1
|
Ueda Y, Yanagisawa S. A Microplate-Based Expression Monitoring System for Arabidopsis NITRATE TRANSPORTER2.1 Using the Luciferase Reporter. Bio Protoc 2024; 14:e5127. [PMID: 39677024 PMCID: PMC11635437 DOI: 10.21769/bioprotoc.5127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 12/17/2024] Open
Abstract
Gene expression analysis is a fundamental technique to elucidate the regulatory mechanisms of genes of interest or to reveal the patterns of plant response to environmental stimuli. Traditionally, gene expression analyses have required RNA extraction, followed by cDNA synthesis and qPCR analyses. However, this conventional method is costly and time-consuming, limiting the amount of data collected. The protocol outlined in this study, which utilizes a chemiluminescence system, offers a cost-effective and rapid method for assessing the expression of Arabidopsis (Arabidopsis thaliana) genes, exemplified by analyzing the nitrate-inducible expression of a major nitrate transporter gene, nitrate transporter 2.1 (NRT2.1). A reporter construct, containing the NRT2.1 promoter fused to the firefly luciferase gene, was introduced into wild-type and mutant Arabidopsis plants. Seeds obtained from the transgenic lines were grown for 3 days in 96-well microplates containing a nitrate-free nutrient solution. After 3 days, the nutrient solution was replaced with a fresh batch, which was supplemented with luciferin potassium. One hour later, nitrate was added at various concentrations, and the temporal expression pattern of NRT2.1 was analyzed by monitoring the chemiluminescence signals. This method allowed for the cost-effective, quantitative, and high-throughput analysis of NRT2.1 expression over time under the effects of various nutrient conditions and genetic backgrounds. Key features • Small-scale and immediate assessment of NRT2.1 promoter activity using 3-day-old Arabidopsis seedlings expressing the firefly luciferase gene under the control of the Arabidopsis NRT2.1 promoter. • Comparison of various Arabidopsis genotypes and nutrient conditions using 96-well microplates. • Quantitative assessment of the temporal changes in gene expression levels. Graphical overview Graphical summary of the microplate-based NRT2.1 expression monitoring system in planta. Note: The steps within gray square brackets are part of a general protocol and are not included in this manuscript.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Ueda Y, Yanagisawa S. Transcription factor module NLP-NIGT1 fine-tunes NITRATE TRANSPORTER2.1 expression. PLANT PHYSIOLOGY 2023; 193:2865-2879. [PMID: 37595050 PMCID: PMC10663117 DOI: 10.1093/plphys/kiad458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) high-affinity NITRATE TRANSPORTER2.1 (NRT2.1) plays a dominant role in the uptake of nitrate, the most important nitrogen (N) source for most terrestrial plants. The nitrate-inducible expression of NRT2.1 is regulated by NIN-LIKE PROTEIN (NLP) family transcriptional activators and NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR1 (NIGT1) family transcriptional repressors. Phosphorus (P) availability also affects the expression of NRT2.1 because the PHOSPHATE STARVATION RESPONSE1 transcriptional activator activates NIGT1 genes in P-deficient environments. Here, we show a biology-based mathematical understanding of the complex regulation of NRT2.1 expression by multiple transcription factors using 2 different approaches: a microplate-based assay for the real-time measurement of temporal changes in NRT2.1 promoter activity under different nutritional conditions, and an ordinary differential equation (ODE)-based mathematical modeling of the NLP- and NIGT1-regulated expression patterns of NRT2.1. Both approaches consistently reveal that NIGT1 stabilizes the amplitude of NRT2.1 expression under a wide range of nitrate concentrations. Furthermore, the ODE model suggests that parameters such as the synthesis rate of NIGT1 mRNA and NIGT1 proteins and the affinity of NIGT1 proteins for the NRT2.1 promoter substantially influence the temporal expression patterns of NRT2.1 in response to nitrate. These results suggest that the NLP-NIGT1 feedforward loop allows a precise control of nitrate uptake. Hence, this study paves the way for understanding the complex regulation of nutrient acquisition in plants, thus facilitating engineered nutrient uptake and plant response patterns using synthetic biology approaches.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki 305-8686, Japan
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Wang S, Steed G, Webb AAR. Circadian entrainment in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:981-993. [PMID: 35512209 PMCID: PMC9516740 DOI: 10.1093/plphys/kiac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Circadian clocks coordinate physiology and development as an adaption to the oscillating day/night cycle caused by the rotation of Earth on its axis and the changing length of day and night away from the equator caused by orbiting the sun. Circadian clocks confer advantages by entraining to rhythmic environmental cycles to ensure that internal events within the plant occur at the correct time with respect to the cyclic external environment. Advances in determining the structure of circadian oscillators and the pathways that allow them to respond to light, temperature, and metabolic signals have begun to provide a mechanistic insight to the process of entrainment in Arabidopsis (Arabidopsis thaliana). We describe the concepts of entrainment and how it occurs. It is likely that a thorough mechanistic understanding of the genetic and physiological basis of circadian entrainment will provide opportunities for crop improvement.
Collapse
Affiliation(s)
- Shouming Wang
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- School of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Gareth Steed
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
4
|
Muranaka T, Ito S, Kudoh H, Oyama T. Circadian-period variation underlies the local adaptation of photoperiodism in the short-day plant Lemna aequinoctialis. iScience 2022; 25:104634. [PMID: 35800759 PMCID: PMC9253726 DOI: 10.1016/j.isci.2022.104634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic variation is the basis for trait adaptation via evolutionary selection. However, the driving forces behind quantitative trait variations remain unclear owing to their complexity at the molecular level. This study focused on the natural variation of the free-running period (FRP) of the circadian clock because FRP is a determining factor of the phase phenotype of clock-dependent physiology. Lemna aequinoctialis in Japan is a paddy field duckweed that exhibits a latitudinal cline of critical day length (CDL) for short-day flowering. We collected 72 strains of L. aequinoctialis and found a significant correlation between FRPs and locally adaptive CDLs, confirming that variation in the FRP-dependent phase phenotype underlies photoperiodic adaptation. Diel transcriptome analysis revealed that the induction timing of an FT gene is key to connecting the clock phase to photoperiodism at the molecular level. This study highlights the importance of FRP as a variation resource for evolutionary adaptation. Natural variation of flowering/circadian traits in a paddy-field duckweed is studied. Critical day length for flowering of the duckweed in Japan shows a latitudinal cline. A negative correlation between critical day length and circadian period was found. An FT gene responding to lengthening of the dark period was isolated.
Collapse
|
5
|
Scale-up of a Fibonacci-Type Photobioreactor for the Production of Dunaliella salina. Appl Biochem Biotechnol 2020; 193:188-204. [PMID: 32844351 DOI: 10.1007/s12010-020-03410-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
In this work, the previously proposed Fibonacci-type photobioreactor is scaled up and evaluated to produce Dunaliella salina. First, the composition of the culture medium was optimized to achieve maximal productivity. Next, the Fibonacci-type reactor was scaled up to 1250 L maintaining high solar radiation interception capacity of this type of reactor. Finally, the performance of the reactor for the production of green cells of Dunaliella salina at the environmental conditions prevailing in the Atacama Desert was evaluated. Data demonstrated that the proposed photobioreactor allows the temperature, pH and dissolved oxygen concentration to be maintained within the optimal ranges recommended for the selected strain. Both better exposure to solar radiation and photonic flow dilution avoids the use of cooling systems to prevent overheating under outdoor conditions. The system allows up to 60% more solar radiation to be intercepted than does the horizontal surface, likewise, allowing to maintain the pH efficiently through CO2 injection and to keep the dissolved oxygen concentration in acceptable ranges, thanks to its adequate mass transfer capacity. The biomass concentration reached up to 0.96 g L-1, three times higher than that obtained in a raceway reactor under the same environmental conditions, whereas productivity was up to 0.12 g L-1 day (2.41 g m-2 day). Maximum specific outdoor growth rates reached up to 0.17 day-1. Undoubtedly, this technology scaled up constitutes a new type of photobioreactor for use at the industrial scale since it is capable of maximizing biomass productivity under high light conditions.
Collapse
|
6
|
Salmela MJ, Weinig C. The fitness benefits of genetic variation in circadian clock regulation. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:86-93. [PMID: 31302588 DOI: 10.1016/j.pbi.2019.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Functional circadian clocks are essential for fitness in diverse ecosystems, facilitating detection of predictable light-dark and temperature cycles. The molecular basis of endogenous clocks is variable across the tree of life, but it has one omnipresent attribute: natural genetic diversity that manifests as variation for instance in circadian period length around the hypothesised optimum of 24 hours. Latitudinal variation in photoperiod alone is unlikely to account for the vast diversity documented in varied organisms, but we have yet to achieve a solid understanding of the interplay between clock variability and natural selection. Recent circadian studies sampling populations have drawn attention to the hierarchical structure of genetic diversity in the wild, unveiling pronounced genetic variation even on a scale of metres.
Collapse
Affiliation(s)
- Matti J Salmela
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Cynthia Weinig
- Department of Botany, 3165, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA; Program in Ecology, University of Wyoming, Laramie, WY 82071, USA; Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
7
|
Modeling the photoperiodic entrainment of the plant circadian clock. J Theor Biol 2017; 420:220-231. [DOI: 10.1016/j.jtbi.2017.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/12/2017] [Accepted: 03/07/2017] [Indexed: 11/21/2022]
|
8
|
Xu Y, Ibrahim IM, Harvey PJ. The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:305-15. [PMID: 27231875 PMCID: PMC5250801 DOI: 10.1016/j.plaphy.2016.05.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/16/2016] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
The green microalga Dunaliella salina survives in a wide range of salinities via mechanisms involving glycerol synthesis and degradation and is exploited for large amounts of nutraceutical carotenoids produced under stressed conditions. In this study, D. salina CCAP 19/30 was cultured in varying photoperiods and light intensities to study the relationship of light with different growth measurement parameters, with cellular contents of glycerol, starch and carotenoids, and with photosynthesis and respiration. Results show CCAP 19/30 regulated cell volume when growing under light/dark cycles: cell volume increased in the light and decreased in the dark, and these changes corresponded to changes in cellular glycerol content. The decrease in cell volume in the dark was independent of cell division and biological clock and was regulated by the photoperiod of the light/dark cycle. When the light intensity was increased to above 1000 μmol photons m(-2) s(-1), cells displayed evidence of photodamage. However, these cells also maintained the maximum level of photosynthesis efficiency and respiration possible, and the growth rate increased as light intensity increased. Significantly, the intracellular glycerol content also increased, >2-fold compared to the content in light intensity of 500 μmol photons m(-2) s(-1), but there was no commensurate increase in the pool size of carotenoids. These data suggest that in CCAP 19/30 glycerol stabilized the photosynthetic apparatus for maximum performance in high light intensities, a role normally attributed to carotenoids.
Collapse
Affiliation(s)
- Yanan Xu
- University of Greenwich, Faculty of Engineering and Science, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Iskander M Ibrahim
- University of Greenwich, Faculty of Engineering and Science, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Patricia J Harvey
- University of Greenwich, Faculty of Engineering and Science, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
9
|
Flis A, Fernández AP, Zielinski T, Mengin V, Sulpice R, Stratford K, Hume A, Pokhilko A, Southern MM, Seaton DD, McWatters HG, Stitt M, Halliday KJ, Millar AJ. Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure. Open Biol 2016; 5:rsob.150042. [PMID: 26468131 PMCID: PMC4632509 DOI: 10.1098/rsob.150042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell−1) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell−1) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.
Collapse
Affiliation(s)
- Anna Flis
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Aurora Piñas Fernández
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Ronan Sulpice
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kevin Stratford
- EPCC, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
| | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK EPCC, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, UK
| | - Alexandra Pokhilko
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Megan M Southern
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel D Seaton
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Harriet G McWatters
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, C.H. Waddington Building, Edinburgh EH9 3JD, UK
| |
Collapse
|
10
|
Millar AJ. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:595-618. [PMID: 26653934 DOI: 10.1146/annurev-arplant-043014-115619] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom;
| |
Collapse
|
11
|
De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D. A Compact Model for the Complex Plant Circadian Clock. FRONTIERS IN PLANT SCIENCE 2016; 7:74. [PMID: 26904049 PMCID: PMC4742534 DOI: 10.3389/fpls.2016.00074] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 01/16/2016] [Indexed: 05/23/2023]
Abstract
The circadian clock is an endogenous timekeeper that allows organisms to anticipate and adapt to the daily variations of their environment. The plant clock is an intricate network of interlocked feedback loops, in which transcription factors regulate each other to generate oscillations with expression peaks at specific times of the day. Over the last decade, mathematical modeling approaches have been used to understand the inner workings of the clock in the model plant Arabidopsis thaliana. Those efforts have produced a number of models of ever increasing complexity. Here, we present an alternative model that combines a low number of equations and parameters, similar to the very earliest models, with the complex network structure found in more recent ones. This simple model describes the temporal evolution of the abundance of eight clock gene mRNA/protein and captures key features of the clock on a qualitative level, namely the entrained and free-running behaviors of the wild type clock, as well as the defects found in knockout mutants (such as altered free-running periods, lack of entrainment, or changes in the expression of other clock genes). Additionally, our model produces complex responses to various light cues, such as extreme photoperiods and non-24 h environmental cycles, and can describe the control of hypocotyl growth by the clock. Our model constitutes a useful tool to probe dynamical properties of the core clock as well as clock-dependent processes.
Collapse
Affiliation(s)
- Joëlle De Caluwé
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Qiying Xiao
- Laboratory of Plant Physiology and Molecular Genetics, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Christian Hermans
- Laboratory of Plant Physiology and Molecular Genetics, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Jean-Christophe Leloup
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
12
|
Arnao MB, Hernández-Ruiz J. Functions of melatonin in plants: a review. J Pineal Res 2015; 59:133-50. [PMID: 26094813 DOI: 10.1111/jpi.12253] [Citation(s) in RCA: 430] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/05/2015] [Indexed: 02/06/2023]
Abstract
The number of studies on melatonin in plants has increased significantly in recent years. This molecule, with a large set of functions in animals, has also shown great potential in plant physiology. This review outlines the main functions of melatonin in the physiology of higher plants. Its role as antistress agent against abiotic stressors, such as drought, salinity, low and high ambient temperatures, UV radiation and toxic chemicals, is analyzed. The latest data on their role in plant-pathogen interactions are also discussed. Both abiotic and biotic stresses produce a significant increase in endogenous melatonin levels, indicating its possible role as effector in these situations. The existence of endogenous circadian rhythms in melatonin levels has been demonstrated in some species, and the data, although limited, suggest a central role of this molecule in the day/night cycles in plants. Finally, another aspect that has led to a large volume of research is the involvement of melatonin in aspects of plant development regulation. Although its role as a plant hormone is still far of from being fully established, its involvement in processes such as growth, rhizogenesis, and photosynthesis seems evident. The multiple changes in gene expression caused by melatonin point to its role as a multiregulatory molecule capable of coordinating many aspects of plant development. This last aspect, together with its role as an alleviating-stressor agent, suggests that melatonin is an excellent prospect for crop improvement.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
13
|
Ohara T, Fukuda H, Tokuda IT. An extended mathematical model for reproducing the phase response of Arabidopsis thaliana under various light conditions. J Theor Biol 2015; 382:337-44. [PMID: 26231414 DOI: 10.1016/j.jtbi.2015.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/17/2015] [Accepted: 07/18/2015] [Indexed: 01/10/2023]
Abstract
Experimental studies showed that light qualities such as color and strength influence the phase response properties of plant circadian systems. These effects, however, have yet to be properly addressed in theoretical models of plant circadian systems. To fill this gap, the present paper develops a mathematical model of a plant circadian clock that takes into account the intensity and wavelength of the input light. Based on experimental knowledge, we model three photoreceptors, Phytochrome A, Phytochrome B, and Cryptochrome 1, which respond to red and/or blue light, in Arabidopsis thaliana. The three photoreceptors are incorporated into a standard mathematical model of the plant system, in which activator and repressor genes form a single feedback loop. The model capability is examined by a phase response curve (PRC), which plots the phase shifts elicited by the light perturbation as a function of the perturbation phase. Numerical experiments demonstrate that the extended model reproduces the essential features of the PRCs measured experimentally under various light conditions. Particularly, unlike conventional models, the model generates the inherent shape of the PRC under dark pulse stimuli. The outcome of our modeling approach may motivate future theoretical and experimental studies of plant circadian rhythms.
Collapse
Affiliation(s)
- Takayuki Ohara
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Hirokazu Fukuda
- Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Isao T Tokuda
- Graduate School of Science and Engineering, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
14
|
Deng W, Clausen J, Boden S, Oliver SN, Casao MC, Ford B, Anderssen RS, Trevaskis B. Dawn and Dusk Set States of the Circadian Oscillator in Sprouting Barley (Hordeum vulgare) Seedlings. PLoS One 2015; 10:e0129781. [PMID: 26068005 PMCID: PMC4465908 DOI: 10.1371/journal.pone.0129781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
The plant circadian clock is an internal timekeeper that coordinates biological processes with daily changes in the external environment. The transcript levels of clock genes, which oscillate to control circadian outputs, were examined during early seedling development in barley (Hordeum vulgare), a model for temperate cereal crops. Oscillations of clock gene transcript levels do not occur in barley seedlings grown in darkness or constant light but were observed with day-night cycles. A dark-to-light transition influenced transcript levels of some clock genes but triggered only weak oscillations of gene expression, whereas a light-to-dark transition triggered robust oscillations. Single light pulses of 6, 12 or 18 hours induced robust oscillations. The light-to-dark transition was the primary determinant of the timing of subsequent peaks of clock gene expression. After the light-to-dark transition the timing of peak transcript levels of clock gene also varied depending on the length of the preceding light pulse. Thus, a single photoperiod can trigger initiation of photoperiod-dependent circadian rhythms in barley seedlings. Photoperiod-specific rhythms of clock gene expression were observed in two week old barley plants. Changing the timing of dusk altered clock gene expression patterns within a single day, showing that alteration of circadian oscillator behaviour is amongst the most rapid molecular responses to changing photoperiod in barley. A barley EARLY FLOWERING3 mutant, which exhibits rapid photoperiod-insensitive flowering behaviour, does not establish clock rhythms in response to a single photoperiod. The data presented show that dawn and dusk cues are important signals for setting the state of the circadian oscillator during early development of barley and that the circadian oscillator of barley exhibits photoperiod-dependent oscillation states.
Collapse
Affiliation(s)
- Weiwei Deng
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Jenni Clausen
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Scott Boden
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - Sandra N. Oliver
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | - M. Cristina Casao
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, D50829, Germany
| | - Brett Ford
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | - Ben Trevaskis
- CSIRO, Agriculture, GPO Box 1600, Canberra, ACT, 2601, Australia
| |
Collapse
|
15
|
Thommen Q, Pfeuty B, Schatt P, Bijoux A, Bouget FY, Lefranc M. Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach. Front Genet 2015; 6:65. [PMID: 25774167 PMCID: PMC4343026 DOI: 10.3389/fgene.2015.00065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
Most organisms anticipate daily environmental variations and orchestrate cellular functions thanks to a circadian clock which entrains robustly to the day/night cycle, despite fluctuations in light intensity due to weather or seasonal variations. Marine organisms are also subjected to fluctuations in light spectral composition as their depth varies, due to differential absorption of different wavelengths by sea water. Studying how light input pathways contribute to circadian clock robustness is therefore important. Ostreococcus tauri, a unicellular picoplanktonic marine green alga with low genomic complexity and simple cellular organization, has become a promising model organism for systems biology. Functional and modeling approaches have shown that a core circadian oscillator based on orthologs of Arabidopsis TOC1 and CCA1 clock genes accounts for most experimental data acquired under a wide range of conditions. Some evidence points at putative light input pathway(s) consisting of a two-component signaling system (TCS) controlled by the only two histidine kinases (HK) of O. tauri. LOV-HK is a blue light photoreceptor under circadian control, that is required for circadian clock function. An involvement of Rhodopsin-HK (Rhod-HK) is also conceivable since rhodopsin photoreceptors mediate blue to green light input in animal circadian clocks. Here, we probe the role of LOV-HK and Rhod-HK in mediating light input to the TOC1-CCA1 oscillator using a mathematical model incorporating the TCS hypothesis. This model agrees with clock gene expression time series representative of multiple environmental conditions in blue or green light, characterizing entrainment by light/dark cycles, free-running in constant light, and resetting. Experimental and theoretical results indicate that both blue and green light can reset O. tauri circadian clock. Moreover, our mathematical analysis suggests that Rhod-HK is a blue-green light receptor and drives the clock together with LOV-HK.
Collapse
Affiliation(s)
- Quentin Thommen
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| | - Benjamin Pfeuty
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| | - Philippe Schatt
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - Amandine Bijoux
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - François-Yves Bouget
- Unité Mixte de Recherche 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie (Paris 06), Sorbonne Universités Banyuls sur Mer, France
| | - Marc Lefranc
- Laboratoire de Physique, Lasers, Atomes, Molécules, Université Lille 1 Sciences et Technologies, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8523 Villeneuve d'Ascq, France
| |
Collapse
|
16
|
Abstract
As major contributors to global oxygen levels and producers of fatty acids, carotenoids, sterols, and phycocolloids, algae have significant ecological and commercial roles. Early algal models have contributed much to our understanding of circadian clocks at physiological and biochemical levels. The genetic and molecular approaches that identified clock components in other taxa have not been as widely applied to algae. We review results from seven species: the chlorophytes Chlamydomonas reinhardtii, Ostreococcus tauri, and Acetabularia spp.; the dinoflagellates Lingulodinium polyedrum and Symbiodinium spp.; the euglenozoa Euglena gracilis; and the red alga Cyanidioschyzon merolae. The relative simplicity, experimental tractability, and ecological and evolutionary diversity of algal systems may now make them particularly useful in integrating quantitative data from "omic" technologies (e.g., genomics, transcriptomics, metabolomics, and proteomics) with computational and mathematical methods.
Collapse
Affiliation(s)
- Zeenat B Noordally
- SynthSys and School of Biological Sciences, University of Edinburgh , Edinburgh EH9 3BF, United Kingdom
| | | |
Collapse
|
17
|
Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget FY, Carré I, Château A, Eyre-Walker A, Grimsley N, Moreau H, Piégu B, Rivals E, Schackwitz W, Van de Peer Y, Piganeau G. An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genomics 2014; 15:1103. [PMID: 25494611 PMCID: PMC4378021 DOI: 10.1186/1471-2164-15-1103] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022] Open
Abstract
Background Cost effective next generation sequencing technologies now enable the production of genomic datasets for many novel planktonic eukaryotes, representing an understudied reservoir of genetic diversity. O. tauri is the smallest free-living photosynthetic eukaryote known to date, a coccoid green alga that was first isolated in 1995 in a lagoon by the Mediterranean sea. Its simple features, ease of culture and the sequencing of its 13 Mb haploid nuclear genome have promoted this microalga as a new model organism for cell biology. Here, we investigated the quality of genome assemblies of Illumina GAIIx 75 bp paired-end reads from Ostreococcus tauri, thereby also improving the existing assembly and showing the genome to be stably maintained in culture. Results The 3 assemblers used, ABySS, CLCBio and Velvet, produced 95% complete genomes in 1402 to 2080 scaffolds with a very low rate of misassembly. Reciprocally, these assemblies improved the original genome assembly by filling in 930 gaps. Combined with additional analysis of raw reads and PCR sequencing effort, 1194 gaps have been solved in total adding up to 460 kb of sequence. Mapping of RNAseq Illumina data on this updated genome led to a twofold reduction in the proportion of multi-exon protein coding genes, representing 19% of the total 7699 protein coding genes. The comparison of the DNA extracted in 2001 and 2009 revealed the fixation of 8 single nucleotide substitutions and 2 deletions during the approximately 6000 generations in the lab. The deletions either knocked out or truncated two predicted transmembrane proteins, including a glutamate-receptor like gene. Conclusion High coverage (>80 fold) paired-end Illumina sequencing enables a high quality 95% complete genome assembly of a compact ~13 Mb haploid eukaryote. This genome sequence has remained stable for 6000 generations of lab culture. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1103) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gwenaël Piganeau
- CNRS, UMR 7232, Observatoire Océanologique, Avenue du Fontaulé, BP44, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|
18
|
Guerriero ML, Akman OE, van Ooijen G. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure. FRONTIERS IN PLANT SCIENCE 2014; 5:564. [PMID: 25374576 PMCID: PMC4204444 DOI: 10.3389/fpls.2014.00564] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/30/2014] [Indexed: 05/25/2023]
Abstract
Rhythmic behavior is essential for plants; for example, daily (circadian) rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-h day/night cycle. Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks. Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less well studied.
Collapse
Affiliation(s)
| | - Ozgur E. Akman
- Centre for Systems, Dynamics and Control, College of Engineering, Mathematics and Physical Sciences, University of ExeterExeter, UK
| | - Gerben van Ooijen
- Institute of Molecular Plant Sciences, University of EdinburghEdinburgh, UK
| |
Collapse
|