1
|
Hernández F, Vercellino RB, Todesco M, Bercovich N, Alvarez D, Brunet J, Presotto A, Rieseberg LH. Admixture With Cultivated Sunflower Likely Facilitated Establishment and Spread of Wild Sunflower (Helianthus annuus) in Argentina. Mol Ecol 2024; 33:e17560. [PMID: 39422702 DOI: 10.1111/mec.17560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
A better understanding of the genetic and ecological factors underlying successful invasions is critical to mitigate the negative impacts of invasive species. Here, we study the invasion history of Helianthus annuus populations from Argentina, with particular emphasis on the role of post-introduction admixture with cultivated sunflower (also H. annuus) and climate adaptation driven by large haploblocks. We conducted genotyping-by-sequencing of samples of wild populations as well as Argentinian cultivars and compared them with wild (including related annual Helianthus species) and cultivated samples from the native range. We also characterised samples for 11 known haploblocks associated with environmental variation in native populations to test whether haploblocks contributed to invasion success. Population genomics analyses supported two independent geographic sources for Argentinian populations, the central United States and Texas, but no significant contribution of related annual Helianthus species. We found pervasive admixture with cultivated sunflower, likely as result of post-introduction hybridization. Genomic scans between invasive populations and their native sources identified multiple genomic regions of divergence, possibly indicative of selection, in the invaded range. These regions significantly overlapped between the two native-invasive comparisons and showed disproportionally high crop ancestry, suggesting that crop alleles contributed to invasion success. We did not find evidence of climate adaptation mediated by haploblocks, yet outliers of genome scans were enriched in haploblock regions and, for at least two haploblocks, the cultivar haplotype was favoured in Argentina. Our results show that admixture with cultivated sunflower played a major role in the establishment and spread of H. annuus populations in Argentina.
Collapse
Affiliation(s)
- Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Román B Vercellino
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Alvarez
- Estación Experimental Agropecuaria INTA Manfredi, Córdoba, Argentina
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA-ARS, Madison, Wisconsin, USA
| | - Alejandro Presotto
- Departamento de Agronomía, CERZOS, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Melen MK, Snyder ED, Fernandez M, Lopez A, Lustenhouwer N, Parker IM. Invasion away from roadsides was not driven by adaptation to grassland habitats in Dittrichia graveolens (stinkwort). Biol Invasions 2024; 26:2923-2939. [PMID: 39144139 PMCID: PMC11319513 DOI: 10.1007/s10530-024-03359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 08/16/2024]
Abstract
Invasive plants along transportation corridors can significantly threaten ecosystems and biodiversity if they spread beyond anthropogenic environments. Rapid evolution may increase the ability of invading plant populations to establish in resident plant communities over time, posing a challenge to invasion risk assessment. We tested for adaptive differentiation in Dittrichia graveolens (stinkwort), an invasive species of ruderal habitat in California that is increasingly spreading away from roadsides into more established vegetation. We collected seeds from eight pairs of vegetated sites and their nearest (presumed progenitor) roadside population. We assessed differentiation between populations in roadside and vegetated habitat for germination behavior and for response to competition in a greenhouse experiment. We also tested for increased performance in vegetated habitat with a grassland field experiment including a neighbor removal treatment. Germination rates were slightly reduced in seeds from vegetated sites, which may indicate lower seed viability. Otherwise, plants did not show consistent differences between the two habitat types. Competition strongly reduced performance of D. graveolens in both the greenhouse and in the field, but plants originating from vegetated sites did not show enhanced competitive ability. Our findings show no evidence of adaptive differentiation between D. graveolens populations from roadside and vegetated habitats to date, suggesting that invasiveness in grasslands has not been enhanced by rapid evolution in the 40 + years since this species was introduced to California. Evolutionary constraints or potentially high levels of gene flow at this small scale may limit adaptation to novel habitats along roadsides. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-024-03359-6.
Collapse
Affiliation(s)
- Miranda K. Melen
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Emma D. Snyder
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Michael Fernandez
- College of Natural & Applied Science, University of Guam, Mangilao, Guam USA
| | - Andrew Lopez
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| | - Nicky Lustenhouwer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Ingrid M. Parker
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA USA
| |
Collapse
|
3
|
Wan JSH, Bonser SP, Pang CK, Fazlioglu F, Rutherford S. Adaptive responses to living in stressful habitats: Do invasive and native plant populations use different strategies? Ecol Lett 2024; 27:e14419. [PMID: 38613177 DOI: 10.1111/ele.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/14/2024]
Abstract
Plants inhabit stressful environments characterized by a variety of stressors, including mine sites, mountains, deserts, and high latitudes. Populations from stressful and reference (non-stressful) sites often have performance differences. However, while invasive and native species may respond differently to stressful environments, there is limited understanding of the patterns in reaction norms of populations from these sites. Here, we use phylogenetically controlled meta-analysis to assess the performance of populations under stress and non-stress conditions. We ask whether stress populations of natives and invasives differ in the magnitude of lowered performance under non-stress conditions and if they vary in the degree of performance advantage under stress. We also assessed whether these distinctions differ with stress intensity. Our findings revealed that natives not only have greater adaptive advantages but also more performance reductions than invasives. Populations from very stressful sites had more efficient adaptations, and performance costs increased with stress intensity in natives only. Overall, the results support the notion that adaptation is frequently costless. Reproductive output was most closely associated with adaptive costs and benefits. Our study characterized the adaptive strategies used by invasive and native plants under stressful conditions, thereby providing important insights into the limitations of adaptation to extreme sites.
Collapse
Affiliation(s)
- Justin S H Wan
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, New South Wales, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | - Clara K Pang
- PlantClinic, Australian Institute of Botanical Science, Royal Botanic Garden, Sydney, New South Wales, Australia
| | | | - Susan Rutherford
- Center for Sustainable Environmental and Ecosystem Research, Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Department of Environmental and Sustainability Sciences, The Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, New Jersey, USA
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Bellini G, Schrieber K, Kirleis W, Erfmeier A. Exploring the complex pre-adaptations of invasive plants to anthropogenic disturbance: a call for integration of archaeobotanical approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1307364. [PMID: 38559769 PMCID: PMC10978757 DOI: 10.3389/fpls.2024.1307364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Pre-adaptation to anthropogenic disturbance is broadly considered key for plant invasion success. Nevertheless, empirical evidence remains scarce and fragmentary, given the multifaceted nature of anthropogenic disturbance itself and the complexity of other evolutionary forces shaping the (epi)-genomes of recent native and invasive plant populations. Here, we review and critically revisit the existing theory and empirical evidence in the field of evolutionary ecology and highlight novel integrative research avenues that work at the interface with archaeology to solve open questions. The approaches suggested so far focus on contemporary plant populations, although their genomes have rapidly changed since their initial introduction in response to numerous selective and stochastic forces. We elaborate that a role of pre-adaptation to anthropogenic disturbance in plant invasion success should thus additionally be validated based on the analyses of archaeobotanical remains. Such materials, in the light of detailed knowledge on past human societies could highlight fine-scale differences in the type and timing of past disturbances. We propose a combination of archaeobotanical, ancient DNA and morphometric analyses of plant macro- and microremains to assess past community composition, and species' functional traits to unravel the timing of adaptation processes, their drivers and their long-term consequences for invasive species. Although such methodologies have proven to be feasible for numerous crop plants, they have not been yet applied to wild invasive species, which opens a wide array of insights into their evolution.
Collapse
Affiliation(s)
- Ginevra Bellini
- Department of Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
- Cluster of Excellence ROOTS, Kiel University, Kiel, Germany
| | - Karin Schrieber
- Department of Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
| | - Wiebke Kirleis
- Cluster of Excellence ROOTS, Kiel University, Kiel, Germany
- Institute of Prehistoric and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Alexandra Erfmeier
- Department of Geobotany, Institute for Ecosystem Research, Kiel University, Kiel, Germany
- Cluster of Excellence ROOTS, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Kim AS, Kreiner JM, Hernández F, Bock DG, Hodgins KA, Rieseberg LH. Temporal collections to study invasion biology. Mol Ecol 2023; 32:6729-6742. [PMID: 37873879 DOI: 10.1111/mec.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.
Collapse
Affiliation(s)
- Amy S Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Soudi S, Crepeau M, Collier TC, Lee Y, Cornel AJ, Lanzaro GC. Genomic signatures of local adaptation in recent invasive Aedes aegypti populations in California. BMC Genomics 2023; 24:311. [PMID: 37301847 PMCID: PMC10257851 DOI: 10.1186/s12864-023-09402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Rapid adaptation to new environments can facilitate species invasions and range expansions. Understanding the mechanisms of adaptation used by invasive disease vectors in new regions has key implications for mitigating the prevalence and spread of vector-borne disease, although they remain relatively unexplored. RESULTS Here, we integrate whole-genome sequencing data from 96 Aedes aegypti mosquitoes collected from various sites in southern and central California with 25 annual topo-climate variables to investigate genome-wide signals of local adaptation among populations. Patterns of population structure, as inferred using principal components and admixture analysis, were consistent with three genetic clusters. Using various landscape genomics approaches, which all remove the confounding effects of shared ancestry on correlations between genetic and environmental variation, we identified 112 genes showing strong signals of local environmental adaptation associated with one or more topo-climate factors. Some of them have known effects in climate adaptation, such as heat-shock proteins, which shows selective sweep and recent positive selection acting on these genomic regions. CONCLUSIONS Our results provide a genome wide perspective on the distribution of adaptive loci and lay the foundation for future work to understand how environmental adaptation in Ae. aegypti impacts the arboviral disease landscape and how such adaptation could help or hinder efforts at population control.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Travis C Collier
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Anthony J Cornel
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA
- Mosquito Control Research Laboratory, Department of Entomology and Nematology, University of California, Parlier, CA, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
7
|
Wilson Brown MK, Josephs EB. Evaluating niche changes during invasion with seasonal models in Capsella bursa-pastoris. AMERICAN JOURNAL OF BOTANY 2023; 110:1-11. [PMID: 36758170 PMCID: PMC10088061 DOI: 10.1002/ajb2.16140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models. METHODS In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal. RESULTS We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well. CONCLUSIONS The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.
Collapse
Affiliation(s)
- Maya K Wilson Brown
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
8
|
Byrne D, Scheben A, Scott JK, Webber BL, Batchelor KL, Severn-Ellis AA, Gooden B, Bell KL. Genomics reveals the history of a complex plant invasion and improves the management of a biological invasion from the South African-Australian biotic exchange. Ecol Evol 2022; 12:e9179. [PMID: 36016815 PMCID: PMC9396708 DOI: 10.1002/ece3.9179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Many plants exchanged in the global redistribution of species in the last 200 years, particularly between South Africa and Australia, have become threatening invasive species in their introduced range. Refining our understanding of the genetic diversity and population structure of native and alien populations, introduction pathways, propagule pressure, naturalization, and initial spread, can transform the effectiveness of management and prevention of further introductions. We used 20,221 single nucleotide polymorphisms to reconstruct the invasion of a coastal shrub, Chrysanthemoides monilifera ssp. rotundata (bitou bush) from South Africa, into eastern Australia (EAU), and Western Australia (WAU). We determined genetic diversity and population structure across the native and introduced ranges and compared hypothesized invasion scenarios using Bayesian modeling. We detected considerable genetic structure in the native range, as well as differentiation between populations in the native and introduced range. Phylogenetic analysis showed the introduced samples to be most closely related to the southern-most native populations, although Bayesian analysis inferred introduction from a ghost population. We detected strong genetic bottlenecks during the founding of both the EAU and WAU populations. It is likely that the WAU population was introduced from EAU, possibly involving an unsampled ghost population. The number of private alleles and polymorphic SNPs successively decreased from South Africa to EAU to WAU, although heterozygosity remained high. That bitou bush remains an invasion threat in EAU, despite reduced genetic diversity, provides a cautionary biosecurity message regarding the risk of introduction of potentially invasive species via shipping routes.
Collapse
Affiliation(s)
- Dennis Byrne
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Armin Scheben
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory Cold Spring, Harbor New York USA
| | - John K Scott
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Bruce L Webber
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
- Western Australian Biodiversity Science Institute Perth Western Australia Australia
| | | | - Anita A Severn-Ellis
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| | - Ben Gooden
- CSIRO Health and Biosecurity Canberra Australian Capital Territory Australia
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences, University of Wollongong Wollongong New South Wales Australia
| | - Karen L Bell
- CSIRO Health & Biosecurity Floreat Western Australia Australia
- School of Biological Sciences University of Western Australia Crawley Western Australia Australia
| |
Collapse
|
9
|
Encinas‐Viso F, Morin L, Sathyamurthy R, Knerr N, Roux C, Broadhurst L. Population genomics reveal multiple introductions and admixture of
Sonchus oleraceus
in Australia. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Francisco Encinas‐Viso
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| | - Louise Morin
- CSIRO Health and Biosecurity Canberra Australian Capital Territory Australia
| | | | - Nunzio Knerr
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| | - Camille Roux
- UMR 8198 – Evo‐Eco‐Paleo CNRS – Univ Lille Lille France
| | - Linda Broadhurst
- Centre for Australian National Biodiversity Research Commonwealth Scientific and Industrial Research Organisation (CSIRO) Canberra Australian Capital Territory Australia
| |
Collapse
|
10
|
Woods EC, Sultan SE. Post-introduction evolution of a rapid life-history strategy in a newly invasive plant. Ecology 2022; 103:e3803. [PMID: 35796712 DOI: 10.1002/ecy.3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022]
Abstract
A central question in invasion biology is whether adaptive trait evolution following species introduction promotes invasiveness. A growing number of common-garden experiments document phenotypic differences between native- and introduced-range plants, suggesting that adaptive evolution in the new range may indeed contribute to the success of invasive plants. Yet these studies are often subject to methodological pitfalls, resulting in weak evidence for post-introduction adaptive trait evolution and leaving uncertain its role in the invasion process. In a common-garden glasshouse study, we compared the growth, life-history, and reproductive traits of 35 native- and introduced-range Polygonum cespitosum populations. We used complementary approaches including climate-matching, standardizing parental conditions, selection analysis, and testing for trait-environment relationships to determine whether traits that increase invasiveness adaptively evolved in the species' new range. We found that the majority of introduced-range populations exhibited a novel trait syndrome consisting of a fast-paced life history and concomitant sparse, reduced growth form. Selection analysis confirmed that this trait syndrome led to markedly higher fitness (propagule production) over a limited growing season characteristic of regions within the introduced range. Additionally, several growth and reproductive traits showed temperature-based clines consistent with adaptive evolution in the new range. Combined, these results indicate that, subsequent to its introduction to North America over 100 generations ago, P. cespitosum has evolved key traits that maximize propagule production. These changes may in part explain the species' recent transition to invasiveness, illustrating how post-introduction evolution may contribute to the invasion process.
Collapse
Affiliation(s)
- Ellen C Woods
- Biology Dept., Wesleyan University, Middletown, Connecticut, USA
| | - Sonia E Sultan
- Biology Dept., Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
11
|
Li F, Liu X, Zhu J, Li J, Gao K, Zhao C. The Role of Genetic Factors in the Differential Invasion Success of Two Spartina Species in China. FRONTIERS IN PLANT SCIENCE 2022; 13:909429. [PMID: 35712568 PMCID: PMC9196123 DOI: 10.3389/fpls.2022.909429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Biological invasions have become one of the greatest threats to global biodiversity and ecosystem conservation. Most previous studies have revealed how successful invasive species adapt to new environments and climate change through phenotypic and genetic evolution. Some researchers suggested that understanding unsuccessful or less successful biological invasions might be important for understanding the relationships between invasion adaptability and climate factors. We compared the sexual reproduction ability, genetic diversity, and gene × environment interaction in two intentionally introduced alien species in China (Spartina anglica and Spartina alterniflora) based on restriction site-associated DNA (RAD) sequencing. After more than 50 years, the distribution of S. alterniflora has rapidly expanded, while S. anglica has experienced extreme dieback. A total of 212,939 single nucleotide polymorphisms (SNPs) for the two Spartina species were used for analysis. The multilocus genotype (MLG) analysis revealed that clonal reproduction was the prevalent mode of reproduction in both species, indicating that a change in the mode of reproduction was not the key factor enabling successful invasion by Spartina. All genetic diversity indicators (He, Ho, π) in S. alterniflora populations were at least two times higher than those in S. anglica populations, respectively (p < 0.001). Furthermore, the population genetic structure and stronger patterns of climate-associated loci provided support for rapid adaptive evolution in the populations of S. alterniflora in China. Altogether, our results highlight the importance of genetic diversity and local adaptation, which were driven by multiple source populations, in increasing the invasiveness of S. alterniflora.
Collapse
|
12
|
Pressley M, Salvioli M, Lewis DB, Richards CL, Brown JS, Staňková K. Evolutionary Dynamics of Treatment-Induced Resistance in Cancer Informs Understanding of Rapid Evolution in Natural Systems. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rapid evolution is ubiquitous in nature. We briefly review some of this quite broadly, particularly in the context of response to anthropogenic disturbances. Nowhere is this more evident, replicated and accessible to study than in cancer. Curiously cancer has been late - relative to fisheries, antibiotic resistance, pest management and evolution in human dominated landscapes - in recognizing the need for evolutionarily informed management strategies. The speed of evolution matters. Here, we employ game-theoretic modeling to compare time to progression with continuous maximum tolerable dose to that of adaptive therapy where treatment is discontinued when the population of cancer cells gets below half of its initial size and re-administered when the cancer cells recover, forming cycles with and without treatment. We show that the success of adaptive therapy relative to continuous maximum tolerable dose therapy is much higher if the population of cancer cells is defined by two cell types (sensitive vs. resistant in a polymorphic population). Additionally, the relative increase in time to progression increases with the speed of evolution. These results hold with and without a cost of resistance in cancer cells. On the other hand, treatment-induced resistance can be modeled as a quantitative trait in a monomorphic population of cancer cells. In that case, when evolution is rapid, there is no advantage to adaptive therapy. Initial responses to therapy are blunted by the cancer cells evolving too quickly. Our study emphasizes how cancer provides a unique system for studying rapid evolutionary changes within tumor ecosystems in response to human interventions; and allows us to contrast and compare this system to other human managed or dominated systems in nature.
Collapse
|
13
|
Hopley T, Webber BL, Raghu S, Morin L, Byrne M. Revealing the Introduction History and Phylogenetic Relationships of Passiflora foetida sensu lato in Australia. FRONTIERS IN PLANT SCIENCE 2021; 12:651805. [PMID: 34394135 PMCID: PMC8358147 DOI: 10.3389/fpls.2021.651805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Genomic analysis can be a valuable tool to assistmanagement of non-native invasive species, through determining source and number of introductions as well as clarifying phylogenetic relationships. Here, we used whole chloroplast sequencing to investigate the introduction history of Passiflora foetida sensu lato in Australia and clarify its relationship with other Passiflora species present. Phylogenetic analysis of chloroplast genome data identified three separate genetic lineages of P. foetida s. l. present in Australia, indicating multiple introductions. These lineages had affinities to samples from three separate areas within the native range in Central and South America that represented phylogenetically distinct lineages. These results provide a basis for a targeted search of the native range of P. foetida s. l. for candidate biological control agents that have co-evolved with this species and are thus better adapted to the lineages that are present in Australia. Results also indicated that the Passiflora species native to Australia are in a separate clade to that of P. foetida s. l. and other introduced Passiflora species cultivated in Australia. This knowledge is important to assess the likelihood of finding biological control agents for P. foetida s. l. that will be sufficiently host-specific for introduction in Australia. As P. foetida s. l. is a widespread non-native invasive species across many regions of the world, outcomes from this work highlight the importance of first evaluating the specific entities present in a country before the initiation of a biological control program.
Collapse
Affiliation(s)
- Tara Hopley
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Bruce L. Webber
- CSIRO Health & Biosecurity, Floreat, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
- Western Australian Biodiversity Science Institute, Perth, WA, Australia
| | - S. Raghu
- CSIRO Health & Biosecurity, Brisbane, QLD, Australia
| | - Louise Morin
- CSIRO Health & Biosecurity, Canberra, ACT, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| |
Collapse
|
14
|
Yang Y, Liu M, Pan Y, Huang H, Pan X, Sosa A, Hou Y, Zhu Z, Li B. Rapid evolution of latitudinal clines in growth and defence of an invasive weed. THE NEW PHYTOLOGIST 2021; 230:845-856. [PMID: 33454953 DOI: 10.1111/nph.17193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Re-establishment of heritable latitudinal clines in growth-related traits has been recognised as evidence for adaptive evolution in invasive plants. However, less information is known about latitudinal clines in defence and joint clinal evolution of growth and defence in invasive plants. We planted 14 native Argentinean populations and 14 introduced Chinese populations of Alternanthera philoxeroides in replicate common gardens in China. We investigated the latitudinal clines of traits related to growth and defence, and plasticity of these traits in relation to experiment site and soil nitrogen. We found that chemical defence decreased with latitude in introduced populations but increased with latitude in native populations. For growth rate, latitudinal clines were positive in introduced populations but nonexistent in native populations. There were also parallel positive latitudinal clines in total/shoot biomass and specific leaf area. Experiment site affected the occurrence or magnitude of latitudinal clines in growth rate, branch intensity and triterpenoid saponins concentration. Introduced populations were more plastic to experiment site and soil nitrogen than native populations. We provide evidence for rapid evolution of clines in growth and defence in an invasive plant. Altered herbivory gradients and trade-off between growth and defence may explain nonparallel clines between the native and introduced ranges.
Collapse
Affiliation(s)
- Yang Yang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Mu Liu
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Yuanfei Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Heyan Huang
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Xiaoyun Pan
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, 850000, China
- Tibet University - Fudan University Joint Laboratory for Biodiversity and Global Change, Fudan University, Shanghai, 200032, China
| | - Alejandro Sosa
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, 999071, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, 999071, Argentina
| | - Yuping Hou
- College of Life Sciences, Ludong University, Yantai, 264025, China
| | - Zhengcai Zhu
- Guangzhou Zengcheng Institute of Forestry and Landscape Architecture, Guangzhou, 511300, China
| | - Bo Li
- National Observation and Research Station for Yangtze Estuarine Wetland Ecosystems, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
15
|
Turner KG, Ostevik KL, Grassa CJ, Rieseberg LH. Genomic Analyses of Phenotypic Differences Between Native and Invasive Populations of Diffuse Knapweed (Centaurea diffusa). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.577635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Invasive species represent excellent opportunities to study the evolutionary potential of traits important to success in novel environments. Although some ecologically important traits have been identified in invasive species, little is typically known about the genetic mechanisms that underlie invasion success in non-model species. Here, we use a genome-wide association (GWAS) approach to identify the genetic basis of trait variation in the non-model, invasive, diffuse knapweed [Centaurea diffusa Lam. (Asteraceae)]. To assist with this analysis, we have assembled the first draft genome reference and fully annotated plastome assembly for this species, and one of the first from this large, weedy, genus, which is of major ecological and economic importance. We collected phenotype data from 372 individuals from four native and four invasive populations of C. diffusa grown in a common environment. Using these individuals, we produced reduced-representation genotype-by-sequencing (GBS) libraries and identified 7,058 SNPs. We identify two SNPs associated with leaf width in these populations, a trait which significantly varies between native and invasive populations. In this rosette forming species, increased leaf width is a major component of increased biomass, a common trait in invasive plants correlated with increased fitness. Finally, we use annotations from Arabidopsis thaliana to identify 98 candidate genes that are near the associated SNPs and highlight several good candidates for leaf width variation.
Collapse
|
16
|
Popovic I, Bierne N, Gaiti F, Tanurdžić M, Riginos C. Pre-introduction introgression contributes to parallel differentiation and contrasting hybridization outcomes between invasive and native marine mussels. J Evol Biol 2020; 34:175-192. [PMID: 33251632 DOI: 10.1111/jeb.13746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Non-native species experience novel selection pressures in introduced environments and may interbreed with native lineages. Species introductions therefore provide opportunities to investigate repeated patterns of adaptation and introgression across replicated contact zones. Here, we investigate genetic parallelism between multiple introduced populations of the invasive marine mussel, Mytilus galloprovincialis, in the absence (South Africa and California) and presence of hybridization with a native congener (Mytilus planulatus in Batemans Bay and Sydney Harbour, Australia). Repeatability in post-introduction differentiation from native-range populations varied between genetically distinct Atlantic and Mediterranean lineages, with Atlantic-derived introductions displaying high differentiation (maxFST > 0.4) and parallelism at outlier loci. Identification of long noncoding RNA transcripts (lncRNA) additionally allowed us to clarify that parallel responses are largely limited to protein-coding loci, with lncRNAs likely evolving under evolutionary constraints. Comparisons of independent hybrid zones revealed differential introgression most strongly in Batemans Bay, with an excess of M. galloprovincialis ancestry and resistance to introgression at loci differentiating parental lineages (M. planulatus and Atlantic M. galloprovincialis). Additionally, contigs putatively introgressed with divergent alleles from a closely related species, Mytilus edulis, showed stronger introgression asymmetries compared with genome-wide trends and also diverged in parallel in both Atlantic-derived introductions. These results suggest that divergent demographic histories experienced by introduced lineages, including pre-introduction introgression, influence contemporary admixture dynamics. Our findings build on previous investigations reporting contributions of historical introgression to intrinsic reproductive architectures shared between marine lineages and illustrate that interspecific introgression history can shape differentiation between colonizing populations and their hybridization with native congeners.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution UMR 5554, Université de Montpellier, CNRS-IRD-EPHE-UM, Montpellier, France
| | - Federico Gaiti
- Weill Cornell Medicine, New York, NY, USA.,New York Genome Center, New York, NY, USA
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Cynthia Riginos
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
17
|
Lakoba VT, Barney JN. Home climate and habitat drive ecotypic stress response differences in an invasive grass. AOB PLANTS 2020; 12:plaa062. [PMID: 33408848 PMCID: PMC7770431 DOI: 10.1093/aobpla/plaa062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Invasive plants and agricultural weeds are a ubiquitous and ever-expanding threat to biosecurity, biodiversity and ecosystem services. Many of these species are known to succeed through rapid adaptation to biotic and abiotic stress regimes, often in highly disturbed systems. Given the current state of evidence for selection of weedy genotypes via primary physiological stresses like drought, flooding, heat, cold and nutrient deficiency, we posit that adaptation to land management regimes which comprise suites of these stresses can also be expected. To establish this link, we tested adaptation to water and nutrient stresses in five non-agricultural and five agricultural populations of the invader Johnsongrass (Sorghum halepense) sampled across a broad range of climates in the USA. We subjected seedlings from each population to factorial drought and nutrient stresses in a common garden greenhouse experiment. Agricultural and non-agricultural ecotypes did not respond differently to experimentally applied stresses. However, non-agricultural populations from more drought-prone and nutrient-poor locations outperformed their agricultural counterparts in shoot allocation and chlorophyll production, respectively. We also found evidence for root allocation adaptation to hotter climates, in line with other C4 grasses, while greater adaptation to drought treatment was associated with soil organic carbon (SOC)-rich habitats. These findings imply that adaptation to land-use types can interact with other macrohabitat parameters, which will be fluctuating in a changing climate and resource-needy world. We see that invasive plants are poised to take on novel habitats within their introduced ranges, leading to complications in the prevention and management of their spread.
Collapse
Affiliation(s)
- Vasiliy T Lakoba
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jacob N Barney
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
18
|
Ramula S, Kalske A. Introduced plants of Lupinus polyphyllus are larger but flower less frequently than conspecifics from the native range: Results of the first year. Ecol Evol 2020; 10:13742-13751. [PMID: 33391677 PMCID: PMC7771124 DOI: 10.1002/ece3.6964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/11/2022] Open
Abstract
Introduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb Lupinus polyphyllus based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots). We also explored whether climate of origin (temperature) influenced plant traits and quantified the degree to which trait variability was explained collectively by country and temperature as compared to other population-level differences. Three out of four plant traits differed between the native and introduced populations; only seed mass was similar between countries, with most of its variation attributed to other sources of intraspecific variation not accounted for by country and temperature. Under common garden conditions, plants originating from introduced populations were larger than those originating from native populations. However, plants from the introduced range flowered less frequently and had fewer flowering shoots than their native-range counterparts. Temperature of a population's origin influenced plant size in the common garden, with plant size increasing with increasing mean annual temperature in both native and introduced populations. Our results of the first year reveal genetic basis for phenotypic differences in some fitness-related traits between the native and introduced populations of L. polyphyllus. However, not all of these trait differences necessarily contribute to the invasion success of the species and thus may not be adaptive, which raises a question how persistent the trait differences observed in the first year are later in individuals' life for perennial herbs.
Collapse
Affiliation(s)
- Satu Ramula
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Aino Kalske
- Department of BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
19
|
Hodgins KA, Guggisberg A, Nurkowski K, Rieseberg LH. Genetically Based Trait Differentiation but Lack of Trade-offs between Stress Tolerance and Performance in Introduced Canada Thistle. PLANT COMMUNICATIONS 2020; 1:100116. [PMID: 33367269 PMCID: PMC7748015 DOI: 10.1016/j.xplc.2020.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Trade-offs between performance and tolerance of abiotic and biotic stress have been proposed to explain both the success of invasive species and frequently observed size differences between native and introduced populations. Canada thistle seeds collected from across the introduced North American and the native European range were grown in benign and stressful conditions (nutrient stress, shading, simulated herbivory, drought, and mowing), to evaluate whether native and introduced individuals differ in performance or stress tolerance. An additional experiment assessed the strength of maternal effects by comparing plants derived from field-collected seeds with those derived from clones grown in the glasshouse. Introduced populations tended to be larger in size, but no trade-off of stress tolerance with performance was detected; introduced populations had either superior performance or equivalent trait values and survivorship in the treatment common gardens. We also detected evidence of parallel latitudinal clines of some traits in both the native and introduced ranges and associations with climate variables in some treatments, consistent with recent climate adaptation within the introduced range. Our results are consistent with rapid adaptation of introduced populations, but, contrary to predictions, the evolution of invasive traits did not come at the cost of reduced stress tolerance.
Collapse
Affiliation(s)
- Kathryn A. Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Alessia Guggisberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kristin Nurkowski
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Sethuraman A, Janzen FJ, Weisrock DW, Obrycki JJ. Insights from Population Genomics to Enhance and Sustain Biological Control of Insect Pests. INSECTS 2020; 11:E462. [PMID: 32708047 PMCID: PMC7469154 DOI: 10.3390/insects11080462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 01/25/2023]
Abstract
Biological control-the use of organisms (e.g., nematodes, arthropods, bacteria, fungi, viruses) for the suppression of insect pest species-is a well-established, ecologically sound and economically profitable tactic for crop protection. This approach has served as a sustainable solution for many insect pest problems for over a century in North America. However, all pest management tactics have associated risks. Specifically, the ecological non-target effects of biological control have been examined in numerous systems. In contrast, the need to understand the short- and long-term evolutionary consequences of human-mediated manipulation of biological control organisms for importation, augmentation and conservation biological control has only recently been acknowledged. Particularly, population genomics presents exceptional opportunities to study adaptive evolution and invasiveness of pests and biological control organisms. Population genomics also provides insights into (1) long-term biological consequences of releases, (2) the ecological success and sustainability of this pest management tactic and (3) non-target effects on native species, populations and ecosystems. Recent advances in genomic sequencing technology and model-based statistical methods to analyze population-scale genomic data provide a much needed impetus for biological control programs to benefit by incorporating a consideration of evolutionary consequences. Here, we review current technology and methods in population genomics and their applications to biological control and include basic guidelines for biological control researchers for implementing genomic technology and statistical modeling.
Collapse
Affiliation(s)
- Arun Sethuraman
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Fredric J Janzen
- Department of Ecology, Evolution, & Organismal Biology, Iowa State University, Ames, IA 50010, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - David W Weisrock
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
21
|
Population genomic and phenotype diversity of invasive Drosophila suzukii in Hawai‘i. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ollivier M, Kazakou E, Corbin M, Sartori K, Gooden B, Lesieur V, Thomann T, Martin JF, Tixier MS. Trait differentiation between native and introduced populations of the invasive plant Sonchus oleraceus L. (Asteraceae). NEOBIOTA 2020. [DOI: 10.3897/neobiota.55.49158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
There is growing evidence that rapid adaptation to novel environments drives successful establishment and spread of invasive plant species. However, the mechanisms driving trait adaptation, such as selection pressure from novel climate niche envelopes, remain poorly tested at global scales. In this study, we investigated differences in 20 traits (relating to growth, resource acquisition, reproduction, phenology and defence) amongst 14 populations of the herbaceous plant Sonchus oleraceus L. (Asteraceae) across its native (Europe and North Africa) and introduced (Australia and New Zealand) ranges. We compared traits amongst populations grown under standard glasshouse conditions. Introduced S. oleraceus plants seemed to outperform native plants, i.e. possessing higher leaf and stem dry matter content, greater number of leaves and were taller at first flowering stage. Although introduced plants produced fewer seeds, they had a higher germination rate than native plants. We found strong evidence for adaptation along temperature and precipitation gradients for several traits (e.g. shoot height, biomass, leaf and stem dry matter contents increased with minimum temperatures, while germination rate decreased with annual precipitations and temperatures), which suggests that similar selective forces shape populations in both the native and invaded ranges. We detected significant shifts in the relationships (i.e. trade-offs) (i) between plant height and flowering time and (ii) between leaf-stem biomass and grain yield between native and introduced plants, indicating that invasion was associated with changes to life-history dynamics that may confer competitive advantages over native vegetation. Specifically, we found that, at first flowering, introduced plants tended to be taller than native ones and that investment in leaf and stem biomass was greater in introduced than in native plants for equivalent levels of grain yield. Our study has demonstrated that climatic conditions may drive rapid adaption to novel environments in invasive plant species.
Collapse
|
23
|
Liu W, Zhang Y, Chen X, Maung-Douglass K, Strong DR, Pennings SC. Contrasting plant adaptation strategies to latitude in the native and invasive range of Spartina alterniflora. THE NEW PHYTOLOGIST 2020; 226:623-634. [PMID: 31834631 DOI: 10.1111/nph.16371] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Biological invasions offer model systems of contemporary evolution. We examined trait differences and evolution across geographic clines among continents of the intertidal grass Spartina alterniflora within its invasive and native ranges. We sampled vegetative and reproductive traits in the field at 20 sites over 20° latitude in China (invasive range) and 28 sites over 17° in the US (native range). We grew both Chinese and US plants in a glasshouse common garden for 3 yr. Chinese plants were c. 15% taller, c. 10% denser, and set up to four times more seed than US plants in both the field and common garden. The common garden experiments showed a striking genetic cline of seven-fold greater seed set at higher latitudes in the introduced but not the native range. By contrast, there was a slight genetic cline in some vegetative traits in the native but not the introduced range. Our results are consistent with others showing that introduced plants can evolve rapidly in the new range. S. alterniflora has evolved different trait clines in the native and introduced ranges, showing the importance of phenotypic plasticity and genetic control of change during the invasion process.
Collapse
Affiliation(s)
- Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Xincong Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China
| | - Keith Maung-Douglass
- Coastal Sustainability Studio, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Donald R Strong
- Department of Evolution and Ecology, University of California, Davis, CA, 95616, USA
| | - Steven C Pennings
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
24
|
Li W, Zheng Y, Zhang L, Lei Y, Li Y, Liao Z, Li Z, Feng Y. Postintroduction evolution contributes to the successful invasion of Chromolaena odorata. Ecol Evol 2020; 10:1252-1263. [PMID: 32076511 PMCID: PMC7029091 DOI: 10.1002/ece3.5979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/03/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
The evolution of increased competitive ability (EICA) hypothesis states that, when introduced in a novel habitat, invasive species may reallocate resources from costly quantitative defense mechanisms against enemies to dispersal and reproduction; meanwhile, the refinement of EICA suggests that concentrations of toxins used for qualitative defense against generalist herbivores may increase. Previous studies considered that only few genotypes were introduced to the new range, whereas most studies to test the EICA (or the refinement of EICA) hypotheses did not consider founder effects.In this study, genetic and phenotypic data of Chromolaena odorata populations sampled across native and introduced ranges were combined to investigate the role of postintroduction evolution in the successful invasion of C. odorata.Compared with native populations, the introduced populations exhibited lower levels of genetic diversity. Moreover, different founder effects events were interpreted as the main cause of the genetic structure observed in introduced ranges. Three Florida, two Trinidad, and two Puerto Rico populations may have been the sources of the invasive C. odorata in Asia.When in free of competition conditions, C. odorata plants from introduced ranges perform better than those from native ranges at high nutrient supply but not at low nutrient level. The differences in performance due to competition were significantly greater for C. odorata plants from the native range than those from the introduced range at both nutrient levels. Moreover, the differences in performance by competition were significantly greater for putative source populations than for invasive populations.Quantities of three types of secondary compounds in leaves of invasive C. odorata populations were significantly higher than those in putative source populations. These results provide more accurate evidence that the competitive ability of the introduced C. odorata is increased with postintroduction evolution.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Yulong Zheng
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- University of Chinese Academy of SciencesBeijingChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Likun Zhang
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yanbao Lei
- University of Chinese Academy of SciencesBeijingChina
- Institute of Mountain Hazards and EnvironmentChinese Academy of SciencesChengduChina
| | - Yangping Li
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Zhiyong Liao
- CAS Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
- Center of Conservation BiologyCore Botanical GardensChinese Academy of SciencesMenglaChina
| | - Zhongpei Li
- Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global ChangesShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
25
|
Qiao H, Liu W, Zhang Y, Zhang YY, Li QQ. Genetic admixture accelerates invasion via provisioning rapid adaptive evolution. Mol Ecol 2019; 28:4012-4027. [PMID: 31339595 DOI: 10.1111/mec.15192] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022]
Abstract
Genetic admixture, the intraspecific hybridization among divergent introduced sources, can immediately facilitate colonization via hybrid vigor and profoundly enhance invasion via contributing novel genetic variation to adaption. As hybrid vigor is short-lived, provisioning adaptation is anticipated to be the dominant and long-term profit of genetic admixture, but the evidence for this is rare. We employed the 30 years' geographic-scale invasion of the salt marsh grass, Spartina alterniflora, as an evolutionary experiment and evaluated the consequences of genetic admixture by combining the reciprocal transplant experiment with quantitative and population genetic surveys. Consistent with the documentation, we found that the invasive populations in China had multiple origins from the southern Atlantic coast and the Gulf of Mexico in the US. Interbreeding among these multiple sources generated a "hybrid swarm" that spread throughout the coast of China. In the northern and mid-latitude China, natural selection greatly enhanced fecundity, plant height and shoot regeneration compared to the native populations. Furthermore, genetic admixture appeared to have broken the negative correlation between plant height and shoot regeneration, which was genetically-based in the native range, and have facilitated the evolution of super competitive genotypes in the invasive range. In contrast to the evolved northern and mid-latitude populations, the southern invasive populations showed slight increase of plant height and shoot regeneration compared to the native populations, possibly reflecting the heterotic effect of the intraspecific hybridization. Therefore, our study suggests a critical role of genetic admixture in accelerating the geographic invasion via provisioning rapid adaptive evolution.
Collapse
Affiliation(s)
- Hongmei Qiao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Wenwen Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
26
|
Liu M, Liao H, Peng S. Salt-tolerant native plants have greater responses to other environments when compared to salt-tolerant invasive plants. Ecol Evol 2019; 9:7808-7818. [PMID: 31346442 PMCID: PMC6635938 DOI: 10.1002/ece3.5368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/24/2019] [Indexed: 11/09/2022] Open
Abstract
The strong expansion potential of invasive plants is often attributed to fast adaptive responses to stress. However, the evolution of tolerance to one stressor may affect the responses to other stressors. Currently, it remains unclear what effect the evolution to one stressor might have on the responses to other single or combined stressors. Moreover, it is unknown how this might differ between invasive and native species.Invasive plants (Mikania micrantha and Bidens pilosa) and native plants (Merremia hederacea and Sida acuta) from low- and high-salinity habitats were grown under control and stressful conditions [salt stress, water stress (drought/waterlogging), and their combinations]. We explored the effects of evolved salt tolerance on the responses to water stress/combined stresses and the underlying trait mechanisms.The high-salinity populations of all species exhibited stronger salt tolerance than the low-salinity populations. As to the tolerance to other stressors, the high-salinity and low-salinity populations of the invasive species were similar, whereas the high-salinity populations of the native species exhibited stronger tolerance than the low-salinity populations under most stress treatments. However, the enhanced salt tolerance in native species was accompanied by reduced total biomass under control condition. The stress tolerance of native species correlated with leaf production rate and allocation to root, while the performance of native species under control condition correlated with leaf morphology and carbon assimilation rate. This suggests a trade-off between salt tolerance and performance in the native but not the invasive species, probably resulting from altered phenotypic/physiological traits. SYNTHESIS Our work suggests that the evolution of tolerance to one stressor may have stronger effects on the tolerance to other stressors of the native compared with the invasive species. This may be a new paradigm to explain the greater advantage of invasive vs. native species in highly stressful habitats.
Collapse
Affiliation(s)
- Muxin Liu
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Huixuan Liao
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol School of Life Sciences Sun Yat-sen University Guangzhou China
| |
Collapse
|
27
|
van Boheemen LA, Bou‐Assi S, Uesugi A, Hodgins KA. Rapid growth and defence evolution following multiple introductions. Ecol Evol 2019; 9:7942-7956. [PMID: 31380062 PMCID: PMC6662289 DOI: 10.1002/ece3.5275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/23/2019] [Accepted: 05/04/2019] [Indexed: 01/02/2023] Open
Abstract
Rapid adaptation can aid invasive populations in their competitive success. Resource allocation trade-off hypotheses predict higher resource availability or the lack of natural enemies in introduced ranges allow for increased growth and reproduction, thus contributing to invasive success. Evidence for such hypotheses is however equivocal and tests among multiple ranges over productivity gradients are required to provide a better understanding of the general applicability of these theories.Using common gardens, we investigated the adaptive divergence of various constitutive and inducible defence-related traits between the native North American and introduced European and Australian ranges, while controlling for divergence due to latitudinal trait clines, individual resource budgets, and population differentiation, using >11,000 SNPs.Rapid, repeated clinal adaptation in defence-related traits was apparent despite distinct demographic histories. We also identified divergence among ranges in some defence-related traits, although differences in energy budgets among ranges may explain some, but not all, defence-related trait divergence. We do not identify a general reduction in defence in concert with an increase in growth among the multiple introduced ranges as predicted trade-off hypotheses. Synthesis: The rapid spread of invasive species is affected by a multitude of factors, likely including adaptation to climate and escape from natural enemies. Unravelling the mechanisms underlying invasives' success enhances understanding of eco-evolutionary theory and is essential to inform management strategies in the face of ongoing climate change. OPEN RESEARCH BADGES This article has been awarded Open Materials, Open Data, Preregistered Research Designs Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.6084/m9.figshare.8028875.v1, https://github.com/lotteanna/defence_adaptation,https://doi.org/10.1101/435271.
Collapse
Affiliation(s)
| | - Sarah Bou‐Assi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Akane Uesugi
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | | |
Collapse
|
28
|
Evidence does not support the targeting of cryptic invaders at the subspecies level using classical biological control: the example of Phragmites. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02014-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Luo X, Xu X, Zheng Y, Guo H, Hu S. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02004-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
van Boheemen LA, Atwater DZ, Hodgins KA. Rapid and repeated local adaptation to climate in an invasive plant. THE NEW PHYTOLOGIST 2019; 222:614-627. [PMID: 30367474 DOI: 10.1111/nph.15564] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Biological invasions provide opportunities to study evolutionary processes occurring over contemporary timescales. To explore the speed and repeatability of adaptation, we examined the divergence of life-history traits to climate, using latitude as a proxy, in the native North American and introduced European and Australian ranges of the annual plant Ambrosia artemisiifolia. We explored niche changes following introductions using climate niche dynamic models. In a common garden, we examined trait divergence by growing seeds collected across three ranges with highly distinct demographic histories. Heterozygosity-fitness associations were used to explore the effect of invasion history on potential success. We accounted for nonadaptive population differentiation using 11 598 single nucleotide polymorphisms. We revealed a centroid shift to warmer, wetter climates in the introduced ranges. We identified repeated latitudinal divergence in life-history traits, with European and Australian populations positioned at either end of the native clines. Our data indicate rapid and repeated adaptation to local climates despite the recent introductions and a bottleneck limiting genetic variation in Australia. Centroid shifts in the introduced ranges suggest adaptation to more productive environments, potentially contributing to trait divergence between the ranges.
Collapse
Affiliation(s)
- Lotte A van Boheemen
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | - Daniel Z Atwater
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| |
Collapse
|
31
|
Lin T, Klinkhamer PGL, Pons TL, Mulder PPJ, Vrieling K. Evolution of Increased Photosynthetic Capacity and Its Underlying Traits in Invasive Jacobaea vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:1016. [PMID: 31440269 PMCID: PMC6694182 DOI: 10.3389/fpls.2019.01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/19/2019] [Indexed: 05/14/2023]
Abstract
The evolution of increased competitive ability (EICA) hypothesis and the shifting defense hypothesis (SDH) predict that evolutionary changes occur in a suite of traits related to defense and growth in invasive plant species as result of the absence of specialist herbivores. We tested how this suite of traits changed due to the absence of specialist herbivores in multiple invasive regions that differ in climatic conditions with native and invasive Jacobaea vulgaris in a controlled environment. We hypothesized that invasive J. vulgaris in all invasive regions have i) a higher plant growth and underlying traits, such as photosynthetic capacity, ii) lower regrowth-related traits, such as carbohydrate storage, and iii) an increased plant qualitative defense, such as pyrrolizidine alkaloids (PAs). Our results show that invasive J. vulgaris genotypes have evolved a higher photosynthetic rate and total PA concentration but a lower investment in root carbohydrates, which supports the SDH hypothesis. All the traits changed consistently and significantly in the same direction in all four invasive regions, indicative of a parallel evolution. Climatic and soil variables did differ between ranges but explained only a very small part of the variation in trait values. The latter suggests that climate and soil changes were not the main selective forces on these traits.
Collapse
Affiliation(s)
- Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Tiantian Lin,
| | - Peter G. L. Klinkhamer
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| | - Thijs L. Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | | | - Klaas Vrieling
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
32
|
Gallego-Tévar B, Curado G, Grewell BJ, Figueroa ME, Castillo JM. Realized niche and spatial pattern of native and exotic halophyte hybrids. Oecologia 2018; 188:849-862. [DOI: 10.1007/s00442-018-4251-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/20/2018] [Indexed: 11/28/2022]
|
33
|
Tavares D, Loureiro J, Martins A, Castro M, Roiloa S, Castro S. Genetically based phenotypic differentiation between native and introduced tetraploids of Oxalis pes-caprae. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1820-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Martín-Forés I, Acosta-Gallo B, Castro I, de Miguel JM, del Pozo A, Casado MA. The invasiveness of Hypochaeris glabra (Asteraceae): Responses in morphological and reproductive traits for exotic populations. PLoS One 2018; 13:e0198849. [PMID: 29902275 PMCID: PMC6002075 DOI: 10.1371/journal.pone.0198849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/25/2018] [Indexed: 11/23/2022] Open
Abstract
Scientists have been interested in many topics driven by biological invasions, such as shifts in the area of distribution of plant species and rapid evolution. Invasiveness of exotic plant species depends on variations on morphological and reproductive traits potentially associated with reproductive fitness and dispersal ability, which are expected to undergo changes during the invasion process. Numerous Asteraceae are invasive and display dimorphic fruits, resulting in a bet-hedging dispersal strategy –wind-dispersed fruits versus animal-dispersed fruits–. We explored phenotypic differentiation in seed morphology and reproductive traits of exotic (Chilean) and native (Spanish) populations of Hypochaeris glabra. We collected flower heads from five Spanish and five Chilean populations along rainfall gradients in both countries. We planted seeds from the ten populations in a common garden trial within the exotic range to explore their performance depending on the country of origin (native or exotic) and the environmental conditions at population origin (precipitation and nutrient availability). We scored plant biomass, reproductive traits and fruit dimorphism patterns. We observed a combination of bet-hedging strategy together with phenotypic differentiation. Native populations relied more on bet-hedging while exotic populations always displayed greater proportion of wind-dispersed fruits than native ones. This pattern may reflect a strategy that might entail a more efficient long distance dispersal of H. glabra seeds in the exotic range, which in turn can enhance the invasiveness of this species.
Collapse
Affiliation(s)
- Irene Martín-Forés
- Department of Biogeography and Global Change, National Museum of Natural Sciences (BGC-MNCN), Spanish National Research Council (CSIC), Madrid, Spain
- Complutense University of Madrid, Department of Ecology, Madrid, Spain
- * E-mail: ,
| | | | - Isabel Castro
- Autonomous University of Madrid, Department of Ecology, Madrid, Spain
| | - José M. de Miguel
- Complutense University of Madrid, Department of Ecology, Madrid, Spain
| | | | - Miguel A. Casado
- Complutense University of Madrid, Department of Ecology, Madrid, Spain
| |
Collapse
|
35
|
van Moorsel SJ. Sofia J. van Moorsel. THE NEW PHYTOLOGIST 2018; 217:993-994. [PMID: 29334599 DOI: 10.1111/nph.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
36
|
Stutz S, Mráz P, Hinz HL, Müller-Schärer H, Schaffner U. Biological invasion of oxeye daisy (Leucanthemum vulgare) in North America: Pre-adaptation, post-introduction evolution, or both? PLoS One 2018; 13:e0190705. [PMID: 29300760 PMCID: PMC5754128 DOI: 10.1371/journal.pone.0190705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022] Open
Abstract
Species may become invasive after introduction to a new range because phenotypic traits pre-adapt them to spread and become dominant. In addition, adaptation to novel selection pressures in the introduced range may further increase their potential to become invasive. The diploid Leucanthemum vulgare and the tetraploid L. ircutianum are native to Eurasia and have been introduced to North America, but only L. vulgare has become invasive. To investigate whether phenotypic differences between the two species in Eurasia could explain the higher abundance of L. vulgare in North America and whether rapid evolution in the introduced range may have contributed to its invasion success, we grew 20 L. vulgare and 21 L. ircutianum populations from Eurasia and 21 L. vulgare populations from North America under standardized conditions and recorded performance and functional traits. In addition, we recorded morphological traits to investigate whether the two closely related species can be clearly distinguished by morphological means and to what extent morphological traits have changed in L. vulgare post-introduction. We found pronounced phenotypic differences between L. vulgare and L. ircutianum from the native range as well as between L. vulgare from the native and introduced ranges. The two species differed significantly in morphology but only moderately in functional or performance traits that could have explained the higher invasion success of L. vulgare in North America. In contrast, leaf morphology was similar between L. vulgare from the native and introduced range, but plants from North America flowered later, were larger and had more and larger flower heads than those from Eurasia. In summary, we found litte evidence that specific traits of L. vulgare may have pre-adapted this species to become more invasive than L. ircutianum, but our results indicate that rapid evolution in the introduced range likely contributed to the invasion success of L. vulgare.
Collapse
Affiliation(s)
- Sonja Stutz
- CABI, Delémont, Switzerland
- Department of Biology/Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| | - Patrik Mráz
- Herbarium and Department of Botany, Charles University in Prague, Prague, Czech Republic
| | | | - Heinz Müller-Schärer
- Department of Biology/Ecology & Evolution, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
37
|
Cheng D, Nguyen VT, Ndihokubwayo N, Ge J, Mulder PPJ. Pyrrolizidine alkaloid variation in Senecio vulgaris populations from native and invasive ranges. PeerJ 2017; 5:e3686. [PMID: 28828276 PMCID: PMC5560238 DOI: 10.7717/peerj.3686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Biological invasion is regarded as one of the greatest environmental problems facilitated by globalization. Some hypotheses about the invasive mechanisms of alien invasive plants consider the plant–herbivore interaction and the role of plant defense in this interaction. For example, the “Shift Defense Hypothesis” (SDH) argues that introduced plants evolve higher levels of qualitative defense chemicals and decreased levels of quantitative defense, as they are released of the selective pressures from specialist herbivores but still face attack from generalists. Common groundsel (Senecio vulgaris), originating from Europe, is a cosmopolitan invasive plant in temperate regions. As in other Senecio species, S. vulgaris contains pyrrolizidine alkaloids (PAs) as characteristic qualitative defense compounds. In this study, S. vulgaris plants originating from native and invasive ranges (Europe and China, respectively) were grown under identical conditions and harvested upon flowering. PA composition and concentration in shoot and root samples were determined using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). We investigated the differences between native and invasive S. vulgaris populations with regard to quantitative and qualitative variation of PAs. We identified 20 PAs, among which senecionine, senecionine N-oxide, integerrimine N-oxide and seneciphylline N-oxide were dominant in the roots. In the shoots, in addition to the 4 PAs dominant in roots, retrorsine N-oxide, spartioidine N-oxide and 2 non-identified PAs were also prevalent. The roots possessed a lower PA diversity but a higher total PA concentration than the shoots. Most individual PAs as well as the total PA concentration were strongly positively correlated between the roots and shoots. Both native and invasive S. vulgaris populations shared the pattern described above. However, there was a slight trend indicating lower PA diversity and lower total PA concentration in invasive S. vulgaris populations than native populations, which is not consistent with the prediction of SDH.
Collapse
Affiliation(s)
- Dandan Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Viet-Thang Nguyen
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.,Faculity of Biology and Agriculture Engineering, Thai Nguyen University of Education, Thai Nguyen, Vietnam
| | - Noel Ndihokubwayo
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.,Département des Sciences Naturelles, Ecole Normale Supérieure, Bujumbura, Burundi
| | - Jiwen Ge
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, China
| | | |
Collapse
|
38
|
Austen EJ, Rowe L, Stinchcombe JR, Forrest JRK. Explaining the apparent paradox of persistent selection for early flowering. THE NEW PHYTOLOGIST 2017; 215:929-934. [PMID: 28418161 DOI: 10.1111/nph.14580] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Decades of observation in natural plant populations have revealed pervasive phenotypic selection for early flowering onset. This consistent pattern seems at odds with life-history theory, which predicts stabilizing selection on age and size at reproduction. Why is selection for later flowering rare? Moreover, extensive evidence demonstrates that flowering time can and does evolve. What maintains ongoing directional selection for early flowering? Several non-mutually exclusive processes can help to reconcile the apparent paradox of selection for early flowering. We outline four: selection through other fitness components may counter observed fecundity selection for early flowering; asymmetry in the flowering-time-fitness function may make selection for later flowering hard to detect; flowering time and fitness may be condition-dependent; and selection on flowering duration is largely unaccounted for. In this Viewpoint, we develop these four mechanisms, and highlight areas where further study will improve our understanding of flowering-time evolution.
Collapse
Affiliation(s)
- Emily J Austen
- Biology Department, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, ON, L7B 1K5, Canada
| | | |
Collapse
|
39
|
Hirsch H, Richardson DM, Le Roux JJ. Introduction to the special issue: Tree invasions: towards a better understanding of their complex evolutionary dynamics. AOB PLANTS 2017; 9:plx014. [PMID: 28533897 PMCID: PMC5420828 DOI: 10.1093/aobpla/plx014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Many invasive plants show evidence of trait-based evolutionary change, but these remain largely unexplored for invasive trees. The increasing number of invasive trees and their tremendous impacts worldwide, however, illustrates the urgent need to bridge this knowledge gap to apply efficient management. Consequently, an interdisciplinary workshop, held in 2015 at Stellenbosch University in Stellenbosch, South Africa, brought together international researchers to discuss our understanding of evolutionary dynamics in invasive trees. The main outcome of this workshop is this Special Issue of AoB PLANTS. The collection of papers in this issue has helped to identify and assess the evolutionary mechanisms that are likely to influence tree invasions. It also facilitated expansion of the unified framework for biological invasions to incorporate key evolutionary processes. The papers cover a wide range of evolutionary mechanisms in tree genomes (adaptation), epigenomes (phenotypic plasticity) and their second genomes (mutualists), and show how such mechanisms can impact tree invasion processes and management. The special issue provides a comprehensive overview of the factors that promote and mitigate the invasive success of tree species in many parts of the world. It also shows that incorporating evolutionary concepts is crucial for understanding the complex drivers of tree invasions and has much potential to improve management. The contributions of the special issue also highlight many priorities for further work in the face of ever-increasing tree invasions; the complexity of this research needs calls for expanded interdisciplinary research collaborations.
Collapse
Affiliation(s)
- Heidi Hirsch
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Johannes J. Le Roux
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
40
|
Stastny M, Sargent RD. Evidence for rapid evolutionary change in an invasive plant in response to biological control. J Evol Biol 2017; 30:1042-1052. [PMID: 28370749 DOI: 10.1111/jeb.13078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023]
Abstract
We present evidence that populations of an invasive plant species that have become re-associated with a specialist herbivore in the exotic range through biological control have rapidly evolved increased antiherbivore defences compared to populations not exposed to biocontrol. We grew half-sib families of the invasive plant Lythrum salicaria sourced from 17 populations near Ottawa, Canada, that differed in their history of exposure to a biocontrol agent, the specialist beetle Neogalerucella calmariensis. In a glasshouse experiment, we manipulated larval and adult herbivory to examine whether a population's history of biocontrol influenced plant defence and growth. Plants sourced from populations with a history of biocontrol suffered lower defoliation than naïve, previously unexposed populations, strongly suggesting they had evolved higher resistance. Plants from biocontrol-exposed populations were also larger and produced more branches in response to herbivory, regrew faster even in the absence of herbivory and were better at compensating for the impacts of herbivory on growth (i.e. they exhibited increased tolerance). Furthermore, resistance and tolerance were positively correlated among genotypes with a history of biocontrol but not among naïve genotypes. Our findings suggest that biocontrol can rapidly select for increased defences in an invasive plant and may favour a mixed defence strategy of resistance and tolerance without an obvious cost to plant vigour. Although rarely studied, such evolutionary responses in the target species have important implications for the long-term efficacy of biocontrol programmes.
Collapse
Affiliation(s)
- M Stastny
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - R D Sargent
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
41
|
Turner KG, Nurkowski KA, Rieseberg LH. Gene expression and drought response in an invasive thistle. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1308-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Liao H, D'Antonio CM, Chen B, Huang Q, Peng S. How much do phenotypic plasticity and local genetic variation contribute to phenotypic divergences along environmental gradients in widespread invasive plants? A meta-analysis. OIKOS 2016. [DOI: 10.1111/oik.02372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huixuan Liao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ.; CN-510006 Guangzhou PR China
| | - Carla M. D'Antonio
- Ecology Evolution and Marine Biology; Univ. of California; Santa Barbara CA 93106-4160 USA
| | - Baoming Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ.; CN-510006 Guangzhou PR China
| | - Qiaoqiao Huang
- Inst. of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences; CN-571737 Danzhou PR China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen Univ.; CN-510006 Guangzhou PR China
| |
Collapse
|
43
|
Geng Y, van Klinken RD, Sosa A, Li B, Chen J, Xu CY. The Relative Importance of Genetic Diversity and Phenotypic Plasticity in Determining Invasion Success of a Clonal Weed in the USA and China. FRONTIERS IN PLANT SCIENCE 2016; 7:213. [PMID: 26941769 PMCID: PMC4764702 DOI: 10.3389/fpls.2016.00213] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 05/18/2023]
Abstract
Phenotypic plasticity has been proposed as an important adaptive strategy for clonal plants in heterogeneous habitats. Increased phenotypic plasticity can be especially beneficial for invasive clonal plants, allowing them to colonize new environments even when genetic diversity is low. However, the relative importance of genetic diversity and phenotypic plasticity for invasion success remains largely unknown. Here, we performed molecular marker analyses and a common garden experiment to investigate the genetic diversity and phenotypic plasticity of the globally important weed Alternanthera philoxeroides in response to different water availability (terrestrial vs. aquatic habitats). This species relies predominantly on clonal propagation in introduced ranges. We therefore expected genetic diversity to be restricted in the two sampled introduced ranges (the USA and China) when compared to the native range (Argentina), but that phenotypic plasticity may allow the species' full niche range to nonetheless be exploited. We found clones from China had very low genetic diversity in terms of both marker diversity and quantitative variation when compared with those from the USA and Argentina, probably reflecting different introduction histories. In contrast, similar patterns of phenotypic plasticity were found for clones from all three regions. Furthermore, despite the different levels of genetic diversity, bioclimatic modeling suggested that the full potential bioclimatic distribution had been invaded in both China and USA. Phenotypic plasticity, not genetic diversity, was therefore critical in allowing A. philoxeroides to invade diverse habitats across broad geographic areas.
Collapse
Affiliation(s)
- Yupeng Geng
- School of Ecology and Environmental Sciences, Institute of Ecology and Geobotany, Yunnan UniversityKunming, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan UniversityShanghai, China
| | | | - Alejandro Sosa
- Fundación para el Estudio de Especies InvasivasHurlingham, Buenos Aires, Argentina
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan UniversityShanghai, China
| | - Jiakuan Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan UniversityShanghai, China
- *Correspondence: Jiakuan Chen
| | - Cheng-Yuan Xu
- School of Medical and Applied Sciences, Central Queensland UniversityBundaberg, QLD, Australia
- Cheng-Yuan Xu
| |
Collapse
|
44
|
Turner KG, Fréville H, Rieseberg LH. Adaptive plasticity and niche expansion in an invasive thistle. Ecol Evol 2015; 5:3183-97. [PMID: 26357544 PMCID: PMC4559060 DOI: 10.1002/ece3.1599] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 01/14/2023] Open
Abstract
Phenotypic differentiation in size and fecundity between native and invasive populations of a species has been suggested as a causal driver of invasion in plants. Local adaptation to novel environmental conditions through a micro-evolutionary response to natural selection may lead to phenotypic differentiation and fitness advantages in the invaded range. Local adaptation may occur along a stress tolerance trade-off, favoring individuals that, in benign conditions, shift resource allocation from stress tolerance to increased vigor and fecundity and, therefore, invasiveness. Alternately, the typically disturbed invaded range may select for a plastic, generalist strategy, making phenotypic plasticity the main driver of invasion success. To distinguish between these hypotheses, we performed a field common garden and tested for genetically based phenotypic differentiation, resource allocation shifts in response to water limitation, and local adaptation to the environmental gradient which describes the source locations for native and invasive populations of diffuse knapweed (Centaurea diffusa). Plants were grown in an experimental field in France (naturalized range) under water addition and limitation conditions. After accounting for phenotypic variation arising from environmental differences among collection locations, we found evidence of genetic variation between the invasive and native populations for most morphological and life-history traits under study. Invasive C. diffusa populations produced larger, later maturing, and therefore potentially fitter individuals than native populations. Evidence for local adaptation along a resource allocation trade-off for water limitation tolerance is equivocal. However, native populations do show evidence of local adaptation to an environmental gradient, a relationship which is typically not observed in the invaded range. Broader analysis of the climatic niche inhabited by the species in both ranges suggests that the physiological tolerances of C. diffusa may have expanded in the invaded range. This observation could be due to selection for plastic, "general-purpose" genotypes with broad environmental tolerances.
Collapse
Affiliation(s)
- Kathryn G Turner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaRoom 3529-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
| | - Hélène Fréville
- UMR 1334 AGAP INRA2 place Pierre Viala, Montpellier Cedex 2, 34060, France
- UMR 5175 CEFE CNRS1919 route de Mende, Montpellier Cedex 5, 34293, France
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaRoom 3529-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Biology, Indiana UniversityBloomington, Indiana, 47405
| |
Collapse
|
45
|
Dlugosch KM, Cang FA, Barker BS, Andonian K, Swope SM, Rieseberg LH. Evolution of invasiveness through increased resource use in a vacant niche. NATURE PLANTS 2015; 1:15066. [PMID: 26770818 PMCID: PMC4710175 DOI: 10.1038/nplants.2015.66] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Non-native plants are now a pervasive feature of ecosystems across the globe1. One hypothesis for this pattern is that introduced species occupy open niches in recipient communities2,3. If true, then non-native plants should often benefit from low competition for limiting resources that define niches. Many plants have evolved larger size after introduction, consistent with increased access to limiting resources4-9. It has been difficult to test whether larger size reflects adaptation to exploit open resources, however, because vacant niches are generally challenging to identify in plants. Here we take advantage of a situation in which a highly invasive non-native plant, Centaurea solstitialis L. (yellow starthistle, hereafter 'YST'), occupies a well-described environmental niche, wherein water is a known limiting resource10,11. We use a glasshouse common environment and climatic niche modeling to reveal that invading YST has evolved a higher-fitness life history at the expense of increased dependence on water. Critically, historical declines in resident competitors have made water more available for introduced plants11,12, demonstrating how native biodiversity declines can open niches and create opportunities for introduced species to evolve increased resource use, a potentially widespread basis for introduction success and the evolution of invasive life histories.
Collapse
Affiliation(s)
- Katrina M. Dlugosch
- Department of Botany, University of British Columbia, BC V6T1Z4, Canada
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ 85721, USA
- Corresponding Author: Katrina M. Dlugosch, PO Box 210088 / Tucson, AZ 85721, 520-336-7623,
| | - F. Alice Cang
- Department of Botany, University of British Columbia, BC V6T1Z4, Canada
| | - Brittany S. Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ 85721, USA
| | - Krikor Andonian
- Department of Environmental Studies, De Anza College, CA 95014, USA
| | | | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, BC V6T1Z4, Canada
- Department of Biology, Indiana University, IN 47405, USA
| |
Collapse
|
46
|
Invasion of Brassica nigra in North America: distributions and origins of chloroplast DNA haplotypes suggest multiple introductions. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0888-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH. What we still don't know about invasion genetics. Mol Ecol 2015; 24:2277-97. [PMID: 25474505 DOI: 10.1111/mec.13032] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/12/2022]
Abstract
Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Room 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hodgins KA, Bock DG, Hahn MA, Heredia SM, Turner KG, Rieseberg LH. Comparative genomics in the Asteraceae reveals little evidence for parallel evolutionary change in invasive taxa. Mol Ecol 2015; 24:2226-40. [PMID: 25439241 DOI: 10.1111/mec.13026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 01/12/2023]
Abstract
Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, Clayton, Vic., 3800, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Seastedt TR. Biological control of invasive plant species: a reassessment for the Anthropocene. THE NEW PHYTOLOGIST 2015; 205:490-502. [PMID: 25303317 DOI: 10.1111/nph.13065] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/17/2014] [Indexed: 05/12/2023]
Abstract
The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources.
Collapse
Affiliation(s)
- Timothy R Seastedt
- Department of Ecology and Evolutionary Biology, Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| |
Collapse
|
50
|
Blows MW, McGuigan K. The distribution of genetic variance across phenotypic space and the response to selection. Mol Ecol 2014; 24:2056-72. [DOI: 10.1111/mec.13023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Mark W. Blows
- School of Biological Sciences; University of Queensland; St Lucia Qld 4072 Australia
| | - Katrina McGuigan
- School of Biological Sciences; University of Queensland; St Lucia Qld 4072 Australia
| |
Collapse
|