1
|
Marasco G, Cremon C, Salvi D, Meacci D, Dajti E, Colecchia L, Barbaro MR, Stanghellini V, Barbara G. Functional Foods and Nutraceuticals in Irritable Bowel Syndrome. J Clin Med 2025; 14:1830. [PMID: 40142637 PMCID: PMC11943262 DOI: 10.3390/jcm14061830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction, with a multifactorial pathophysiology involving gut-brain axis dysregulation, visceral hypersensitivity, microbiota imbalance, and immune dysfunction. Traditional IBS management emphasizes dietary modifications and pharmacologic therapies. However, increasing attention has been directed toward functional foods, nutraceuticals, and herbal remedies due to their potential to target IBS pathophysiological mechanisms with favorable safety profiles. This clinical review explores the role of these adjunctive therapies, evaluating evidence from preclinical and clinical studies. Functional foods such as kiwifruit, prunes, and rye bread demonstrate benefits in bowel habit regulation through fiber content and microbiota modulation. Nutraceuticals like peppermint oil, palmitoylethanolamide, and herbal mixtures exhibit anti-inflammatory, antispasmodic, and analgesic effects. Prebiotics provide substrate-driven microbiota changes, although dosage is key, as given their fermentative properties, when used at high dosages, they can exacerbate symptoms in some individuals. Probiotics and postbiotics offer microbiota-based interventions with promising symptom relief in IBS subtypes, although factors for personalized treatment still need to be further elucidated. These strategies highlight a paradigm shift in IBS management, integrating diet-based therapies with evolving nutraceutical options to improve patient outcomes. Despite promising findings, challenges in standardizing definitions, mechanisms, and safety profiles still remain. Rigorous, large-scale trials to validate the therapeutic potential of these interventions are needed, to enhance the benefits of these compounds with an individualized treatment approach.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Daniele Salvi
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - David Meacci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Elton Dajti
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Luigi Colecchia
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
2
|
Liu T, Asif IM, Bai C, Huang Y, Li B, Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders-current perspectives. Nutr Rev 2025; 83:e1158-e1171. [PMID: 38908001 DOI: 10.1093/nutrit/nuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) were highly prevalent and involve gastrointestinal discomfort characterized by non-organic abnormalities in the morphology and physiology of the gastrointestinal tract. According to the Rome IV criteria, irritable bowel syndrome and functional dyspepsia are the most common FGIDs. Complementary and alternative medicines are employed by increasing numbers of individuals around the world, and they include herbal and dietary supplements, acupuncture, and hypnosis. Of these, herbal and dietary supplements seem to have the greatest potential for relieving FGIDs, through multiple modes of action. However, despite the extensive application of natural extracts in alternative treatments for FGIDs, the safety and effectiveness of food and orally ingested food-derived extracts remain uncertain. Many randomized controlled trials have provided compelling evidence supporting their potential, as detailed in this review. The consumption of certain foods (eg, kiwifruit, mentha, ginger, etc) and food ingredients may contribute to the alleviation of symptoms associated with FGID,. However, it is crucial to emphasize that the short-term consumption of these components may not yield satisfactory efficacy. Physicians are advised to share both the benefits and potential risks of these alternative therapies with patients. Furthermore, larger randomized clinical trials with appropriate comparators are imperative.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Chengmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Yutian Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
3
|
Omoloye A, Weisenburger S, Lehner MD, Gronier B. Menthacarin treatment attenuates nociception in models of visceral hypersensitivity. Neurogastroenterol Motil 2024; 36:e14760. [PMID: 38361164 DOI: 10.1111/nmo.14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Chronic visceral hypersensitivity is closely associated with irritable bowel syndrome (IBS), a very common disorder which significantly impairs quality of life, characterized by abdominal pain, and distension. Imaging studies have found that IBS patients show higher metabolic activities and functional differences from normal controls in the anterior cingulate cortex (ACC), in response to visceral pain stimulation. Non-clinical data and clinical data suggest that medicinal products containing essential oils such as peppermint or caraway oil exert beneficial effects on IBS symptoms. METHODS We assessed acute and long-term treatment effects of a mixture of peppermint and caraway essential oils (Menthacarin) on brain electrophysiological markers of gut pain sensitivity in two rat models of visceral hypersensitivity. KEY RESULTS Chronic administration of corticosteroids and acute repeated mechanical hyperstimulation under anesthesia induced hyperalgesia and hypersensitivity, characterized by an increase in electrophysiological excitatory responses of ACC neurons to colorectal distension (CRD) and an increase in the proportion of neurons responding to otherwise subthreshold stimulation, respectively. Long-term, but not acute, oral administration of Menthacarin (60 mg kg-1 day-1) significantly reduced the net excitatory response to CRD in normally responsive control animals and counteracted the development of visceral hyperalgesia and hypersensitivity induced by repeated corticosterone administration and acute mechanical stimulation. CONCLUSIONS & INFERENCES The present study shows that, using the CRD method, chronic Menthacarin administration at a clinically relevant dose attenuates the neuronal discharge associated with visceral pain stimuli in the rat ACC, particularly in models of hypersensitivity, suggesting a potential for treating exaggerated visceral pain sensitivity.
Collapse
Affiliation(s)
- Adesina Omoloye
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Martin D Lehner
- Preclinical R&D, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - Benjamin Gronier
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
4
|
Lashgari NA, Roudsari NM, Momtaz S, Niazi Shahraki F, Zandi N, Pazoki B, Farzaei MH, Ghasemi M, Abdollahi M, Abdolghaffari AH. Systematic Review on Herbal Preparations for Controlling Visceral Hypersensitivity in Functional Gastrointestinal Disorders. Curr Pharm Biotechnol 2024; 25:1632-1650. [PMID: 38258770 DOI: 10.2174/0113892010261502231102040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Visceral hypersensitivity (VH) is an overreaction of the gastrointestinal (GI) tract to various stimuli and is characterized by hyperalgesia and/or allodynia. VH contributes to the etiology of many GI dysfunctions, particularly irritable bowel syndrome (IBS). Although the exact mechanisms underlying VH are yet to be found, inflammation and oxidative stress, psychosocial factors, and sensorimotor alterations may play significant roles in it. OBJECTIVE In this review, we provide an overview of VH and its pathophysiological function in GI disorders. Adverse effects of synthetic drugs may make herbal agents a good candidate for pain management. Therefore, in this review, we will discuss the efficacy of herbal agents in the management of VH with a focus on their anti-inflammatory and antioxidant potentials. METHODS Data were extracted from clinical and animal studies published in English between 2004 and June, 2020, which were collected from PubMed, Google Scholar, Scopus, and Cochrane Library. RESULTS Overall, Radix, Melissia, Glycyrrhizae, Mentha, and Liquorice were the most efficient herbals for VH management in IBS and dyspepsia, predominantly through modulation of the mRNA expression of transient receptor potential vanilloid type-1 (TRPV1) and suppression of 5- hydroxytryptamine 3 (5-HT3) or the serotonin receptors. CONCLUSION Considering the positive effects of herbal formulations in VH management, further research on novel herbal and/or herbal/chemical preparations is warranted.
Collapse
Affiliation(s)
- Naser-Aldin Lashgari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Pharmacology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Faezeh Niazi Shahraki
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nadia Zandi
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Benyamin Pazoki
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA 01655, USA
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
van Thiel I, de Jonge W, van den Wijngaard R. Fungal feelings in the irritable bowel syndrome: the intestinal mycobiome and abdominal pain. Gut Microbes 2023; 15:2168992. [PMID: 36723172 PMCID: PMC9897793 DOI: 10.1080/19490976.2023.2168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the gut microbiota consists of bacteria, viruses, and fungi, most publications addressing the microbiota-gut-brain axis in irritable bowel syndrome (IBS) have a sole focus on bacteria. This may relate to the relatively low presence of fungi and viruses as compared to bacteria. Yet, in the field of inflammatory bowel disease research, the publication of several papers addressing the role of the intestinal mycobiome now suggested that these low numbers do not necessarily translate to irrelevance. In this review, we discuss the available clinical and preclinical IBS mycobiome data, and speculate how these recent findings may relate to earlier observations in IBS. By surveying literature from the broader mycobiome research field, we identified questions open to future IBS-oriented investigations.
Collapse
Affiliation(s)
- Iam van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Wj de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Department of General, Visceral-, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - Rm van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands,Amsterdam UMC, University of Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands,Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, The Netherlands,CONTACT RM van den Wijngaard Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Meibergdreef 69-71, Amsterdam1105 BK, The Netherlands
| |
Collapse
|
6
|
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. THE LANCET. MICROBE 2022; 3:e969-e983. [PMID: 36182668 DOI: 10.1016/s2666-5247(22)00203-8] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
The gut mycobiome (fungi) is a small but crucial component of the gut microbiome in humans. Intestinal fungi regulate host homoeostasis, pathophysiological and physiological processes, and the assembly of the co-residing gut bacterial microbiome. Over the past decade, accumulating studies have characterised the gut mycobiome in health and several pathological conditions. We review the compositional and functional diversity of the gut mycobiome in healthy populations from birth to adulthood. We describe factors influencing the gut mycobiome and the roles of intestinal fungi-especially Candida and Saccharomyces spp-in diseases and therapies with a particular focus on their synergism with the gut bacterial microbiome and host immunity. Finally, we discuss the underappreciated effects of gut fungi in clinical implications, and highlight future microbiome-based therapies that harness the tripartite relationship among the gut mycobiome, bacterial microbiome, and host immunity, aiming to restore a core gut mycobiome and microbiome and to improve clinical efficacy.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, Jinan University, Guangzhou, China
| | - Dominik Aschenbrenner
- Autoimmunity, Transplantation and Inflammation, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
| | - Ji Youn Yoo
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yatsen University, Sun Yat-sen University, Guangzhou, China; Laboratory Animals Centre, Zhongshan School of Medicine, Sun Yatsen University, Guangzhou, China.
| |
Collapse
|
7
|
Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel) 2022; 14:toxins14090596. [PMID: 36136534 PMCID: PMC9503233 DOI: 10.3390/toxins14090596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
As a common functional gastrointestinal disorder, irritable bowel syndrome (IBS) significantly affects personal health and imposes a substantial economic burden on society, but the current understanding of its occurrence and treatment is still inadequate. Emerging evidence suggests that IBS is associated with gut microbial dysbiosis, but most studies focus on the bacteria and neglect other communities of the microbiota, including fungi, viruses, archaea, and other parasitic microorganisms. This review summarizes the latest findings that link the nonbacterial microbiota with IBS. IBS patients show less fungal and viral diversity but some alterations in mycobiome, virome, and archaeome, such as an increased abundance of Candida albicans. Moreover, fungi and methanogens can aid in diagnosis. Fungi are related to distinct IBS symptoms and induce immune responses, intestinal barrier disruption, and visceral hypersensitivity via specific receptors, cells, and metabolites. Novel therapeutic methods for IBS include fungicides, inhibitors targeting fungal pathogenic pathways, probiotic fungi, prebiotics, and fecal microbiota transplantation. Additionally, viruses, methanogens, and parasitic microorganisms are also involved in the pathophysiology and treatment. Therefore, the gut nonbacterial microbiota is involved in the pathogenesis of IBS, which provides a novel perspective on the noninvasive diagnosis and precise treatment of this disease.
Collapse
|
8
|
Zhao H, Ren S, Yang H, Tang S, Guo C, Liu M, Tao Q, Ming T, Xu H. Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application. Biomed Pharmacother 2022; 154:113559. [PMID: 35994817 DOI: 10.1016/j.biopha.2022.113559] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Mentha (also known as peppermint), a genus of plants in the taxonomic family Lamiaceae (mint family), is widely distributed throughout temperate regions of the world. Mentha contains various constituents that are classified as peppermint essential oil (PEO) and non-essential components. PEO, consisting mainly of menthol, menthone, neomenthol and iso-menthone, is a mixture of volatile metabolites with anti-inflammatory, antibacterial, antiviral, scolicidal, immunomodulatory, antitumor, neuroprotective, antifatigue and antioxidant activities. Mounting evidence indicates that PEO may pharmacologically protect gastrointestinal, liver, kidney, skin, respiratory, brain and nervous systems, and exert hypoglycemic and hypolipidemic effects. Clinically, PEO is used for gastrointestinal and dermatological diseases, postoperative adjuvant therapy and other fields. This review aims to address the advances in the extraction and isolation of PEO, its biological activities, pharmacological effects, toxicity and applications, with an emphasis on the efficacy of PEO on burn wounds and psoriasis, providing a comprehensive foundation for research, development and application of PEO in future.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenyang Guo
- Department of Pharmacology, School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Mallaret G, Lashermes A, Meleine M, Boudieu L, Barbier J, Aissouni Y, Gelot A, Chassaing B, Gewirtz AT, Ardid D, Carvalho FA. Involvement of toll-like receptor 5 in mouse model of colonic hypersensitivity induced by neonatal maternal separation. World J Gastroenterol 2022; 28:3903-3916. [PMID: 36157543 PMCID: PMC9367235 DOI: 10.3748/wjg.v28.i29.3903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic abdominal pain is the most common cause for gastroenterology consultation and is frequently associated with functional gastrointestinal disorders including irritable bowel syndrome and inflammatory bowel disease. These disorders present similar brain/gut/microbiota trialogue alterations, associated with abnormal intestinal permeability, intestinal dysbiosis and colonic hypersensitivity (CHS). Intestinal dysbiosis can alter colon homeostasis leading to abnormal activation of the innate immunity that promotes CHS, perhaps involving the toll-like receptors (TLRs), which play a central role in innate immunity.
AIM To understand the mechanisms between early life event paradigm on intestinal permeability, fecal microbiota composition and CHS development in mice with TLRs expression in colonocytes.
METHODS Maternal separation model (NMS) CHS model, which mimics deleterious events in childhood that can induce a wide range of chronic disorders during adulthood were used. Colonic sensitivity of NMS mice was evaluated by colorectal distension (CRD) coupled with intracolonic pressure variation (IPV) measurement. Fecal microbiota composition was analyzed by 16S rRNA sequencing from weaning to CRD periods. TLR mRNA expression was evaluated in colonocytes. Additionally, the effect of acute intrarectal instillation of the TLR5 agonist flagellin (FliC) on CHS in adult naive wildtype mice was analyzed.
RESULTS Around 50% of NMS mice exhibited increased intestinal permeability and CHS associated with intestinal dysbiosis, characterized by a significant decrease of species richness, an alteration of the core fecal microbiota and a specific increased relative abundance of flagellated bacteria. Only TLR5 mRNA expression was increased in colonocytes of NMS mice with CHS. Acute intrarectal instillation of FliC induced transient increase of IPV, reflecting transient CHS appearance.
CONCLUSION Altogether, these data suggest a pathophysiological continuum between intestinal dysbiosis and CHS, with a role for TLR5.
Collapse
Affiliation(s)
- Geoffroy Mallaret
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Amandine Lashermes
- Department of Microbiology, Université Paris-Saclay, National Research Institute for Agriculture, Food and the Environment, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Mathieu Meleine
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Ludivine Boudieu
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Julie Barbier
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Youssef Aissouni
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Agathe Gelot
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris 75014, France
| | - Andrew T Gewirtz
- Center for Inflammation, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA30033, United States
| | - Denis Ardid
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Frederic Antonio Carvalho
- Department of Pharmacology, INSERM 1107 NeuroDOL/University of Clermont Auvergne, Clermont-Ferrand 63000, France
| |
Collapse
|
10
|
Thapa S, Luna RA, Chumpitazi BP, Oezguen N, Abdel‐Rahman SM, Garg U, Musaad S, Versalovic J, Kearns GL, Shulman RJ. Peppermint oil effects on the gut microbiome in children with functional abdominal pain. Clin Transl Sci 2022; 15:1036-1049. [PMID: 35048535 PMCID: PMC9010253 DOI: 10.1111/cts.13224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Peppermint oil (PMO) is effective in the treatment of functional abdominal pain disorders, but its mechanism of action is unclear. Evidence suggests PMO has microbicidal activity. We investigated the effect of three different doses of PMO on gut microbiome composition. Thirty children (7-12 years of age) with functional abdominal pain provided a baseline stool sample prior to randomization to 180, 360, or 540 mg of enteric coated PMO (10 participants per dose). They took their respective dose of PMO (180 mg once, 180 mg twice, or 180 mg thrice daily) for 1 week, after which the stool collection was repeated. Baseline and post-PMO stools were analyzed for microbiome composition. There was no difference in alpha diversity of the gut microbiome between the baseline and post-PMO treatment. Principal coordinate analysis revealed no significant difference in overall bacterial composition between baseline and post-PMO samples, as well as between the PMO dose groups. However, the very low abundant Collinsella genus and three operational taxonomic units (one belonging to Collinsella) were significantly different in samples before and after PMO treatment. The Firmicutes/Bacteroidetes ratio was lower in children who received 540 mg of PMO compared to the 180 mg and 360 mg dose groups (p = 0.04). Network analysis revealed separation between pre- and post-PMO fecal samples with the genus Collinsella driving the post-PMO clusters. PMO administration appeared to impact only low abundance bacteria. The 540 mg PMO dose differentially impacted the Firmicutes/Bacteroidetes ratio. A higher dose and/or longer duration of treatment might yield different results.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of PathologyTexas Children’s Microbiome CenterTexas Children’s HospitalHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Ruth Ann Luna
- Department of PathologyTexas Children’s Microbiome CenterTexas Children’s HospitalHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Bruno P. Chumpitazi
- Department of PediatricsBaylor College of MedicineTexas Children’s HospitalHoustonTexasUSA
- USDA/ARS Children’s Nutrition Research CenterTexas Children’s HospitalHoustonTexasUSA
| | - Numan Oezguen
- Department of PathologyTexas Children’s Microbiome CenterTexas Children’s HospitalHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | | | - Uttam Garg
- Department of Pathology and Laboratory MedicineChildren’s Mercy HospitalUniversity of Missouri School of MedicineKansas CityMissouriUSA
| | - Salma Musaad
- Department of PediatricsBaylor College of MedicineTexas Children’s HospitalHoustonTexasUSA
- USDA/ARS Children’s Nutrition Research CenterTexas Children’s HospitalHoustonTexasUSA
| | - James Versalovic
- Department of PathologyTexas Children’s Microbiome CenterTexas Children’s HospitalHoustonTexasUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTexasUSA
| | - Gregory L. Kearns
- Texas Christian University and University of North Texas Health Science Center School of MedicineFort WorthTexasUSA
| | - Robert J. Shulman
- Department of PediatricsBaylor College of MedicineTexas Children’s HospitalHoustonTexasUSA
- USDA/ARS Children’s Nutrition Research CenterTexas Children’s HospitalHoustonTexasUSA
| |
Collapse
|
11
|
van Thiel IAM, Stavrou AA, de Jong A, Theelen B, Davids M, Hakvoort TBM, Admiraal-van den Berg I, Weert ICM, de Kruijs MAMHV, Vu D, Moissl-Eichinger C, Heinsbroek SEM, Jonkers DMAE, Hagen F, Boekhout T, de Jonge WJ, van den Wijngaard RM. Genetic and phenotypic diversity of fecal Candida albicans strains in irritable bowel syndrome. Sci Rep 2022; 12:5391. [PMID: 35354908 PMCID: PMC8967921 DOI: 10.1038/s41598-022-09436-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.
Collapse
Affiliation(s)
- Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Aimilia A Stavrou
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Auke de Jong
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart Theelen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Mark Davids
- Laboratory of Experimental Vascular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Iris Admiraal-van den Berg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Microbiota Center Amsterdam, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle C M Weert
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Martine A M Hesselink-van de Kruijs
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Center for Microbiome Research, Medical University Graz, Graz, Austria
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Daisy M A E Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital Bonn, Bonn, Germany
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. .,Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands. .,Gastroenterology and Hepatology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Schulz RM, Ahuja NK, Slavin JL. Effectiveness of Nutritional Ingredients on Upper Gastrointestinal Conditions and Symptoms: A Narrative Review. Nutrients 2022; 14:672. [PMID: 35277031 PMCID: PMC8839470 DOI: 10.3390/nu14030672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
Nutritional ingredients, including various fibers, herbs, and botanicals, have been historically used for various ailments. Their enduring appeal is predicated on the desire both for more natural approaches to health and to mitigate potential side effects of more mainstream treatments. Their use in individuals experiencing upper gastrointestinal (GI) complaints is of particular interest in the scientific space as well as the consumer market but requires review to better understand their potential effectiveness. The aim of this paper is to review the published scientific literature on nutritional ingredients for the management of upper GI complaints. We selected nutritional ingredients on the basis of mentions within the published literature and familiarity with recurrent components of consumer products currently marketed. A predefined literature search was conducted in Embase, Medline, Derwent drug file, ToXfile, and PubMed databases with specific nutritional ingredients and search terms related to upper GI health along with a manual search for each ingredient. Of our literature search, 16 human clinical studies including nine ingredients met our inclusion criteria and were assessed in this review. Products of interest within these studies subsumed the categories of botanicals, including fiber and combinations, and non-botanical extracts. Although there are a few ingredients with robust scientific evidence, such as ginger and a combination of peppermint and caraway oil, there are others, such as melatonin and marine alginate, with moderate evidence, and still others with limited scientific substantiation, such as galactomannan, fenugreek, and zinc-l-carnosine. Importantly, the paucity of high-quality data for the majority of the ingredients analyzed herein suggests ample opportunity for further study. In particular, trials with appropriate controls examining dose-response using standardized extracts and testing for specific benefits would yield precise and effective data to aid those with upper GI symptoms and conditions.
Collapse
Affiliation(s)
- Rebekah M. Schulz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| | - Nitin K. Ahuja
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Joanne L. Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA;
| |
Collapse
|
13
|
Dingeo G, Brito A, Samouda H, Iddir M, La Frano MR, Bohn T. Phytochemicals as modifiers of gut microbial communities. Food Funct 2021; 11:8444-8471. [PMID: 32996966 DOI: 10.1039/d0fo01483d] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A healthy gut microbiota (GM) is paramount for a healthy lifestyle. Alterations of the GM have been involved in the aetiology of several chronic diseases, including obesity and type 2 diabetes, as well as cardiovascular and neurodegenerative diseases. In pathological conditions, the diversity of the GM is commonly reduced or altered, often toward an increased Firmicutes/Bacteroidetes ratio. The colonic fermentation of dietary fiber has shown to stimulate the fraction of bacteria purported to have beneficial health effects, acting as prebiotics, and to increase the production of short chain fatty acids, e.g. propionate and butyrate, while also improving gut epithelium integrity such as tight junction functionality. However, a variety of phytochemicals, often associated with dietary fiber, have also been proposed to modulate the GM. Many phytochemicals possess antioxidant and anti-inflammatory properties that may positively affect the GM, including polyphenols, carotenoids, phytosterols/phytostanols, lignans, alkaloids, glucosinolates and terpenes. Some polyphenols may act as prebiotics, while carotenoids have been shown to alter immunoglobulin A expression, an important factor for bacteria colonization. Other phytochemicals may interact with the mucosa, another important factor for colonization, and prevent its degradation. Certain polyphenols have shown to influence bacterial communication, interacting with quorum sensing. Finally, phytochemicals can be metabolized in the gut into bioactive constituents, e.g. equol from daidzein and enterolactone from secoisolariciresinol, while bacteria can use glycosides for energy. In this review, we strive to highlight the potential interactions between prominent phytochemicals and health benefits related to the GM, emphasizing their potential as adjuvant strategies for GM-related diseases.
Collapse
Affiliation(s)
| | - Alex Brito
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg. and Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow Medical University, Moscow, Russia.
| | - Hanen Samouda
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Mohammed Iddir
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA. and Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Torsten Bohn
- Luxembourg Institute of Health, Population Health Department, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen L-1445, Luxembourg.
| |
Collapse
|
14
|
Mars RAT, Frith M, Kashyap PC. Functional Gastrointestinal Disorders and the Microbiome-What Is the Best Strategy for Moving Microbiome-based Therapies for Functional Gastrointestinal Disorders into the Clinic? Gastroenterology 2021; 160:538-555. [PMID: 33253687 PMCID: PMC8575137 DOI: 10.1053/j.gastro.2020.10.058] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
There have been numerous human studies reporting associations between the intestinal microbiome and functional gastrointestinal disorders (FGIDs), and independently animal studies have explored microbiome-driven mechanisms underlying FGIDs. However, there is often a disconnect between human and animal studies, which hampers translation of microbiome findings to the clinic. Changes in the microbiota composition of patients with FGIDs are generally subtle, whereas changes in microbial function, reflected in the fecal metabolome, appear to be more precise indicators of disease subtype-specific mechanisms. Although we have made significant progress in characterizing the microbiome, to effectively translate microbiome science in a timely manner, we need concurrent and iterative longitudinal studies in humans and animals to determine the precise microbial functions that can be targeted to address specific pathophysiological processes in FGIDs. A systems approach integrating multiple data layers rather than evaluating individual data layers of symptoms, physiological changes, or -omics data in isolation will allow for validation of mechanistic insights from animal studies while also allowing new discovery. Patient stratification for clinical trials based on functional microbiome alterations and/or pathophysiological measurements may allow for more accurate determination of efficacy of individual microbiome-targeted interventions designed to correct an underlying abnormality. In this review, we outline current approaches and knowledge, and identify gaps, to provide a potential roadmap for accelerating translation of microbiome science toward microbiome-targeted personalized treatments for FGIDs.
Collapse
Affiliation(s)
- Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Mary Frith
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Zhang Z, Engel MA, Koch E, Reeh PW, Khalil M. Menthacarin induces calcium ion influx in sensory neurons, macrophages and colonic organoids of mice. Life Sci 2020; 264:118682. [PMID: 33127519 DOI: 10.1016/j.lfs.2020.118682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/08/2023]
Abstract
AIMS Menthacarin is a herbal combination that is clinically used for the treatment of functional gastrointestinal disorders (FGIDs). In several clinical studies, Menthacarin reduced visceral hypersensitivity-related symptoms. Pathogenesis of visceral hypersensitivity is multifactorial. This involves several cell types and different transient receptor potential ion channels (TRPs); these ion channels are highly conductive for calcium ions. Since transient changes in cytosolic calcium levels are crucial for many functions of living cells, we investigated if Menthacarin can induce calcium influx in sensory, largely nociceptive, neurons from dorsal root ganglia (DRG), peritoneal macrophages (PMs) and colonic organoids. MAIN METHODS We employed the calcium imaging technique on sensory neurons from DRG, PMs and colonic organoids isolated from mice. All cells were superfused by Menthacarin at several concentrations (600, 1200, 1800 μg/ml) during the experiments, followed by calcium ionophor ionomycin (Iono., 1 μM) as a positive control. KEY FINDINGS Menthacarin induced concentration-dependent calcium ion influx in all investigated cell types. Furthermore, repeated applications of Menthacarin induced tachyphylaxis (desensitisation) of calcium responses in sensory neurons and colonic organoids. SIGNIFICANCE Menthacarin-induced calcium influx into sensory neurons, macrophages and colonic organoids is probably related to its clinical desensitising effects in patients with FGIDs.
Collapse
Affiliation(s)
- Z Zhang
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - M A Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany.
| | - E Koch
- Preclinical Research, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany
| | - P W Reeh
- Institute of Physiology und Pathophysiology, Friedrich-Alexander-Universität Erlangen, Erlangen, Germany
| | - M Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
De Filippis A, Ullah H, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M. Gastrointestinal Disorders and Metabolic Syndrome: Dysbiosis as a Key Link and Common Bioactive Dietary Components Useful for their Treatment. Int J Mol Sci 2020; 21:E4929. [PMID: 32668581 PMCID: PMC7404341 DOI: 10.3390/ijms21144929] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) diseases, which include gastrointestinal reflux disease, gastric ulceration, inflammatory bowel disease, and other functional GI disorders, have become prevalent in a large part of the world population. Metabolic syndrome (MS) is cluster of disorders including obesity, hyperglycemia, hyperlipidemia, and hypertension, and is associated with high rate of morbidity and mortality. Gut dysbiosis is one of the contributing factors to the pathogenesis of both GI disorder and MS, and restoration of normal flora can provide a potential protective approach in both these conditions. Bioactive dietary components are known to play a significant role in the maintenance of health and wellness, as they have the potential to modify risk factors for a large number of serious disorders. Different classes of functional dietary components, such as dietary fibers, probiotics, prebiotics, polyunsaturated fatty acids, polyphenols, and spices, possess positive impacts on human health and can be useful as alternative treatments for GI disorders and metabolic dysregulation, as they can modify the risk factors associated with these pathologies. Their regular intake in sufficient amounts also aids in the restoration of normal intestinal flora, resulting in positive regulation of insulin signaling, metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. This review is designed to focus on the health benefits of bioactive dietary components, with the aim of preventing the development or halting the progression of GI disorders and MS through an improvement of the most important risk factors including gut dysbiosis.
Collapse
Affiliation(s)
- Anna De Filippis
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Alessandra Baldi
- TefarcoInnova, National Inter-University Consortium of Innovative Pharmaceutical Technologies—Parma, 43124 Parma, Italy;
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Esposito
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Emanuele Ugo Garzarella
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Ariyawan Tantipongpiradet
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (A.D.F.); (H.U.); (M.D.); (C.E.); (E.U.G.); (C.S.); (A.T.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
17
|
Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology. Int J Mol Sci 2020; 21:ijms21114152. [PMID: 32532055 PMCID: PMC7313461 DOI: 10.3390/ijms21114152] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, most of them commonly used in the human diet. In recent years, many studies have analyzed their antimicrobial, antioxidant, anti-inflammatory, immunomodulatory and anticancer properties in vitro and on experimentally induced animal models of colitis and colorectal cancer. However, there are still few clinical studies aimed to understand their role in the modulation of the intestinal pathophysiology. Many EOs and some of their molecules have demonstrated their efficacy in inhibiting bacterial, fungi and virus replication and in modulating the inflammatory and oxidative processes that take place in experimental colitis. In addition to this, their antitumor activity against colorectal cancer models makes them extremely interesting compounds for the modulation of the pathophysiology of the large bowel. The characterization of these EOs is made difficult by their complexity and by the different compositions present in the same oil having different geographical origins. This review tries to shift the focus from the EOs to their individual compounds, to expand their possible applications in modulating colon pathophysiology.
Collapse
|
18
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
19
|
Tiew PY, Mac Aogain M, Ali NABM, Thng KX, Goh K, Lau KJX, Chotirmall SH. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia 2020; 185:207-231. [PMID: 31894501 PMCID: PMC7223441 DOI: 10.1007/s11046-019-00413-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Fungal disease is an increasingly recognised global clinical challenge associated with high mortality. Early diagnosis of fungal infection remains problematic due to the poor sensitivity and specificity of current diagnostic modalities. Advances in sequencing technologies hold promise in addressing these shortcomings and for improved fungal detection and identification. To translate such emerging approaches into mainstream clinical care will require refinement of current sequencing and analytical platforms, ensuring standardisation and consistency through robust clinical benchmarking and its validation across a range of patient populations. In this state-of-the-art review, we discuss current diagnostic and therapeutic challenges associated with fungal disease and provide key examples where the application of sequencing technologies has potential diagnostic application in assessing the human ‘mycobiome’. We assess how ready access to fungal sequencing may be exploited in broadening our insight into host–fungal interaction, providing scope for clinical diagnostics and the translation of emerging mycobiome research into clinical practice.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | | | - Kai Xian Thng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Karlyn Goh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kenny J X Lau
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
20
|
Weerts ZZRM, Masclee AAM, Witteman BJM, Clemens CHM, Winkens B, Brouwers JRBJ, Frijlink HW, Muris JWM, De Wit NJ, Essers BAB, Tack J, Snijkers JTW, Bours AMH, de Ruiter-van der Ploeg AS, Jonkers DMAE, Keszthelyi D. Efficacy and Safety of Peppermint Oil in a Randomized, Double-Blind Trial of Patients With Irritable Bowel Syndrome. Gastroenterology 2020; 158:123-136. [PMID: 31470006 DOI: 10.1053/j.gastro.2019.08.026] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Peppermint oil is frequently used to treat irritable bowel syndrome (IBS), despite a lack of evidence for efficacy from high-quality controlled trials. We studied the efficacy and safety of small-intestinal-release peppermint oil in patients with IBS and explored the effects of targeted ileocolonic-release peppermint oil. METHODS We performed a double-blind trial of 190 patients with IBS (according to Rome IV criteria) at 4 hospitals in The Netherlands from August 2016 through March 2018; 189 patients were included in the intent-to-treat analysis (mean age, 34.0 years; 77.8% female; 57.7% in primary care), and 178 completed the study. Patients were randomly assigned to groups given 182 mg small-intestinal-release peppermint oil, 182 mg ileocolonic-release peppermint oil, or placebo for 8 weeks. The primary endpoint was abdominal pain response, as defined by the US Food and Drug Administration: at least a 30% decrease in the weekly average of worst daily abdominal pain compared with baseline in at least 4 weeks. The co-primary endpoint was overall relief of IBS symptoms, as defined by the European Medicines Agency. Secondary endpoints included abdominal pain, discomfort, symptom severity, and adverse events. RESULTS Abdominal pain response did not differ significantly between the peppermint oil and placebo groups: 29 of 62 patients in the small-intestinal-release peppermint oil group had a response (46.8%, P = .170 vs placebo), 26 of 63 patients in the ileocolonic-release peppermint oil group had a response (41.3%, P = .385 vs placebo), and 22 of 64 patients in the placebo group had a response (34.4%). We did not find differences among the groups in overall relief (9.7%, P = .317 and 1.6%, P = .351 vs 4.7% for placebo). The small intestinal peppermint oil did, however, produce greater improvements than placebo in secondary outcomes of abdominal pain (P = .016), discomfort (P = .020), and IBS severity (P = .020). Adverse events, although mild, were more common in both peppermint oil groups (P < .005). CONCLUSIONS In a randomized trial of patients with IBS, we found that neither small-intestinal-release nor ileocolonic-release peppermint oil (8 weeks) produced statistically significant reductions in abdominal pain response or overall symptom relief, when using US Food and Drug Administration/European Medicines Agency recommended endpoints. The small-intestinal-release peppermint oil did, however, significantly reduce abdominal pain, discomfort, and IBS severity. These findings do not support further development of ileocolonic-release peppermint oil for treatment of IBS. Clinicaltrials.gov, Number: NCT02716285.
Collapse
Affiliation(s)
- Zsa Zsa R M Weerts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Ad A M Masclee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ben J M Witteman
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; Department of Gastroenterology and Hepatology, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Cees H M Clemens
- Department of Gastroenterology, Alrijne Zorggroep, Leiden, The Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, CAPHRI, Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jacobus R B J Brouwers
- Unit of Pharmacotherapy, Epidemiology, and Economics, University of Groningen, Groningen Research Institute of Pharmacy, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, The Netherlands
| | - Jean W M Muris
- Department of Family Medicine, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Niek J De Wit
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brigitte A B Essers
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan Tack
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Diseases (TARGID), University of Leuven, Leuven, Belgium
| | - Johanna T W Snijkers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andrea M H Bours
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Daisy M A E Jonkers
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
21
|
van Thiel IAM, Botschuijver S, de Jonge WJ, Seppen J. Painful interactions: Microbial compounds and visceral pain. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165534. [PMID: 31634534 DOI: 10.1016/j.bbadis.2019.165534] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Abstract
Visceral pain, characterized by abdominal discomfort, originates from organs in the abdominal cavity and is a characteristic symptom in patients suffering from irritable bowel syndrome, vulvodynia or interstitial cystitis. Most organs in which visceral pain originates are in contact with the external milieu and continuously exposed to microbes. In order to maintain homeostasis and prevent infections, the immune- and nervous system in these organs cooperate to sense and eliminate (harmful) microbes. Recognition of microbial components or products by receptors expressed on cells from the immune and nervous system can activate immune responses but may also cause pain. We review the microbial compounds and their receptors that could be involved in visceral pain development.
Collapse
Affiliation(s)
- I A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - S Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - W J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands
| | - J Seppen
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, location AMC, Meibergdreef 69, 1105 BK Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Botschuijver S, van Diest SA, van Thiel IAM, Saia RS, Strik AS, Yu Z, Maria-Ferreira D, Welting O, Keszthelyi D, Jennings G, Heinsbroek SEM, Elferink RPO, Schuren FHJ, de Jonge WJ, van den Wijngaard RM. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Sci Rep 2019; 9:12530. [PMID: 31467355 PMCID: PMC6715706 DOI: 10.1038/s41598-019-49096-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/02/2019] [Indexed: 12/17/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a heterogenic, functional gastrointestinal disorder of the gut-brain axis characterized by altered bowel habit and abdominal pain. Preclinical and clinical results suggested that, in part of these patients, pain may result from fungal induced release of mast cell derived histamine, subsequent activation of sensory afferent expressed histamine-1 receptors and related sensitization of the nociceptive transient reporter potential channel V1 (TRPV1)-ion channel. TRPV1 gating properties are regulated in lipid rafts. Miltefosine, an approved drug for the treatment of visceral Leishmaniasis, has fungicidal effects and is a known lipid raft modulator. We anticipated that miltefosine may act on different mechanistic levels of fungal-induced abdominal pain and may be repurposed to IBS. In the IBS-like rat model of maternal separation we assessed the visceromotor response to colonic distension as indirect readout for abdominal pain. Miltefosine reversed post-stress hypersensitivity to distension (i.e. visceral hypersensitivity) and this was associated with differences in the fungal microbiome (i.e. mycobiome). In vitro investigations confirmed fungicidal effects of miltefosine. In addition, miltefosine reduced the effect of TRPV1 activation in TRPV1-transfected cells and prevented TRPV1-dependent visceral hypersensitivity induced by intracolonic-capsaicin in rat. Miltefosine may be an attractive drug to treat abdominal pain in IBS.
Collapse
Affiliation(s)
- Sara Botschuijver
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sophie A van Diest
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Isabelle A M van Thiel
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Rafael S Saia
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Anne S Strik
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Zhumei Yu
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Neurobiology, Tongji Medical College, HUST, Wuhan, People's Republic of China.,State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Daniele Maria-Ferreira
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Departamento de Farmacologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Olaf Welting
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Daniel Keszthelyi
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gary Jennings
- Business Development, Redivia, Technische Universität, Dresden, Germany
| | - Sigrid E M Heinsbroek
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Ronald P Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Frank H J Schuren
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - René M van den Wijngaard
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands. .,Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Gu Y, Zhou G, Qin X, Huang S, Wang B, Cao H. The Potential Role of Gut Mycobiome in Irritable Bowel Syndrome. Front Microbiol 2019; 10:1894. [PMID: 31497000 PMCID: PMC6712173 DOI: 10.3389/fmicb.2019.01894] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
The human gut is inhabited by diverse microorganisms that play crucial roles in health and disease. Gut microbiota dysbiosis is increasingly considered as a vital factor in the etiopathogenesis of irritable bowel syndrome (IBS), which is a common functional gastrointestinal disorder with a high incidence all over the world. However, investigations to date are primarily directed to the bacterial community, and the gut mycobiome, another fundamental part of gut ecosystem, has been underestimated. Intestinal fungi have important effects on maintaining gut homeostasis just as bacterial species. In the present article, we reviewed the potential roles of gut mycobiome in the pathogenesis of IBS and the connections between the fungi and existing mechanisms such as chronic low-grade inflammation, visceral hypersensitivity, and brain-gut interactions. Moreover, possible strategies targeted at the gut mycobiome for managing IBS were also described. This review provides a basis for considering the role of the mycobiome in IBS and offers novel treatment strategies for IBS patients; moreover, it adds new dimensions to researches on microorganism.
Collapse
Affiliation(s)
| | | | | | | | | | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|