation of fecal microbiota, as well as stem cell and gene therapy.
Collapse
Affiliation(s)
- Marcella Pesce
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK; Department of Clinical Medicine and Surgery, 'Federico II' University of Naples, Via Pansini 5, Naples 80131, Italy
| | - Osvaldo Borrelli
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Efstratios Saliakellis
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Nikhil Thapar
- Neurogastroenterology and Motility Unit, Department of Pediatric Gastroenterology, Great Ormond Street Hospital, London WC1N 3JH, UK; Stem Cells and Regenerative Medicine, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| |
Collapse
|
28
|
McCann CJ, Thapar N. Enteric neural stem cell therapies for enteric neuropathies. Neurogastroenterol Motil 2018; 30:e13369. [PMID: 29707856 DOI: 10.1111/nmo.13369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Enteric neuropathies exist as a wide range of human disorders which impact on gastrointestinal motility. Current standard therapies for enteric neuropathies are limited to surgical resection or manipulation (eg, myotomy) of affected gut segments or medical management including both therapy (eg, prokinetic pharmacotherapy) and support such as parenteral nutrition. However, such treatments often result in poor prognosis and significant morbidity. The current limitations in treatment options for enteric neuropathies underline the need for alternative approaches to treat these devastating diseases. Recent advances have highlighted the potential of enteric neural stem cells as a possible treatment option for regenerative medicine, in such cases. PURPOSE The purpose of this review is to provide an up-to-date synopsis of the enteric neural stem cell research field. Here, we review in detail the initial characterization of enteric neural stem cells, early preclinical studies validating their use in murine models through to the most recent findings of therapeutic rescue of diseased gut tissue. We additionally pose a number of questions regarding these recent findings which will need to be addressed prior to clinical translation of this exciting cellular therapeutic.
Collapse
Affiliation(s)
- C J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - N Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
29
|
Boesmans W, Hao MM, Vanden Berghe P. Optogenetic and chemogenetic techniques for neurogastroenterology. Nat Rev Gastroenterol Hepatol 2018; 15:21-38. [PMID: 29184183 DOI: 10.1038/nrgastro.2017.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Optogenetics and chemogenetics comprise a wide variety of applications in which genetically encoded actuators and indicators are used to modulate and monitor activity with high cellular specificity. Over the past 10 years, development of these genetically encoded tools has contributed tremendously to our understanding of integrated physiology. In concert with the continued refinement of probes, strategies to target transgene expression to specific cell types have also made much progress in the past 20 years. In addition, the successful implementation of optogenetic and chemogenetic techniques thrives thanks to ongoing advances in live imaging microscopy and optical technology. Although innovation of optogenetic and chemogenetic methods has been primarily driven by researchers studying the central nervous system, these techniques also hold great promise to boost research in neurogastroenterology. In this Review, we describe the different classes of tools that are currently available and give an overview of the strategies to target them to specific cell types in the gut wall. We discuss the possibilities and limitations of optogenetic and chemogenetic technology in the gut and provide an overview of their current use, with a focus on the enteric nervous system. Furthermore, we suggest some experiments that can advance our understanding of how the intrinsic and extrinsic neural networks of the gut control gastrointestinal function.
Collapse
Affiliation(s)
- Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Pathology, Maastricht University Medical Center, P. Debeijelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Marlene M Hao
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Herestraat 49, O&N 1 Box 701, 3000 Leuven, Belgium
| |
Collapse
|
30
|
McCann CJ, Cooper JE, Natarajan D, Jevans B, Burnett LE, Burns AJ, Thapar N. Transplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon. Nat Commun 2017; 8:15937. [PMID: 28671186 PMCID: PMC5500880 DOI: 10.1038/ncomms15937] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Enteric nervous system neuropathy causes a wide range of severe gut motility disorders. Cell replacement of lost neurons using enteric neural stem cells (ENSC) is a possible therapy for these life-limiting disorders. Here we show rescue of gut motility after ENSC transplantation in a mouse model of human enteric neuropathy, the neuronal nitric oxide synthase (nNOS−/−) deficient mouse model, which displays slow transit in the colon. We further show that transplantation of ENSC into the colon rescues impaired colonic motility with formation of extensive networks of transplanted cells, including the development of nNOS+ neurons and subsequent restoration of nitrergic responses. Moreover, post-transplantation non-cell-autonomous mechanisms restore the numbers of interstitial cells of Cajal that are reduced in the nNOS−/− colon. These results provide the first direct evidence that ENSC transplantation can modulate the enteric neuromuscular syncytium to restore function, at the organ level, in a dysmotile gastrointestinal disease model. Isolated human and mouse enteric nervous system stem cells (ENSCs) are capable of integrating and promoting innervation of the mouse colon. Here the authors show that transplantation of mouse ENSCs into a mouse model of human enteric neuropathy restores colon motility.
Collapse
Affiliation(s)
- Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK
| | - Julie E Cooper
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK
| | - Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK
| | - Laura E Burnett
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 CN, The Netherlands
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N, UK
| |
Collapse
|
31
|
Stamp LA, Gwynne RM, Foong JPP, Lomax AE, Hao MM, Kaplan DI, Reid CA, Petrou S, Allen AM, Bornstein JC, Young HM. Optogenetic Demonstration of Functional Innervation of Mouse Colon by Neurons Derived From Transplanted Neural Cells. Gastroenterology 2017; 152:1407-1418. [PMID: 28115057 DOI: 10.1053/j.gastro.2017.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cell therapy offers the potential to treat gastrointestinal motility disorders caused by diseased or absent enteric neurons. We examined whether neurons generated from transplanted enteric neural cells provide a functional innervation of bowel smooth muscle in mice. METHODS Enteric neural cells expressing the light-sensitive ion channel, channelrhodopsin, were isolated from the fetal or postnatal mouse bowel and transplanted into the distal colon of 3- to 4-week-old wild-type recipient mice. Intracellular electrophysiological recordings of responses to light stimulation of the transplanted cells were made from colonic smooth muscle cells in recipient mice. Electrical stimulation of endogenous enteric neurons was used as a control. RESULTS The axons of graft-derived neurons formed a plexus in the circular muscle layer. Selective stimulation of graft-derived cells by light resulted in excitatory and inhibitory junction potentials, the electrical events underlying contraction and relaxation, respectively, in colonic muscle cells. Graft-derived excitatory and inhibitory motor neurons released the same neurotransmitters as endogenous motor neurons-acetylcholine and a combination of adenosine triphosphate and nitric oxide, respectively. Graft-derived neurons also included interneurons that provided synaptic inputs to motor neurons, but the pharmacologic properties of interneurons varied with the age of the donors from which enteric neural cells were obtained. CONCLUSIONS Enteric neural cells transplanted into the bowel give rise to multiple functional types of neurons that integrate and provide a functional innervation of the smooth muscle of the bowel wall. Circuits composed of both motor neurons and interneurons were established, but the age at which cells are isolated influences the neurotransmitter phenotype of interneurons that are generated.
Collapse
Affiliation(s)
- Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel M Gwynne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jaime P P Foong
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - David I Kaplan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
Stamp LA. Cell therapy for GI motility disorders: comparison of cell sources and proposed steps for treating Hirschsprung disease. Am J Physiol Gastrointest Liver Physiol 2017; 312:G348-G354. [PMID: 28209600 DOI: 10.1152/ajpgi.00018.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 01/31/2023]
Abstract
Cell therapeutic approaches to treat a range of congenital and degenerative neuropathies are under intense investigation. There have been recent significant advancements in the development of cell therapy to treat disorders of the enteric nervous system (ENS), enteric neuropathies. These advances include the efficient generation of enteric neural progenitors from pluripotent stem cells and the rescue of a Hirschsprung disease model mouse following their transplantation into the bowel. Furthermore, a recent study provides evidence of functional innervation of the bowel muscle by neurons derived from transplanted ENS-derived neural progenitors. This mini-review discusses these recent findings, compares endogenous ENS-derived progenitors and pluripotent stem cell-derived progenitors as a cell source for therapy, and proposes the key steps for cell therapy to treat Hirschsprung disease.
Collapse
Affiliation(s)
- Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| |
Collapse
|
33
|
Stamp LA, Young HM. Recent advances in regenerative medicine to treat enteric neuropathies: use of human cells. Neurogastroenterol Motil 2017; 29. [PMID: 28028898 DOI: 10.1111/nmo.12993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
As current options for treating most enteric neuropathies are either non-effective or associated with significant ongoing problems, cell therapy is a potential attractive possibility to treat congenital and acquired neuropathies. Studies using animal models have shown that following transplantation of enteric neural progenitors into the bowel of recipients, the transplanted cells migrate, proliferate, and generate neurons that are electrically active and receive synaptic inputs. Recent studies have transplanted human enteric neural progenitors into the mouse colon and shown engraftment. In this article, we summarize the significance of these recent advances and discuss priorities for future research that might lead to the use of regenerative medicine to treat enteric neuropathies in the clinic.
Collapse
Affiliation(s)
- L A Stamp
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| | - H M Young
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
34
|
Perin S, McCann CJ, Borrelli O, De Coppi P, Thapar N. Update on Foregut Molecular Embryology and Role of Regenerative Medicine Therapies. Front Pediatr 2017; 5:91. [PMID: 28503544 PMCID: PMC5408018 DOI: 10.3389/fped.2017.00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Esophageal atresia (OA) represents one of the commonest and most severe developmental disorders of the foregut, the most proximal segment of the gastrointestinal (GI) tract (esophagus and stomach) in embryological terms. Of intrigue is the common origin from this foregut of two very diverse functional entities, the digestive and respiratory systems. OA appears to result from incomplete separation of the ventral and dorsal parts of the foregut during development, resulting in disruption of esophageal anatomy and frequent association with tracheo-oesophageal fistula. Not surprisingly, and likely inherent to OA, are associated abnormalities in components of the enteric neuromusculature and ultimately loss of esophageal functional integrity. An appreciation of such developmental processes and associated defects has not only enhanced our understanding of the etiopathogenesis underlying such devastating defects but also highlighted the potential of novel corrective therapies. There has been considerable progress in the identification and propagation of neural crest stem cells from the GI tract itself or derived from pluripotent cells. Such cells have been successfully transplanted into models of enteric neuropathy confirming their ability to functionally integrate and replenish missing or defective enteric nerves. Combinatorial approaches in tissue engineering hold significant promise for the generation of organ-specific scaffolds such as the esophagus with current initiatives directed toward their cellularization to facilitate optimal function. This chapter outlines the most current understanding of the molecular embryology underlying foregut development and OA, and also explores the promise of regenerative medicine.
Collapse
Affiliation(s)
- Silvia Perin
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Osvaldo Borrelli
- Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Specialist Neonatal and Paediatric Surgery (SNAPS) Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Neurogastroenterology and Motility Unit, Department of Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|