1
|
Yeoman MS, Fidalgo S, Hobby I, Hafeez A, Ranson RN, Saffrey MJ, Patel BA. Decreases in mucosally-evoked tachykinin signaling pathways can explain age-related reductions in murine colonic motility patterns. Neurogastroenterol Motil 2024; 36:e14891. [PMID: 39155460 DOI: 10.1111/nmo.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Increasing age increases the incidence of chronic constipation and fecal impaction. The contribution of the natural aging process to this phenotype is unclear. This study explored the effects of age on key motility patterns in the murine colon and determined the contribution that altered neurokinin 2 (NK2) -mediated signaling made to the aging phenotype. METHODS Mucosal reflexes, colonic migrating motor complexes (CMMCs) and colonic motility assays were explored in isolated ex vivo colons from 3, 12-14, 18- and 24-months old mice and the NK2-mediated response determined. Electrical field stimulation (EFS) or exogenous drug application were used to explore the role of the mucosa in colonic segments. KEY RESULTS Aging reduced the force of contraction of the distal colon mucosal reflex, the frequency and force of contraction of CMMCs and the NK2-mediated component of both motility patterns. Ondansetron, a 5-HT3 receptor antagonist, blocked a component of both motility patterns in full thickness but not in mucosa-free segments of the distal colon. 5, hydroxytryptamine (5-HT) and EFS-evoked NK2-dependent contractions were reduced with increasing age. Smooth muscle sensitivity to 5-HT or neurokinin A (NKA) was not altered with age. In isolated colon motility assays application of NKA decreased transit time in 24-months colon and the NK2 antagonist GR159897 increased transit times in both 3- and 24-months old colons. CONCLUSIONS AND INFERENCES Aging impairs key motility patterns in the murine colon. These changes involve a decrease in mucosally-evoked NK2-mediated signaling. Targeting NK2-mediated signaling may provide a novel approach to treating age-related motility disorders in the lower bowel.
Collapse
Affiliation(s)
- Mark S Yeoman
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sara Fidalgo
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - India Hobby
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ali Hafeez
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Rachel N Ranson
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - M Jill Saffrey
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Bhavik Anil Patel
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
2
|
Saito A, Alvi S, Valant C, Christopoulos A, Carbone SE, Poole DP. Therapeutic potential of allosteric modulators for the treatment of gastrointestinal motility disorders. Br J Pharmacol 2024; 181:2232-2246. [PMID: 36565295 DOI: 10.1111/bph.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Gastrointestinal motility is tightly regulated by the enteric nervous system (ENS). Disruption of coordinated enteric nervous system activity can result in dysmotility. Pharmacological treatment options for dysmotility include targeting of G protein-coupled receptors (GPCRs) expressed by neurons of the enteric nervous system. Current GPCR-targeting drugs for motility disorders bind to the highly conserved endogenous ligand-binding site and promote indiscriminate activation or inhibition of the target receptor throughout the body. This can be associated with significant side-effect liability and a loss of physiological tone. Allosteric modulators of GPCRs bind to a distinct site from the endogenous ligand, which is typically less conserved across multiple receptor subtypes and can modulate endogenous ligand signalling. Allosteric modulation of GPCRs that are important for enteric nervous system function may provide effective relief from motility disorders while limiting side-effects. This review will focus on how allosteric modulators of GPCRs may influence gastrointestinal motility, using 5-hydroxytryptamine (5-HT), acetylcholine (ACh) and opioid receptors as examples. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Ayame Saito
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Yang X, Li G, Lou P, Zhang M, Yao K, Xiao J, Chen Y, Xu J, Tian S, Deng M, Pan Y, Li M, Wu X, Liu R, Shi X, Tian Y, Yu L, Ke H, Jiao B, Cong Y, Plikus MV, Liu X, Yu Z, Lv C. Excessive nucleic acid R-loops induce mitochondria-dependent epithelial cell necroptosis and drive spontaneous intestinal inflammation. Proc Natl Acad Sci U S A 2024; 121:e2307395120. [PMID: 38157451 PMCID: PMC10769860 DOI: 10.1073/pnas.2307395120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD+ depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD+ levels with NAD+ or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.
Collapse
Affiliation(s)
- Xu Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
- College of Agriculture and Life Sciences, Ankang University, Ankang, Shaanxi725000, China
| | - Guilin Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Pengbo Lou
- China Astronaut Research and Training Center, Beijing100094, China
| | - Mingxin Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Kai Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Jintao Xiao
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan410008, China
- Hunan International Scientific and Technological Cooperation Base of AI Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
| | - Yiqian Chen
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan410008, China
- Hunan International Scientific and Technological Cooperation Base of AI Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
| | - Jiuzhi Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Shengyuan Tian
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Min Deng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yuwei Pan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Mengzhen Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xi Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Ruiqi Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xiaojing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Yuhua Tian
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
| | - Lu Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Hao Ke
- State Key Laboratory of Genetic Resources and Evolution of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650223, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, IL60611
| | - Maksim V. Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA92697
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan410008, China
- Hunan International Scientific and Technological Cooperation Base of AI Computer Aided Diagnosis and Treatment for Digestive Disease, Changsha, Hunan, China
| | - Zhengquan Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan450052, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing100193, China
| |
Collapse
|
4
|
Song Y, Fothergill LJ, Lee KS, Liu BY, Koo A, Perelis M, Diwakarla S, Callaghan B, Huang J, Wykosky J, Furness JB, Yeo GW. Stratification of enterochromaffin cells by single-cell expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554649. [PMID: 37662229 PMCID: PMC10473706 DOI: 10.1101/2023.08.24.554649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine (5-HT) to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify fourteen EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.
Collapse
Affiliation(s)
- Yan Song
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Linda J. Fothergill
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Kari S. Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Brandon Y. Liu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Ada Koo
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Perelis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Shanti Diwakarla
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brid Callaghan
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jie Huang
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - Jill Wykosky
- Takeda Pharmaceuticals, San Diego, CA 92121, United States
| | - John B. Furness
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Stem Cell Program, University of California San Diego, La Jolla, CA 92093, United States
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
5
|
Rafeeqi TA, Diyaolu M, Thomas AL, Salimi-Jazi F, Wood LSY, Dunn JCY. Generation of Porcine Ileum Through Spring-Mediated Mechanical Distraction. J Surg Res 2022; 280:371-378. [PMID: 36037614 PMCID: PMC11567876 DOI: 10.1016/j.jss.2022.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Short bowel syndrome is a devastating gastrointestinal disorder in which decreased bowel length results in inadequate absorption causing nutritional deficiencies. Current treatment options are accompanied by significant morbidity. We have proposed spring-mediated distraction enterogenesis as a method to lengthen bowel with success seen in porcine jejunum. We hypothesize that spring-mediated distraction enterogenesis can be demonstrated in porcine ileum with preservation of ileal structure and function. MATERIALS AND METHODS Laparotomy was performed on juvenile female mini-Yucatan pigs and a gelatin-encapsulated compressed nitinol spring was inserted into the ileal lumen and affixed proximally and distally. A control segment distal to the spring segment was marked with sutures. Postoperatively, pigs were placed on a liquid diet and euthanized on postoperative day 7. Spring and control segments were measured and processed for immunohistochemistry to evaluate for the presence of vitamin B12-intrinsic factor cotransporter, chromogranin A-producing cells, and 5-HT producing cells. RESULTS All seven pigs survived to postoperative day 7 with no adverse effects. On average, pigs gained 84.3 ± 66.4 g/d. Spring segments lengthened 1.5 ± 0.7 cm with a relative lengthening by 128% ± 56%, which was statistically significant when compared to control (P < 0.01). The average density of chromogranin-A cells in control compared to spring segments was not significantly changed (2.9 ± 1.1 cells/mm versus 3.2 ± 1.2 cells/mm, P = 0.17). Both vitamin B12-intrinsic factor cotransporter and 5-HT producing cells were present in both control and lengthened ileum. CONCLUSIONS Intraluminal nitinol springs significantly lengthened porcine ileum. The increase in density of enteroendocrine cells may indicate enhanced endocrine function of the lengthened ileum.
Collapse
Affiliation(s)
- Talha A Rafeeqi
- Division of Pediatric Surgery, Stanford University, Stanford, California
| | - Modupeola Diyaolu
- Division of Pediatric Surgery, Stanford University, Stanford, California
| | - Anne-Laure Thomas
- Division of Pediatric Surgery, Stanford University, Stanford, California
| | | | - Lauren S Y Wood
- Division of Pediatric Surgery, Stanford University, Stanford, California
| | - James C Y Dunn
- Division of Pediatric Surgery, Stanford University, Stanford, California; Department of Bioengineering, Stanford University, Stanford, California.
| |
Collapse
|
6
|
Wei L, Singh R, Ghoshal UC. Enterochromaffin Cells-Gut Microbiota Crosstalk: Underpinning the Symptoms, Pathogenesis, and Pharmacotherapy in Disorders of Gut-Brain Interaction. J Neurogastroenterol Motil 2022; 28:357-375. [PMID: 35719046 PMCID: PMC9274469 DOI: 10.5056/jnm22008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Disorders of gut-brain interaction (DGBIs) are common conditions in community and clinical practice. As specialized enteroendocrine cells, enterochromaffin (EC) cells produce up to 95% of total body serotonin and coordinate luminal and basolateral communication in the gastrointestinal (GI) tract. EC cells affect a broad range of gut physiological processes, such as motility, absorption, secretion, chemo/mechanosensation, and pathologies, including visceral hypersensitivity, immune dysfunction, and impaired gastrointestinal barrier function. We aim to review EC cell and serotonin-mediated physiology and pathophysiology with particular emphasis on DGBIs. We explored the knowledge gap and attempted to suggest new perspectives of physiological and pathophysiological insights of DGBIs, such as (1) functional heterogeneity of regionally distributed EC cells throughout the entire GI tract; (2) potential pathophysiological mechanisms mediated by EC cell defect in DGBIs; (3) cellular and molecular mechanisms characterizing EC cells and gut microbiota bidirectional communication; (4) differential modulation of EC cells through GI segment-specific gut microbiota; (5) uncover whether crosstalk between EC cells and (i) luminal contents; (ii) enteric nervous system; and (iii) central nervous system are core mechanisms modulating gut-brain homeostasis; and (6) explore the therapeutic modalities for physiological and pathophysiological mechanisms mediated through EC cells. Insights discussed in this review will fuel the conception and realization of pathophysiological mechanisms and therapeutic clues to improve the management and clinical care of DGBIs.
Collapse
Affiliation(s)
- Lai Wei
- Enteric NeuroScience Program, Mayo Clinic, Rochester, MN, USA
| | - Rajan Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, NV, USA
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|