1
|
Zhang C, Li Z, Sun T, Zang S, Wang D, Su Y, Wu Q, Que Y. Sugarcane ScCAX4 is a Negative Regulator of Resistance to Pathogen Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13205-13216. [PMID: 38809782 DOI: 10.1021/acs.jafc.4c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Calcium (Ca2+) is a second messenger in various physiological processes within plants. The significance of the Ca2+/H+ exchanger (CAX) has been established in facilitating Ca2+ transport in plants; however, disease resistance functions of the CAX gene remain elusive. In this study, we conducted sequence characterization and expression analysis for a sugarcane CAX gene, ScCAX4 (GenBank Accession Number: MW206380). In order to further investigate the disease resistance functions, this gene was then transiently overexpressed in Nicotiana benthamiana leaves, which were subsequently inoculated with Fusarium solani var. coeruleum. Results showed that ScCAX4 overexpression increased the susceptibility of N. benthamiana to pathogen infection by regulating the expression of genes related to salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) pathways, suggesting its negative role in disease resistance. Furthermore, we genetically transformed the ScCAX4 gene into N. benthamiana and obtained three positive T2 generation lines. Interestingly, the symptomatology of transgenic plants was consistent with that of transient overexpression after pathogen inoculation. Notably, the JA content in transgenic overexpression lines was significantly higher than that in the wild-type. RNA-seq revealed that ScCAX4 could mediate multiple signaling pathways, and the JA signaling pathway played a key role in modulating disease resistance. Finally, a regulatory model was depicted for the increased susceptibility to pathogen infection conferred by the ScCAX4 gene. This study provides genetic resources for sugarcane molecular breeding and the research direction for plant CAX genes.
Collapse
Affiliation(s)
- Chang Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenxiang Li
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, Haikou, 571101 Hainan, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Yuan P, Tanaka K, Poovaiah BW. Calmodulin-binding transcription activator AtSR1/CAMTA3 fine-tunes plant immune response by transcriptional regulation of the salicylate receptor NPR1. PLANT, CELL & ENVIRONMENT 2021; 44:3140-3154. [PMID: 34096631 DOI: 10.1111/pce.14123] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 05/27/2023]
Abstract
Calcium (Ca2+ ) signalling regulates salicylic acid (SA)-mediated immune response through calmodulin-meditated transcriptional activators, AtSRs/CAMTAs, but its mechanism is not fully understood. Here, we report an AtSR1/CAMTA3-mediated regulatory mechanism involving the expression of the SA receptor, NPR1. Results indicate that the transcriptional expression of NPR1 was regulated by AtSR1 binding to a CGCG box in the NPR1 promotor. The atsr1 mutant exhibited resistance to the virulent strain of Pseudomonas syringae pv. tomato (Pst), however, was susceptible to an avirulent Pst strain carrying avrRpt2, due to the failure of the induction of hypersensitive responses. These resistant/susceptible phenotypes in the atsr1 mutant were reversed in the npr1 mutant background, suggesting that AtSR1 regulates NPR1 as a downstream target during plant immune response. The virulent Pst strain triggered a transient elevation in intracellular Ca2+ concentration, whereas the avirulent Pst strain triggered a prolonged change. The distinct Ca2+ signatures were decoded into the regulation of NPR1 expression through AtSR1's IQ motif binding with Ca2+ -free-CaM2, while AtSR1's calmodulin-binding domain with Ca2+ -bound-CaM2. These observations reveal a role for AtSR1 as a Ca2+ -mediated transcription regulator in controlling the NPR1-mediated plant immune response.
Collapse
Affiliation(s)
- Peiguo Yuan
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - B W Poovaiah
- Department of Horticulture, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Xiao Z, Zhang Y, Liu M, Zhan C, Yang X, Nvsvrot T, Yan Z, Wang N. Coexpression analysis of a large-scale transcriptome identified a calmodulin-like protein regulating the development of adventitious roots in poplar. TREE PHYSIOLOGY 2020; 40:1405-1419. [PMID: 32578840 DOI: 10.1093/treephys/tpaa078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 05/24/2023]
Abstract
Poplars are important woody plants, and the ability to form adventitious roots (ARs) is the key factor for their cultivation because most poplars are propagated by cloning. In previous studies, Ca2+ was confirmed to regulate AR formation in poplar. In this study, wild-type poplar cuttings grown in 1.0 mM Ca2+ solution showed the best visible performance of AR development. Coexpression analysis of a large-scale RNA-Seq transcriptome was conducted to identify Ca2+-related genes that regulate AR development in poplar. A total of 15 coexpression modules (CMs) were identified, and two CMs showed high association with AR development. Functional analysis identified a number of biological pathways, including 'oxidation-reduction process', 'response to biotic stimulus' and 'metabolic process', in tissues of AR development. The Ca2+-related pathway was specifically selected, and its regulation in poplar AR development was predicted. A Ca2+ sensor, PdeCML23-1, which is a member of the calmodulin-like protein (CML) family, was found to promote AR development by phenotypic assay of overexpressed PdeCML23-1 transgenic lines at various growing conditions. By measuring cytosolic Ca2+ in AR tips, PdeCML23-1 seemed to play a role in decreasing cytosolic Ca2+ concentration. Additionally, the expression profiles of some genes and phytohormone indole acetic acid (IAA) were also changed in the overexpressed PdeCML23-1 transgenic lines. According to this study, we were able to provide a global view of gene regulation for poplar AR development. Moreover, we also observed the regulation of cytosolic Ca2+ concentration by PdeCML23-1, and this regulation was involved in AR development in poplar. We also predicted that PdeCML23-1 possibly regulates AR development by modulating IAA content in poplar.
Collapse
Affiliation(s)
- Zheng'ang Xiao
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Zhang
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Meifeng Liu
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Zhan
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Yang
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tashbek Nvsvrot
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaogui Yan
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Wang
- Forestry Department, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Comparative transcriptome analysis of Tilletia horrida infection in resistant and susceptible rice (Oryza sativa L.) male sterile lines reveals potential candidate genes and resistance mechanisms. Genomics 2020; 112:5214-5226. [PMID: 32966859 DOI: 10.1016/j.ygeno.2020.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022]
Abstract
Rice kernel smut (RKS), caused by the basidiomycete fungus Tilletia horrida, is one of the most devastating diseases affecting the production of male sterile lines of rice (Oryza sativa) worldwide. However, the molecular mechanisms of resistance to T. horrida have not yet been explored. In the present study, RNA sequencing analysis of rice male sterile lines, that are resistant and susceptible to RKS (Jiangcheng 3A and 9311A, respectively) was conducted after T. horrida infection. Transcriptomic analysis showed that a greater number of differentially expressed gene (DEGs) was observed in Jiangcheng 3A compared with 9311A after T. horrida inoculation. Furthermore, 4, 425 DEGs were uniquely detected in Jiangcheng 3A, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of these DEGs revealed that oxidoreductase activity, peroxidase activity, cutin, suberine and wax biosynthesis, and flavonoid biosynthesis were key pathways for T. horrida resistance. In summary and based on transcriptome analysis, we suggest a preliminary regulatory mechanism for Jiangcheng 3A cultivar resistance response to T. horrida inoculation.
Collapse
|
5
|
Zhao T, Liu W, Zhao Z, Yang H, Bao Y, Zhang D, Wang Z, Jiang J, Xu Y, Zhang H, Li J, Chen Q, Xu X. Transcriptome profiling reveals the response process of tomato carrying Cf-19 and Cladosporium fulvum interaction. BMC PLANT BIOLOGY 2019; 19:572. [PMID: 31856725 PMCID: PMC6923989 DOI: 10.1186/s12870-019-2150-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/19/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND During tomato cultivation, tomato leaf mould is a common disease caused by Cladosporium fulvum (C. fulvum). By encoding Cf proteins, which can recognize corresponding AVR proteins produced by C. fulvum, Cf genes provide resistance to C. fulvum, and the resistance response patterns mediated by different Cf genes are not identical. Plants carrying the Cf-19 gene show effective resistance to C. fulvum in the field and can be used as new resistant materials in breeding. In this study, to identify key regulatory genes related to resistance and to understand the resistance response process in tomato plants carrying Cf-19, RNA sequencing (RNA-seq) was used to analyse the differences between the response of resistant plants (CGN18423, carrying the Cf-19 gene) and susceptible plants (Moneymaker (MM), carrying the Cf-0 gene) at 0, 7 and 20 days after inoculation (dai). RESULTS A total of 418 differentially expressed genes (DEGs) were identified specifically in the CGN18423 response process. Gene Ontology (GO) analysis revealed that GO terms including "plasma membrane (GO_Component)", "histidine decarboxylase activity (GO_Function)", and "carboxylic acid metabolic process (GO_Process)", as well as other 10 GO terms, were significantly enriched. The "plant hormone signal transduction" pathway, which was unique to CGN18423 in the 0-7 dai comparison, was identified. Moreover, ten key regulatory points were screened from the "plant hormone signal transduction" pathway and the "plant pathogen interaction" pathway. Hormone content measurements revealed that the salicylic acid (SA) contents increased and peaked at 7 dai, after which the contents deceased and reached minimum values in both CGN18423 and MM plants at 20 dai. The jasmonic acid (JA) content increased to a very high level at 7 dai but then decreased to nearly the initial level at 20 dai in CGN18423, while it continued to increase slightly during the whole process from 0 to 20 dai in MM. CONCLUSIONS The initial responses are very different between the resistant and susceptible plants. The "plant hormone signal transduction" pathway is important for the formation of Cf-19-mediated immunity. In addition, both JA and SA play roles in regulating the Cf-19-dependent resistance response.
Collapse
Affiliation(s)
- Tingting Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Wenhong Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Zhentong Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Yufang Bao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Dongye Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Ziyu Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Ying Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - He Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
| | - Qingshan Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
- College of Agronomy, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030 China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
| |
Collapse
|
6
|
Moeder W, Phan V, Yoshioka K. Ca 2+ to the rescue - Ca 2+channels and signaling in plant immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:19-26. [PMID: 30709488 DOI: 10.1016/j.plantsci.2018.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 05/03/2023]
Abstract
Ca2+ is a universal second messenger in many signaling pathways in all eukaryotes including plants. Transient changes in [Ca2+]cyt are rapidly generated upon a diverse range of stimuli such as drought, heat, wounding, and biotic stresses (infection by pathogenic and symbiotic microorganisms), as well as developmental cues. It has been known for a while that [Ca2+]cyt transient signals play crucial roles to activate plant immunity and recently significant progresses have been made in this research field. However the identity and regulation of ion channels that are involved in defense related Ca2+ signals are still enigmatic. Members of two ligand gated ion channel families, glutamate receptor-like channels (GLRs) and cyclic nucleotide-gated channels (CNGCs) have been implicated in immune responses; nevertheless more precise data to understand their direct involvement in the creation of Ca2+ signals during immune responses is necessary. Furthermore, the study of other ion channel groups is also required to understand the whole picture of the intra- and inter-cellular Ca2+ signalling network. In this review we summarize Ca2+ signals in plant immunity from an ion channel point of view and discuss future challenges in this exciting research field.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Van Phan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Keiko Yoshioka
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada; Center for the Analysis of Genome Evolution and Function (CAGEF), University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada.
| |
Collapse
|
7
|
Enebe MC, Babalola OO. The impact of microbes in the orchestration of plants' resistance to biotic stress: a disease management approach. Appl Microbiol Biotechnol 2019; 103:9-25. [PMID: 30315353 PMCID: PMC6311197 DOI: 10.1007/s00253-018-9433-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
The struggle for survival is a natural and a continuous process. Microbes are struggling to survive by depending on plants for their nutrition while plants on the other hand are resisting the attack of microbes in order to survive. This interaction is a tug of war and the knowledge of microbe-plant relationship will enable farmers/agriculturists improve crop health, yield, sustain regular food supply, and minimize the use of agrochemicals such as fungicides and pesticides in the fight against plant pathogens. Although, these chemicals are capable of inhibiting pathogens, they also constitute an environmental hazard. However, certain microbes known as plant growth-promoting microbes (PGPM) aid in the sensitization and priming of the plant immune defense arsenal for it to conquer invading pathogens. PGPM perform this function by the production of elicitors such as volatile organic compounds, antimicrobials, and/or through competition. These elicitors are capable of inducing the expression of pathogenesis-related genes in plants through induced systemic resistance or acquired systemic resistance channels. This review discusses the current findings on the influence and participation of microbes in plants' resistance to biotic stress and to suggest integrative approach as a better practice in disease management and control for the achievement of sustainable environment, agriculture, and increasing food production.
Collapse
Affiliation(s)
- Matthew Chekwube Enebe
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
8
|
Wang X, Hao L, Zhu B, Jiang Z. Plant Calcium Signaling in Response to Potassium Deficiency. Int J Mol Sci 2018; 19:E3456. [PMID: 30400321 PMCID: PMC6275041 DOI: 10.3390/ijms19113456] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/23/2023] Open
Abstract
Potassium (K⁺) is an essential macronutrient of living cells and is the most abundant cation in the cytosol. K⁺ plays a role in several physiological processes that support plant growth and development. However, soil K⁺ availability is very low and variable, which leads to severe reductions in plant growth and yield. Various K⁺ shortage-activated signaling cascades exist. Among these, calcium signaling is the most important signaling system within plant cells. This review is focused on the possible roles of calcium signaling in plant responses to low-K⁺ stress. In plants, intracellular calcium levels are first altered in response to K⁺ deficiency, resulting in calcium signatures that exhibit temporal and spatial features. In addition, calcium channels located within the root epidermis and root hair zone can then be activated by hyperpolarization of plasma membrane (PM) in response to low-K⁺ stress. Afterward, calcium sensors, including calmodulin (CaM), CaM-like protein (CML), calcium-dependent protein kinase (CDPK), and calcineurin B-like protein (CBL), can act in the sensing of K⁺ deprivation. In particular, the important components regarding CBL/CBL-interacting protein kinase (CBL/CIPK) complexes-involved in plant responses to K⁺ deficiency are also discussed.
Collapse
Affiliation(s)
- Xiaoping Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ling Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Biping Zhu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Zhonghao Jiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Guo N, Wang G, Zong M, Han S, Liu F. Genome-wide identification, and phylogenetic and expression profiling analyses of CaM and CML genes in Brassica rapa and Brassica oleracea. Gene 2018; 677:232-244. [DOI: 10.1016/j.gene.2018.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
|
10
|
Martos GG, Mamaní A, Filippone MP, Castagnaro AP, Díaz Ricci JC. The ellagitannin HeT induces electrolyte leakage, calcium influx and the accumulation of nitric oxide and hydrogen peroxide in strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:400-405. [PMID: 29306187 DOI: 10.1016/j.plaphy.2017.12.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
HeT (1-0-galloyl-2,3; 4,6-bis-hexahydroxydiphenoyl-β-D-glucopyranose) is a penta-esterified ellagitannin obtained from strawberry leaves. Previous studies have shown that foliar application of HeT prior to inoculation with a virulent pathogen increases the resistance toward Colletotrichum acutatum in strawberry plants and to Xanthomonas citri subsp. citri in lemon plants. In this work we report that HeT induces an immediate leak of electrolytes, the hyperpolarization of the cellular membrane, a rapid Ca2+ influx to the cytoplasm during the first few seconds, which in turn modulates the accumulation of nitric oxide 5 min after treatment. At longer times, a biphasic accumulation of H2O2 with peaks at 2 and 5 h post treatment could be observed. In addition, HeT elicited the increase of alternative oxidase capacity during the first 12 h post treatment.
Collapse
Affiliation(s)
- Gustavo Gabriel Martos
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Alicia Mamaní
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - María Paula Filippone
- Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Unidad Asociada al INSIBIO, Av. William Cross 3150, Las Talitas, 4101, Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- Sección Biotecnología de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC)-Unidad Asociada al INSIBIO, Av. William Cross 3150, Las Talitas, 4101, Tucumán, Argentina
| | - Juan Carlos Díaz Ricci
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina.
| |
Collapse
|
11
|
Zhu X, Robe E, Jomat L, Aldon D, Mazars C, Galaud JP. CML8, an Arabidopsis Calmodulin-Like Protein, Plays a Role in Pseudomonas syringae Plant Immunity. PLANT & CELL PHYSIOLOGY 2017; 58:307-319. [PMID: 27837097 DOI: 10.1093/pcp/pcw189] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Calcium is a universal second messenger involved in various cellular processes including plant development and stress responses. Its conversion into biological responses requires the presence of calcium sensor relays such as calmodulin (CaM) and calmodulin-like (CML) proteins. While the role of CaM is well described, the functions CML proteins remain largely uncharacterized. Here, we show that Arabidopsis CML8 expression is strongly and transiently induced by Pseudomonas syringae, and reverse genetic approaches indicated that the overexpression of CML8 confers on plants a better resistance to pathogenic bacteria compared with wild-type, knock-down and knock-out lines, indicating that CML8 participates as a positive regulator in plant immunity. However, this difference disappeared when inoculations were performed using bacteria unable to inject effectors into a plant host cell or deficient for some effectors known to target the salicylic acid (SA) signaling pathway. SA content and PR1 protein accumulation were altered in CML8 transgenic lines, supporting a role for CML8 in SA-dependent processes. Pathogen-associated molecular pattern (PAMP) treatments with flagellin and elf18 peptides have no effects on CML8 gene expression and do not modify root growth of CML8 knock-down and overexpressing lines compared with wild-type plants. Collectively, our results support a role for CML8 in plant immunity against P. syringae.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, BP, Castanet-Tolosan, France
| | - Eugénie Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, BP, Castanet-Tolosan, France
| | - Lucile Jomat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, BP, Castanet-Tolosan, France
- Institut Jacques Monod, UMR 7592, CNRS-Université Paris Diderot, 15 rue Hélène Brion, Paris Cédex, France
| | - Didier Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, BP, Castanet-Tolosan, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, BP, Castanet-Tolosan, France
| | - Jean-Philippe Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24, chemin de Borde-Rouge, Auzeville, BP, Castanet-Tolosan, France
| |
Collapse
|
12
|
Akamatsu A, Shimamoto K, Kawano Y. Crosstalk of Signaling Mechanisms Involved in Host Defense and Symbiosis Against Microorganisms in Rice. Curr Genomics 2016; 17:297-307. [PMID: 27499679 PMCID: PMC4955034 DOI: 10.2174/1389202917666160331201602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
Rice is one of the most important food crops, feeding about half population in the world. Rice pathogens cause enormous damage to rice production worldwide. In plant immunity research, considerable progress has recently been made in our understanding of the molecular mechanisms underlying microbe-associated molecular pattern (MAMP)-triggered immunity. Using genome sequencing and molecular techniques, a number of new MAMPs and their receptors have been identified in the past two decades. Notably, the mechanisms for chitin perception via the lysine motif (LysM) domain-containing receptor OsCERK1, as well as the mechanisms for bacterial MAMP (e.g. flg22, elf18) perception via the leucine-rich repeat (LRR) domain-containing receptors FLS2 and EFR, have been clarified in rice and Arabidopsis, respectively. In chitin signaling in rice, two direct substrates of OsCERK1, Rac/ROP GTPase guanine nucleotide exchange factor OsRacGEF1 and receptor-like cytoplasmic kinase OsRLCK185, have been identified as components of the OsCERK1 complex and are rapidly phosphorylated by OsCERK1 in response to chitin. Interestingly, OsCERK1 also participates in symbiosis with arbuscular mycorrhizal fungi (AMF) in rice and plays a role in the recognition of short-chitin molecules (CO4/5), which are symbiotic signatures included in AMF germinated spore exudates and induced by synthetic strigolactone. Thus, OsCERK1 contributes to both immunity and symbiotic responses. In this review, we describe recent studies on pathways involved in rice immunity and symbiotic signaling triggered by interactions with microorganisms. In addition, we describe recent advances in genetic engineering by using plant immune receptors and symbiotic microorganisms to enhance disease resistance of rice.
Collapse
Affiliation(s)
- Akira Akamatsu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Cell and Developmental Biology, John Innes Centre, Norwich,United Kingdom
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan
| | - Yoji Kawano
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara,Japan;; Present address: Shanghai Center for Plant Stress Biology, Shanghai,P.R. China;; Kihara Institute for Biological Research, Yokohama,Japan
| |
Collapse
|
13
|
Qiu L, Lin JS, Xu J, Sato S, Parniske M, Wang TL, Downie JA, Xie F. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation. PLoS Genet 2015; 11:e1005623. [PMID: 26517270 PMCID: PMC4627827 DOI: 10.1371/journal.pgen.1005623] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. Characterization of Lotus japonicus mutants defective for nodule infection by rhizobia led to the identification of a gene we named SCARN. Two of the five alleles caused formation of branched root-hairs in uninoculated seedlings, suggesting SCARN plays a role in the microtubule and actin-regulated polar growth of root hairs. SCARN is one of three L. japonicus proteins containing the conserved N and C terminal domains predicted to be required for rearrangement of the actin cytoskeleton. SCARN expression is induced in response to rhizobial nodulation factors by the NIN (NODULE INCEPTION) transcription factor and appears to be adapted to promoting rhizobial infection, possibly arising from a gene duplication event. SCARN binds to ARPC3, one of the predicted components in the actin-related protein complex involved in the activation of actin nucleation.
Collapse
Affiliation(s)
- Liping Qiu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie-shun Lin
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Martin Parniske
- University of Munich LMU, Faculty of Biology, Martinsried, Germany
| | | | | | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Panstruga R, Kuhn H. Introduction to a Virtual Special Issue on cell biology at the plant-microbe interface. THE NEW PHYTOLOGIST 2015; 207:931-8. [PMID: 26235485 DOI: 10.1111/nph.13551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| |
Collapse
|
15
|
Glyan’ko AK. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhu X, Dunand C, Snedden W, Galaud JP. CaM and CML emergence in the green lineage. TRENDS IN PLANT SCIENCE 2015; 20:483-9. [PMID: 26115779 DOI: 10.1016/j.tplants.2015.05.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 05/02/2023]
Abstract
Calmodulin (CaM) is a well-studied calcium sensor that is ubiquitous in all eukaryotes and contributes to signaling during developmental processes and adaptation to environmental stimuli. Among eukaryotes, plants have a remarkable variety of CaM-like proteins (CMLs). The expansion of genomic data sets offers the opportunity to explore CaM and CML evolution among the green lineage from algae to land plants. Database analysis indicates that a striking diversity of CaM and CMLs evolved in angiosperms during terrestrial colonization and reveals the emergence of new CML classes throughout the green lineage that correlate with the acquisition of novel biological traits. Here, we speculate that expansion of the CML family was driven by selective pressures to process environmental signals efficiently as plants adapted to land environments.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Christophe Dunand
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France
| | - Wayne Snedden
- Department of Biology, Queen's University, Kingston, ONT K7L 3N6, Canada
| | - Jean-Philippe Galaud
- Université de Toulouse, UPS, UMR 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France; CNRS, UMR 5546, BP 42617, F-31326, Castanet-Tolosan, France.
| |
Collapse
|