1
|
Prats KA, Roddy AB, Brodersen CR. Stomatal behaviour and water relations in ferns and lycophytes across habits and habitats. AOB PLANTS 2024; 16:plae041. [PMID: 39119044 PMCID: PMC11306579 DOI: 10.1093/aobpla/plae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
Stomatal anatomy and behaviour are key to managing gas exchange fluxes, which require coordination with the plant vascular system to adequately supply leaves with water. Stomatal response times and regulation of water loss are generally understudied in ferns, especially across habits (i.e. epiphytic and terrestrial) and habitats (i.e. wet mesic and dry xeric environments). Our objectives were to (i) determine if hydraulic and anatomical traits that control water use are correlated with their habitats (i.e. xeric, mesic) and habits (i.e. epiphytic, terrestrial) for ferns and lycophytes across taxa, and (ii) explore how those traits and others like average leaf water residence time correlate with stomatal function using a subset of closely related species. Epiphytic species had lower vein densities than terrestrial species, while xeric species had higher vein densities than mesic species. Xeric ferns also had smaller stomata than mesic ferns but had similar stomatal densities. Further, in a subset of mesic and xeric ferns, the xeric ferns had higher maximum stomatal conductance and water content, as well as shorter average stomatal opening responses to light intensity, but stomatal closing times did not differ. Finally, shorter stomatal opening and closing responses were correlated with shorter water residence time. Our study highlights anatomical and physiological differences between ferns and lycophytes, which may partially explain habitat preference based on their optimization of light and water.
Collapse
Affiliation(s)
- Kyra A Prats
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
- New York Botanical Garden, 2900 Southern Blvd, Bronx, NY 10458, USA
| | - Adam B Roddy
- Institute of Environment, Department of Biological Sciences, Florida International University, 11200 SW 8th Street, OE 148, Miami, FL 33199, USA
| | - Craig R Brodersen
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| |
Collapse
|
2
|
John SP, Svihla ZT, Hasenstein KH. Changes in endogenous abscisic acid and stomata of the resurrection fern, Pleopeltis polypodioides, in response to de- and rehydration. AMERICAN JOURNAL OF BOTANY 2023; 110:e16152. [PMID: 36896495 DOI: 10.1002/ajb2.16152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/11/2023]
Abstract
PREMISE While angiosperms respond uniformly to abscisic acid (ABA) by stomatal closure, the response of ferns to ABA is ambiguous. We evaluated the effect of endogenous ABA, hydrogen peroxide (H2 O2 ), nitric oxide (NO), and Ca2+ , low and high light intensities, and blue light (BL) on stomatal opening of Pleopeltis polypodioides. METHODS Endogenous ABA was quantified using gas chromatography-mass spectrometry; microscopy results and stomatal responses to light and chemical treatments were analyzed with Image J. RESULTS The ABA content increases during initial dehydration, peaks at 15 h and then decreases to one fourth of the ABA content of hydrated fronds. Following rehydration, ABA content increases within 24 h to the level of hydrated tissue. The stomatal aperture opens under BL and remains open even in the presence of ABA. Closure was strongly affected by BL, NO, and Ca2+ , regardless of ABA, H2 O2 effect was weak. CONCLUSIONS The decrease in the ABA content during extended dehydration and insensitivity of the stomata to ABA suggests that the drought tolerance mechanism of Pleopeltis polypodioides is independent of ABA.
Collapse
Affiliation(s)
- Susan P John
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - Zachary T Svihla
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| | - Karl H Hasenstein
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70503, USA
| |
Collapse
|
3
|
Aros-Mualin D, Guadagno CR, Silvestro D, Kessler M. Light, rather than circadian rhythm, regulates gas exchange in ferns and lycophytes. PLANT PHYSIOLOGY 2023; 191:1634-1647. [PMID: 36691320 PMCID: PMC10022864 DOI: 10.1093/plphys/kiad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Circadian regulation plays a vital role in optimizing plant responses to the environment. However, while circadian regulation has been extensively studied in angiosperms, very little is known for lycophytes and ferns, leaving a gap in our understanding of the evolution of circadian rhythms across the plant kingdom. Here, we investigated circadian regulation in gas exchange through stomatal conductance and photosynthetic efficiency in a phylogenetically broad panel of 21 species of lycophytes and ferns over a 46 h period under constant light and a selected few under more natural conditions with day-night cycles. No rhythm was detected under constant light for either lycophytes or ferns, except for two semi-aquatic species of the family Marsileaceae (Marsilea azorica and Regnellidium diphyllum), which showed rhythms in stomatal conductance. Furthermore, these results indicated the presence of a light-driven stomatal control for ferns and lycophytes, with a possible passive fine-tuning through leaf water status adjustments. These findings support previous evidence for the fundamentally different regulation of gas exchange in lycophytes and ferns compared to angiosperms, and they suggest the presence of alternative stomatal regulations in Marsileaceae, an aquatic family already well known for numerous other distinctive physiological traits. Overall, our study provides evidence for heterogeneous circadian regulation across plant lineages, highlighting the importance of broad taxonomic scope in comparative plant physiology studies.
Collapse
Affiliation(s)
| | | | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg 1700, Switzerland
- Department of Biological and Environmental Sciences and Global Gothenburg Biodiversity Centre, University of Gothenburg, Gothenburg SE-405 30, Sweden
- Swiss Institute of Bioinformatics, Fribourg 1700, Switzerland
| | - Michael Kessler
- Department of Systematics and Evolutionary Botany, University of Zurich, Zurich 8008, Switzerland
| |
Collapse
|
4
|
Isohydricity of Two Different Citrus Species under Deficit Irrigation and Reclaimed Water Conditions. PLANTS 2021; 10:plants10102121. [PMID: 34685931 PMCID: PMC8538605 DOI: 10.3390/plants10102121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Citrus species are frequently subjected to water and saline stresses worldwide. We evaluated the effects of diurnal changes in the evaporative demands and soil water contents on the plant physiology of grapefruit and mandarin crops under saline reclaimed (RW) and transfer (TW) water conditions, combined with two irrigation strategies, fully irrigated (fI) and non-irrigated (nI). The physiological responses were different depending on the species. Grapefruit showed an isohydric pattern, which restricted the use of the leaf water potential (Ψl) as a plant water status indicator. Its water status was affected by salinity (RW) and water stress (nI), mainly as the combination of both stresses (RW-nI); however, mandarin turned out to be relatively more tolerant to salinity and more sensitive to water stress, mainly because of its low hydraulic conductance (K) levels, showing a critical drop in Ψl that led to severe losses of root–stem (Kroot–stem) and canopy (Kcanopy) hydraulic conductance in TW-nI. This behavior was not observed in RW-nI because a reduction in canopy volume as an adaptive characteristic was observed; thus, mandarin exhibited more anisohydric behavior compared to grapefruit, but isohydrodynamic since its hydrodynamic water potential gradient from roots to shoots (ΔΨplant) was relatively constant across variations in stomatal conductance (gs) and soil water potential. The gs was considered a good plant water status indicator for irrigation scheduling purposes in both species, and its responses to diurnal VPD rise and soil drought were strongly correlated with Kroot–stem. ABA did not show any effect on stomatal regulation, highlighting the fundamental role of plant hydraulics in driving stomatal closure.
Collapse
|
5
|
Kubásek J, Hájek T, Duckett J, Pressel S, Šantrůček J. Moss stomata do not respond to light and CO 2 concentration but facilitate carbon uptake by sporophytes: a gas exchange, stomatal aperture, and 13 C-labelling study. THE NEW PHYTOLOGIST 2021; 230:1815-1828. [PMID: 33458818 DOI: 10.1111/nph.17208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/07/2021] [Indexed: 05/06/2023]
Abstract
Stomata exert control on fluxes of CO2 and water (H2 O) in the majority of vascular plants and thus are pivotal for planetary fluxes of carbon and H2 O. However, in mosses, the significance and possible function of the sporophytic stomata are not well understood, hindering understanding of the ancestral function and evolution of these key structures of land plants. Infrared gas analysis and 13 CO2 labelling, with supporting data from gravimetry and optical and scanning electron microscopy, were used to measure CO2 assimilation and water exchange on young, green, ± fully expanded capsules of 11 moss species with a range of stomatal numbers, distributions, and aperture sizes. Moss sporophytes are effectively homoiohydric. In line with their open fixed apertures, moss stomata, contrary to those in tracheophytes, do not respond to light and CO2 concentration. Whereas the sporophyte cuticle is highly impermeable to gases, stomata are the predominant sites of 13 CO2 entry and H2 O loss in moss sporophytes, and CO2 assimilation is closely linked to total stomatal surface areas. Higher photosynthetic autonomy of moss sporophytes, consequent on the presence of numerous stomata, may have been the key to our understanding of evolution of large, gametophyte-independent sporophytes at the onset of plant terrestrialization.
Collapse
Affiliation(s)
- Jiří Kubásek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760/31, Czech Republic
| | - Tomáš Hájek
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760/31, Czech Republic
| | - Jeffrey Duckett
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Jiří Šantrůček
- Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760/31, Czech Republic
| |
Collapse
|
6
|
Cai S, Huang Y, Chen F, Zhang X, Sessa E, Zhao C, Marchant DB, Xue D, Chen G, Dai F, Leebens‐Mack JH, Zhang G, Shabala S, Christie JM, Blatt MR, Nevo E, Soltis PS, Soltis DE, Franks PJ, Wu F, Chen Z. Evolution of rapid blue-light response linked to explosive diversification of ferns in angiosperm forests. THE NEW PHYTOLOGIST 2021; 230:1201-1213. [PMID: 33280113 PMCID: PMC8048903 DOI: 10.1111/nph.17135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/21/2020] [Indexed: 05/23/2023]
Abstract
Ferns appear in the fossil record some 200 Myr before angiosperms. However, as angiosperm-dominated forest canopies emerged in the Cretaceous period there was an explosive diversification of modern (leptosporangiate) ferns, which thrived in low, blue-enhanced light beneath angiosperm canopies. A mechanistic explanation for this transformative event in the diversification of ferns has remained elusive. We used physiological assays, transcriptome analysis and evolutionary bioinformatics to investigate a potential connection between the evolution of enhanced stomatal sensitivity to blue light in modern ferns and the rise of angiosperm-dominated forests in the geological record. We demonstrate that members of the largest subclade of leptosporangiate ferns, Polypodiales, have significantly faster stomatal response to blue light than more ancient fern lineages and a representative angiosperm. We link this higher sensitivity to levels of differentially expressed genes in blue-light signaling, particularly in the cryptochrome (CRY) signaling pathway. Moreover, CRYs of the Polypodiales examined show gene duplication events between 212.9-196.9 and 164.4-151.8 Ma, when angiosperms were emerging, which are lacking in other major clades of extant land plants. These findings suggest that evolution of stomatal blue-light sensitivity helped modern ferns exploit the shady habitat beneath angiosperm forest canopies, fueling their Cretaceous hyperdiversification.
Collapse
Affiliation(s)
- Shengguan Cai
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Yuqing Huang
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
| | - Fei Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Xin Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Emily Sessa
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
| | - Chenchen Zhao
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - D. Blaine Marchant
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Dawei Xue
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Guang Chen
- Collaborative Innovation Centre for Grain IndustryCollege of AgricultureYangtze UniversityJingzhou434025China
| | - Fei Dai
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | | | - Guoping Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Sergey Shabala
- Tasmanian Institute of AgricultureUniversity of TasmaniaHobartTAS7004Australia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshan528041China
| | - John M. Christie
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowG12 8QQUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and BiophysicsUniversity of GlasgowGlasgowG12 8QQUK
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaMount CarmelHaifa34988384Israel
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
| | - Douglas E. Soltis
- Department of BiologyUniversity of FloridaGainesvilleFL32611USA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFL32611USA
| | - Peter J. Franks
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Feibo Wu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Zhong‐Hua Chen
- School of ScienceWestern Sydney UniversityPenrithNSW2751Australia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| |
Collapse
|
7
|
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. Plant responses to rising vapor pressure deficit. THE NEW PHYTOLOGIST 2020; 226:1550-1566. [PMID: 32064613 DOI: 10.1111/nph.16485] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/04/2020] [Indexed: 05/24/2023]
Abstract
Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought-induced plant mortality independent of other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in 'next-generation' land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.
Collapse
Affiliation(s)
- Charlotte Grossiord
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, 1015, Lausanne, Switzerland
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4814, Australia
| | - Kimberly A Novick
- School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Benjamin Poulter
- Biospheric Sciences Lab, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - John S Sperry
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
8
|
Kübarsepp L, Laanisto L, Niinemets Ü, Talts E, Tosens T. Are stomata in ferns and allies sluggish? Stomatal responses to CO 2 , humidity and light and their scaling with size and density. THE NEW PHYTOLOGIST 2020; 225:183-195. [PMID: 31479517 DOI: 10.1111/nph.16159] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Fast stomatal reactions enable plants to successfully cope with a constantly changing environment yet there is an ongoing debate on the stomatal regulation mechanisms in basal plant groups. We measured stomatal morphological parameters in 29 fern and allied species from temperate to tropical biomes and two outgroup angiosperm species. Stomatal dynamic responses to environmental drivers were measured in 16 ferns and the two angiosperms using a gas-exchange system. Principal components analyses were used to further reveal the structure-function relationships in stomata. We show a > 10-fold variation for stomatal opening delays and 20-fold variation for stomatal closing delays in ferns. Across species, stomatal responses to vapor pressure deficit (VPD) were the fastest, while light and [CO2 ] responses were slower. In most cases the outgroup species' reaction speeds to changes in environmental variables were similar to those of ferns. Correlations between stomatal response rate and size were apparent for stomatal opening in light and low [CO2 ] while not evident for closing reactions and changes in VPD. No correlations between stomatal density and response speed were observed. Together, this study demonstrates different mechanisms controlling stomatal reactions in ferns at different environmental stimuli, which should be considered in future studies relating stomatal morphology and function.
Collapse
Affiliation(s)
- Liisa Kübarsepp
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn, 10130, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| |
Collapse
|
9
|
Drought sensitivity of aboveground productivity in Leymus chinensis meadow steppe depends on drought timing. Oecologia 2019; 191:685-696. [PMID: 31535253 DOI: 10.1007/s00442-019-04506-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
There is limited understanding of the combined effects of discrete climate extremes and chronic environmental changes on ecosystem processes and functioning. We assessed the interactions of extreme drought timing (45 days, in spring or summer) and nitrogen (N) addition in a full factorial field experiment in a Leymus chinensis-dominated meadow steppe in northeast China. We evaluated the resistance and recovery of the grassland (calculated in terms of aboveground biomass) to these two drought events. The spring drought reduced aboveground biomass by 28% in the unfertilized plots and by 33% in the fertilized plots, and the effects persisted during the subsequent post-drought period within the same growing season; however, the summer drought had no significant influence on aboveground biomass. Although there were no significant interactive effects between drought timing and N addition, we observed a potential trend of N addition increasing the proportion of aboveground biomass suppressed by spring drought but not summer drought. Moreover, the drought resistance of the aboveground biomass was positively correlated with the response of the belowground biomass to drought. One year after the extreme drought events, the spring drought effects on aboveground and belowground biomass were negligible. Our results indicate that the drought sensitivity of productivity likely depends on the phenological and morphological traits of the single highly dominant species (Leymus chinensis) in this meadow steppe.
Collapse
|
10
|
Lima VF, Anjos LD, Medeiros DB, Cândido-Sobrinho SA, Souza LP, Gago J, Fernie AR, Daloso DM. The sucrose-to-malate ratio correlates with the faster CO 2 and light stomatal responses of angiosperms compared to ferns. THE NEW PHYTOLOGIST 2019; 223:1873-1887. [PMID: 31099898 DOI: 10.1111/nph.15927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Stomatal responses to environmental signals differ substantially between ferns and angiosperms. However, the mechanisms that lead to such different responses remain unclear. Here we investigated the extent to which leaf metabolism contributes to coordinate the differential stomatal behaviour among ferns and angiosperms. Stomata from all species were responsive to light and CO2 transitions. However, fern stomatal responses were slower and minor in both absolute and relative terms. Angiosperms have higher stomatal density, but this is not correlated with speed of stomatal closure. The metabolic responses throughout the diel course and under different CO2 conditions differ substantially among ferns and angiosperms. Higher sucrose content and an increased sucrose-to-malate ratio during high CO2 -induced stomatal closure was observed in angiosperms compared to ferns. Furthermore, the speed of stomatal closure was positively and negatively correlated with sugars and organic acids, respectively, suggesting that the balance between sugars and organic acids aids in explaining the faster stomatal responses of angiosperms. Our results suggest that mesophyll-derived metabolic signals, especially those associated with sucrose and malate, may also be important to modulate the differential stomatal behaviour between ferns and angiosperms, providing important new information that helps in understanding the metabolism-mediated mechanisms regulating stomatal movements across land plant evolution.
Collapse
Affiliation(s)
- Valéria F Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brasil
| | - Letícia Dos Anjos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brasil
- Departamento de Biologia, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras-MG, 37200-000, Brasil
| | - David B Medeiros
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Silvio A Cândido-Sobrinho
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brasil
| | - Leonardo P Souza
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jorge Gago
- Grupo de Biología de las Plantas en Condiciones Mediterráneas, Departamento de Biología, Universidad de las Islas Baleares/Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Palma de Mallorca, 07122, Islas Baleares, España
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Danilo M Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, 60451-970, Brasil
| |
Collapse
|
11
|
Jiao XC, Song XM, Zhang DL, Du QJ, Li JM. Coordination between vapor pressure deficit and CO 2 on the regulation of photosynthesis and productivity in greenhouse tomato production. Sci Rep 2019; 9:8700. [PMID: 31213627 PMCID: PMC6581957 DOI: 10.1038/s41598-019-45232-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/01/2019] [Indexed: 11/10/2022] Open
Abstract
The high vapor pressure deficit (VPD) in some arid and semi-arid climates creates undesirable conditions for the growth of tomato plants (Solanum lycopersicum L., cv. Jinpeng). The global CO2 concentration ([CO2]) has also risen in recent years to levels above 400 μmol·mol-1. However, the coordinated effect of VPD and [CO2] on tomato plant growth remains unclear, especially at VPDs of 5-6 kPa or even higher that are extremely detrimental to plant growth. Here, we explore the interaction of VPD and [CO2] on plant water status, stomatal characteristics, and gas exchange parameters in summer greenhouses in a semi-arid area. Plants were grown in four adjacent glass greenhouses with different environmental conditions: (i) high VPD + low [CO2] representing natural/control conditions; (ii) high VPD + high [CO2] representing enriched CO2; (iii) low VPD + low [CO2] representing reduced VPD; and (iv) low VPD + high [CO2] representing reduced VPD and enriched CO2. Reducing the VPD alleviated the water stress of the plant and increased the gas exchange area of the leaf, which was beneficial to the entry of CO2 into the leaf. At this time, the increase of [CO2] was more beneficial to promote the photosynthetic rate and then improve the water use efficiency and yield.
Collapse
Affiliation(s)
- Xiao-Cong Jiao
- College of Horticulture, Northwest Agriculture & Forest University, Yangling, 712100, Shaanxi, China
| | - Xiao-Ming Song
- College of Horticulture, Northwest Agriculture & Forest University, Yangling, 712100, Shaanxi, China
| | - Da-Long Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qing-Jie Du
- College of Horticulture, Northwest Agriculture & Forest University, Yangling, 712100, Shaanxi, China
| | - Jian-Ming Li
- College of Horticulture, Northwest Agriculture & Forest University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Grantz DA, Linscheid BS, Grulke NE. Differential responses of stomatal kinetics and steady-state conductance to abscisic acid in a fern: comparison with a gymnosperm and an angiosperm. THE NEW PHYTOLOGIST 2019; 222:1883-1892. [PMID: 30740702 DOI: 10.1111/nph.15736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/04/2019] [Indexed: 05/21/2023]
Abstract
Origins of abscisic acid (ABA)-mediated metabolic control of stomatal conductance have been suggested to be recent, based on a gradualistic model of stomatal evolution. In ferns, steady-state stomatal conductance (gs ) was unresponsive to ABA in some studies, supporting this model. Stomatal kinetic responses to ABA have not been considered. We used dynamic gas exchange methods to characterise half times of stomatal opening and closing in response to step changes in light, across a range of ABA exposures in three diverse taxa. All taxa had asymmetric kinetics, with closure slower than opening in fern and cedar, but faster than opening in soybean. Closing was fastest in soybean but opening was slowest. Stomatal kinetics, particularly for closure, responded to ABA in all three taxa. Steady-state gs did not respond significantly to ABA in fern or cedar but responded strongly in soybean. Stomatal kinetics were responsive to ABA in fern. This finding supports a contrasting, single origin model, with ABA-mediated regulation of stomata arising early, in conjunction with stomata themselves. Stomatal kinetics are underutilised. Differential responses of opening and closing rates to environmental and hormonal stimuli may provide insights into phylogeny and stomatal regulatory strategies with potential application to selection for crop improvement.
Collapse
Affiliation(s)
- David A Grantz
- Department of Botany and Plant Sciences, Kearney Agricultural Center, University of California at Riverside, Parlier, CA, 93648, USA
| | - Brandon S Linscheid
- Department of Botany and Plant Sciences, Kearney Agricultural Center, University of California at Riverside, Parlier, CA, 93648, USA
| | - Nancy E Grulke
- Pacific Northwest Research Station, US Department of Agriculture, Forest Service, Bend, OR, 97702, USA
| |
Collapse
|
13
|
Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG. Acquiring Control: The Evolution of Stomatal Signalling Pathways. TRENDS IN PLANT SCIENCE 2019; 24:342-351. [PMID: 30797685 DOI: 10.1016/j.tplants.2019.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 05/24/2023]
Abstract
In vascular plants, stomata balance two opposing functions: they open to facilitate CO2 uptake and close to prevent excessive water loss. Here, we discuss the evolution of three major signalling pathways that are known to control stomatal movements in angiosperms in response to light, CO2, and abscisic acid (ABA). We examine the evolutionary origins of key signalling genes involved in these pathways, and compare their expression patterns between an angiosperm and moss. We propose that variation in stomatal sensitivity to stimuli between plant groups are rooted in differences in: (i) gene presence/absence, (ii) specificity of gene spatial expression pattern, and (iii) protein characteristics and functional interactions.
Collapse
Affiliation(s)
- Frances C Sussmilch
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Jörg Schultz
- Center for Computational and Theoretical Biology, University of Würzburg, D-97218 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - M Rob G Roelfsema
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany.
| |
Collapse
|
14
|
Duckett JG, Pressel S. The evolution of the stomatal apparatus: intercellular spaces and sporophyte water relations in bryophytes-two ignored dimensions. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160498. [PMID: 29254963 PMCID: PMC5745334 DOI: 10.1098/rstb.2016.0498] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Cryo-scanning electron microscopy shows that nascent intercellular spaces (ICSs) in bryophytes are liquid-filled, whereas these are gas-filled from the outset in tracheophytes except in the gametophytes of Lycopodiales. ICSs are absent in moss gametophytes and remain liquid-filled in hornwort gametophytes and in both generations in liverworts. Liquid is replaced by gas following stomatal opening in hornworts and is ubiquitous in moss sporophytes even in astomate taxa. New data on moss water relations and sporophyte weights indicate that the latter are homiohydric while X-ray microanalysis reveals an absence of potassium pumps in the stomatal apparatus. The distribution of ICSs in bryophytes is strongly indicative of very ancient multiple origins. Inherent in this scenario is either the dual or triple evolution of stomata. The absence, in mosses, of any relationship between increases in sporophyte biomass and stomata numbers and absences, suggests that CO2 entry through the stomata, possible only after fluid replacement by gas in the ICSs, makes but a minor contribution to sporophyte nutrition. Save for a single claim of active regulation of aperture dimensions in mosses, all other functional and structural data point to the sporophyte desiccation, leading to spore discharge, as the primeval role of the stomatal apparatus.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- Jeffrey G Duckett
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
15
|
Shi B, Wang Y, Meng B, Zhong S, Sun W. Effects of Nitrogen Addition on the Drought Susceptibility of the Leymus chinensis Meadow Ecosystem Vary with Drought Duration. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 29535757 PMCID: PMC5835344 DOI: 10.3389/fpls.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is not clear yet how extreme drought and nitrogen (N) deposition influence grassland ecosystem functions when they are considered together, especially in complex field conditions. To explore the response of the Leymus chinensis meadow ecosystem to manipulated extreme drought (45 days), N addition and their interaction, we measured leaf photosynthetic characteristics, aboveground phytomass on the community level and ecosystem C exchange in different treatments at the middle and the end of the drought period. The extreme drought treatment decreased the leaf net CO2 assimilation rate and ecosystem C exchange [gross ecosystem productivity (GEP), ecosystem respiration and net ecosystem CO2 exchange]. In contrast, the N addition treatment increased aboveground phytomass, GEP and net ecosystem CO2 exchange. The effects of N addition on the drought susceptibility of the L. chinensis meadow ecosystem varied with drought severity. The N addition treatment alleviated drought-induced suppression of CO2 exchange at the leaf and ecosystem levels in the middle of the drought period, whereas it exacerbated drought-induced suppression of the CO2 exchange and aboveground phytomass on the community level at the end of the drought period. Given that dominance by L. chinensis is a characteristic of the studied ecosystem, knowledge of the traits of L. chinensis and its response to multiple global change drivers will be crucial for predicting future ecosystem functions. Furthermore, increasing N deposition may affect the response of the L. chinensis meadow ecosystem to further droughts by increasing carbon allocation to roots and therefore root-shoot ratios.
Collapse
Affiliation(s)
- Baoku Shi
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yunbo Wang
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- Key Laboratory of Grassland Resources, Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Meng
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Shangzhi Zhong
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Wei Sun
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
- *Correspondence: Wei Sun,
| |
Collapse
|
16
|
Lima VF, Medeiros DB, Dos Anjos L, Gago J, Fernie AR, Daloso DM. Toward multifaceted roles of sucrose in the regulation of stomatal movement. PLANT SIGNALING & BEHAVIOR 2018; 13:e1494468. [PMID: 30067434 PMCID: PMC6149408 DOI: 10.1080/15592324.2018.1494468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant atmospheric CO2 fixation depends on the aperture of stomatal pores at the leaf epidermis. Stomatal aperture or closure is regulated by changes in the metabolism of the two surrounding guard cells, which respond directly to environmental and internal cues such as mesophyll-derived metabolites. Sucrose has been shown to play a dual role during stomatal movements. The sucrose produced in the mesophyll cells can be transported to the vicinity of the guard cells via the transpiration stream, inducing closure in periods of high photosynthetic rate. By contrast, sucrose breakdown within guard cells sustains glycolysis and glutamine biosynthesis during light-induced stomatal opening. Here, we provide an update regarding the role of sucrose in the regulation of stomatal movement highlighting recent findings from metabolic and systems biology studies. We further explore how sucrose-mediated mechanisms of stomatal movement regulation could be useful to understand evolution of stomatal physiology among different plant groups.
Collapse
Affiliation(s)
- V. F. Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
- CONTACT Danilo M. Daloso Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| | - D. B. Medeiros
- Central metabolism group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm Germany
| | - L. Dos Anjos
- Departamento de Biologia, Universidade Federal de Lavras, Lavras-MG, Brasil
| | - J. Gago
- Research Group on Plant Biology under Mediterranean Conditions. Departament de Biologia, Universitat de les Illes Balears)/Instituto de investigaciones Agroambientales y de la Economía del Agua (INAGEA), Illes Balears, Spain
| | - A. R. Fernie
- Central metabolism group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm Germany
| | - D. M. Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CE, Brasil
| |
Collapse
|
17
|
Sussmilch FC, Brodribb TJ, McAdam SAM. What are the evolutionary origins of stomatal responses to abscisic acid in land plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:240-260. [PMID: 28093875 DOI: 10.1111/jipb.12523] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 01/15/2017] [Indexed: 05/20/2023]
Abstract
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA-mediated control of stomatal aperture, when these structures first appeared, prior to the divergence of bryophyte and vascular plant lineages. In contrast, a gradualistic model for stomatal control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
Collapse
Affiliation(s)
- Frances C Sussmilch
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Scott A M McAdam
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
18
|
Roelfsema MRG, Hedrich R. Do stomata of evolutionary distant species differ in sensitivity to environmental signals? THE NEW PHYTOLOGIST 2016; 211:767-770. [PMID: 27397524 DOI: 10.1111/nph.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- M Rob G Roelfsema
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg, D-97082, Germany
| |
Collapse
|
19
|
Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M, Laanisto L, Morales L, Nadal M, Rojas R, Talts E, Tomas M, Hanba Y, Niinemets Ü, Flexas J. The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. THE NEW PHYTOLOGIST 2016; 209:1576-90. [PMID: 26508678 DOI: 10.1111/nph.13719] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/16/2015] [Indexed: 05/21/2023]
Abstract
Ferns and fern allies have low photosynthetic rates compared with seed plants. Their photosynthesis is thought to be limited principally by physical CO2 diffusion from the atmosphere to chloroplasts. The aim of this study was to understand the reasons for low photosynthesis in species of ferns and fern allies (Lycopodiopsida and Polypodiopsida). We performed a comprehensive assessment of the foliar gas-exchange and mesophyll structural traits involved in photosynthetic function for 35 species of ferns and fern allies. Additionally, the leaf economics spectrum (the interrelationships between photosynthetic capacity and leaf/frond traits such as leaf dry mass per unit area or nitrogen content) was tested. Low mesophyll conductance to CO2 was the main cause for low photosynthesis in ferns and fern allies, which, in turn, was associated with thick cell walls and reduced chloroplast distribution towards intercellular mesophyll air spaces. Generally, the leaf economics spectrum in ferns follows a trend similar to that in seed plants. Nevertheless, ferns and allies had less nitrogen per unit DW than seed plants (i.e. the same slope but a different intercept) and lower photosynthesis rates per leaf mass area and per unit of nitrogen.
Collapse
Affiliation(s)
- Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Keisuke Nishida
- The Graduate School of Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - Rafael Eduardo Coopman
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Hernán Marino Cabrera
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Loreto Morales
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - Roke Rojas
- Ecophysiology Laboratory for Forest Conservation, Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Magdalena Tomas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| | - Yuko Hanba
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
20
|
Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Rappel WJ, Iba K, Schroeder JI. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. TRENDS IN PLANT SCIENCE 2016; 21:16-30. [PMID: 26482956 PMCID: PMC4707055 DOI: 10.1016/j.tplants.2015.08.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 05/18/2023]
Abstract
Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate.
Collapse
Affiliation(s)
- Cawas B Engineer
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Mimi Hashimoto-Sugimoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maria Israelsson-Nordström
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
21
|
Zier J, Belanger B, Trahan G, Watkins JE. Ecophysiology of four co-occurring lycophyte species: an investigation of functional convergence. AOB PLANTS 2015; 7:plv137. [PMID: 26602987 PMCID: PMC4689120 DOI: 10.1093/aobpla/plv137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/07/2015] [Indexed: 05/26/2023]
Abstract
Lycophytes are the most early divergent extant lineage of vascular land plants. The group has a broad global distribution ranging from tundra to tropical forests and can make up an important component of temperate northeast US forests. We know very little about the in situ ecophysiology of this group and apparently no study has evaluated if lycophytes conform to functional patterns expected by the leaf economics spectrum hypothesis. To determine factors influencing photosynthetic capacity (Amax), we analysed several physiological traits related to photosynthesis to include stomatal, nutrient, vascular traits, and patterns of biomass distribution in four coexisting temperate lycophyte species: Lycopodium clavatum, Spinulum annotinum, Diphasiastrum digitatum and Dendrolycopodium dendroideum. We found no difference in maximum photosynthetic rates across species, yet wide variation in other traits. We also found that Amax was not related to leaf nitrogen concentration and is more tied to stomatal conductance, suggestive of a fundamentally different sets of constraints on photosynthesis in these lycophyte taxa compared with ferns and seed plants. These findings complement the hydropassive model of stomatal control in lycophytes and may reflect canalization of function in this group. Our data also demonstrate functional ecological similarities: De. dendroideum and D. digitatum are species that have substantial belowground biomass investment and are consistently more similar to each other across multiple traits than either is to the more surficial S. annotinum and L. clavatum. Such differences may partition environments in ways that allow for the close coexistence of these species.
Collapse
Affiliation(s)
- Jacqlynn Zier
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Bryce Belanger
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Genevieve Trahan
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - James E Watkins
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| |
Collapse
|
22
|
Riaño K, Briones O. Sensitivity of three tree ferns during their first phase of life to the variation of solar radiation and water availability in a Mexican cloud forest. AMERICAN JOURNAL OF BOTANY 2015; 102:1472-1481. [PMID: 26373979 DOI: 10.3732/ajb.1500228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Regeneration niche differentiation promotes species coexistence and diversity; however, the ecological implications for the initial life phases of the majority of pteridophytes are unknown. We analyzed the sensitivity of gametophytes and juvenile sporophytes of the tree ferns Alsophila firma, Cyathea divergens, and Lophosoria quadripinnata to variation in light and water availability. METHODS We evaluated gametophyte desiccation tolerance using saturated salt solutions and gametophyte solar radiation tolerance by direct exposure. We also transplanted juvenile sporophytes in environments with 7% and 23% canopy openness and two watering levels. KEY RESULTS The response of photosynthetic efficiency and water content suggest that the gametophytes of the three species require high relative humidity, tolerate direct solar radiation for up to 30 min and that the response is not species-dependent. Sporophyte size and gas exchange were greater in the more open site, but decreased watering had a lesser effect on these variables in the more closed site. Relative growth rate correlated with the net assimilation rate and leaf weight ratio. Juvenile sporophytes of A. firma were more shade tolerant, while those of C. divergens and L. quadripinnata acclimatized to both environments. CONCLUSIONS Specialization to humid habitats in the tree fern gametophyte restricts the species to humid forests, while differences in the plasticity of the sporophyte facilitate coexistence of the species.
Collapse
Affiliation(s)
- Karolina Riaño
- Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa 91070 Veracruz, México
| | - Oscar Briones
- Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa 91070 Veracruz, México
| |
Collapse
|
23
|
Xiong D, Yu T, Liu X, Li Y, Peng S, Huang J. Heterogeneity of photosynthesis within leaves is associated with alteration of leaf structural features and leaf N content per leaf area in rice. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:687-696. [PMID: 32480712 DOI: 10.1071/fp15057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/11/2015] [Indexed: 06/11/2023]
Abstract
Increasing leaf photosynthesis rate (A) is considered an important strategy to increase C3 crop yields. Leaf A is usually represented by point measurements, but A varies within each leaf, especially within large leaves. However, little is known about the effect of heterogeneity of A within leaves on rice performance. Here we investigated the changes in gas-exchange parameters and leaf structural and chemical features along leaf blades in two rice cultivars. Stomatal and mesophyll conductance as well as leaf nitrogen (N), Rubisco and chlorophyll contents increased from base to apex; consequently, A increased along leaves in both cultivars. The variation in A, leaf N content and Rubisco content within leaves was similar to the variations among cultivars, and the extent of A heterogeneity within leaves varied between cultivars, leading to different efficiencies of biomass accumulation. Furthermore, variation of A within leaves was closely associated with leaf structural and chemical features. Our findings emphasise that functional changes along leaf blades are associated with structural and chemical trait variation and that variation of A within leaves should be considered to achieve progress in future breeding programs.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tingting Yu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xi Liu
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
24
|
Haworth M, Killi D, Materassi A, Raschi A. Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control. AMERICAN JOURNAL OF BOTANY 2015; 102:677-88. [PMID: 26022482 DOI: 10.3732/ajb.1400508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/30/2015] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Stomatal control is determined by the ability to alter stomatal aperture and/or the number of stomata on the surface of new leaves in response to growth conditions. The development of stomatal control mechanisms to the concentration of CO₂within the atmosphere ([CO₂]) is fundamental to our understanding of plant evolutionary history and the prediction of gas exchange responses to future [CO₂]. METHODS In a controlled environment, fern and angiosperm species were grown in atmospheres of ambient (400 ppm) and elevated (2000 ppm) [CO₂]. Physiological stomatal behavior was compared with the stomatal morphological response to [CO₂]. KEY RESULTS An increase in [CO₂] or darkness induced physiological stomatal responses ranging from reductions (active) to no change (passive) in stomatal conductance. Those species with passive stomatal behavior exhibited pronounced reductions of stomatal density in new foliage when grown in elevated [CO₂], whereas species with active stomata showed little morphological response to [CO₂]. Analysis of the physiological and morphological stomatal responses of a wider range of species suggests that patterns of stomatal control to [CO₂] do not follow a phylogenetic pattern associated with plant evolution. CONCLUSIONS Selective pressures may have driven the development of divergent stomatal control strategies to increased [CO₂]. Those species that are able to actively regulate guard cell turgor are more likely to respond to [CO₂] through a change in stomatal aperture than stomatal number. We propose a model of stomatal control strategies in response to [CO₂] characterized by a trade-off between short-term physiological behavior and longer-term morphological response.
Collapse
Affiliation(s)
- Matthew Haworth
- CNR-Istituto di Biometeorologia (IBIMET), Via Giovanni Caproni 8 50145 Florence, Italy
| | - Dilek Killi
- Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Piazzale delle Cascine 28 50144 Florence, Italy Institute of Natural and Applied Science, Çanakkale Onsekiz Mart University 17020 Çanakkale, Turkey
| | - Alessandro Materassi
- CNR-Istituto di Biometeorologia (IBIMET), Via Giovanni Caproni 8 50145 Florence, Italy
| | - Antonio Raschi
- CNR-Istituto di Biometeorologia (IBIMET), Via Giovanni Caproni 8 50145 Florence, Italy
| |
Collapse
|
25
|
Costa JM, Monnet F, Jannaud D, Leonhardt N, Ksas B, Reiter IM, Pantin F, Genty B. Open All Night Long: the dark side of stomatal control. PLANT PHYSIOLOGY 2015; 167:289-94. [PMID: 25527716 PMCID: PMC4326751 DOI: 10.1104/pp.114.253369] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/15/2014] [Indexed: 05/20/2023]
Abstract
Isolation of Arabidopsis mutants that maintain stomata open all night long credits the existence of dedicated regulators for stomatal closure in darkness.
Collapse
Affiliation(s)
- J Miguel Costa
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Fabien Monnet
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Dorothée Jannaud
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Nathalie Leonhardt
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Brigitte Ksas
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Ilja M Reiter
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Florent Pantin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| | - Bernard Genty
- Commissariat à l'Energie Atomique et aux Energies Alternatives (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.),Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), andUniversité Aix-Marseille (J.M.C., F.M., D.J., N.L., B.K., I.M.R., F.P., B.G.), Biologie Végétale et Microbiologie Environnementales, 13108 Saint-Paul-lez-Durance, France;Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France (F.M.); andCentro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal (J.M.C.)
| |
Collapse
|