1
|
Roberts M, Josephs EB. Previously unmeasured genetic diversity explains part of Lewontin's paradox in a k -mer-based meta-analysis of 112 plant species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594778. [PMID: 38798362 PMCID: PMC11118579 DOI: 10.1101/2024.05.17.594778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
At the molecular level, most evolution is expected to be neutral. A key prediction of this expectation is that the level of genetic diversity in a population should scale with population size. However, as was noted by Richard Lewontin in 1974 and reaffirmed by later studies, the slope of the population size-diversity relationship in nature is much weaker than expected under neutral theory. We hypothesize that one contributor to this paradox is that current methods relying on single nucleotide polymorphisms (SNPs) called from aligning short reads to a reference genome underestimate levels of genetic diversity in many species. To test this idea, we calculated nucleotide diversity ( π ) and k -mer-based metrics of genetic diversity across 112 plant species, amounting to over 205 terabases of DNA sequencing data from 27,488 individual plants. We then compared how these different metrics correlated with proxies of population size that account for both range size and population density variation across species. We found that our population size proxies scaled anywhere from about 3 to over 20 times faster with k -mer diversity than nucleotide diversity after adjusting for evolutionary history, mating system, life cycle habit, cultivation status, and invasiveness. The relationship between k -mer diversity and population size proxies also remains significant after correcting for genome size, whereas the analogous relationship for nucleotide diversity does not. These results suggest that variation not captured by common SNP-based analyses explains part of Lewontin's paradox in plants.
Collapse
Affiliation(s)
- Miles Roberts
- Genetics and Genome Sciences Program, Michigan State University, East Lansing MI
| | - Emily B. Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI
- Plant Resilience Institute, Michigan State University, East Lansing, MI
| |
Collapse
|
2
|
Aguirre NC, Villalba PV, García MN, Filippi CV, Rivas JG, Martínez MC, Acuña CV, López AJ, López JA, Pathauer P, Palazzini D, Harrand L, Oberschelp J, Marcó MA, Cisneros EF, Carreras R, Martins Alves AM, Rodrigues JC, Hopp HE, Grattapaglia D, Cappa EP, Paniego NB, Marcucci Poltri SN. Comparison of ddRADseq and EUChip60K SNP genotyping systems for population genetics and genomic selection in Eucalyptus dunnii (Maiden). Front Genet 2024; 15:1361418. [PMID: 38606359 PMCID: PMC11008695 DOI: 10.3389/fgene.2024.1361418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 04/13/2024] Open
Abstract
Eucalyptus dunnii is one of the most important Eucalyptus species for short-fiber pulp production in regions where other species of the genus are affected by poor soil and climatic conditions. In this context, E. dunnii holds promise as a resource to address and adapt to the challenges of climate change. Despite its rapid growth and favorable wood properties for solid wood products, the advancement of its improvement remains in its early stages. In this work, we evaluated the performance of two single nucleotide polymorphism, (SNP), genotyping methods for population genetics analysis and Genomic Selection in E. dunnii. Double digest restriction-site associated DNA sequencing (ddRADseq) was compared with the EUChip60K array in 308 individuals from a provenance-progeny trial. The compared SNP set included 8,011 and 19,008 informative SNPs distributed along the 11 chromosomes, respectively. Although the two datasets differed in the percentage of missing data, genome coverage, minor allele frequency and estimated genetic diversity parameters, they revealed a similar genetic structure, showing two subpopulations with little differentiation between them, and low linkage disequilibrium. GS analyses were performed for eleven traits using Genomic Best Linear Unbiased Prediction (GBLUP) and a conventional pedigree-based model (ABLUP). Regardless of the SNP dataset, the predictive ability (PA) of GBLUP was better than that of ABLUP for six traits (Cellulose content, Total and Ethanolic extractives, Total and Klason lignin content and Syringyl and Guaiacyl lignin monomer ratio). When contrasting the SNP datasets used to estimate PAs, the GBLUP-EUChip60K model gave higher and significant PA values for six traits, meanwhile, the values estimated using ddRADseq gave higher values for three other traits. The PAs correlated positively with narrow sense heritabilities, with the highest correlations shown by the ABLUP and GBLUP-EUChip60K. The two genotyping methods, ddRADseq and EUChip60K, are generally comparable for population genetics and genomic prediction, demonstrating the utility of the former when subjected to rigorous SNP filtering. The results of this study provide a basis for future whole-genome studies using ddRADseq in non-model forest species for which SNP arrays have not yet been developed.
Collapse
Affiliation(s)
| | | | - Martín Nahuel García
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Juan Gabriel Rivas
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - María Carolina Martínez
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Cintia Vanesa Acuña
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Augusto J. López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Juan Adolfo López
- Estación Experimental Agropecuaria de Bella Vista, Instituto Nacional de Tecnología Agropecuaria, Bella Vista, Argentina
| | - Pablo Pathauer
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Dino Palazzini
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Leonel Harrand
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Javier Oberschelp
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Martín Alberto Marcó
- Estación Experimental Agropecuaria de Concordia, Instituto Nacional de Tecnología Agropecuaria, Concordia, Argentina
| | - Esteban Felipe Cisneros
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Rocío Carreras
- Facultad de Ciencias Forestales, Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Ana Maria Martins Alves
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - José Carlos Rodrigues
- Centro de Estudos Florestais e Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal
| | - H. Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Dario Grattapaglia
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Recursos Genéticos e Biotecnologia, Brasilia, Brazil
| | - Eduardo Pablo Cappa
- Instituto de Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | | |
Collapse
|
3
|
de Oliveira DA, da Silva PHM, Novaes E, Grattapaglia D. Genome-wide analysis highlights genetic admixture in exotic germplasm resources of Eucalyptus and unexpected ancestral genomic composition of interspecific hybrids. PLoS One 2023; 18:e0289536. [PMID: 37552668 PMCID: PMC10409294 DOI: 10.1371/journal.pone.0289536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Eucalyptus is an economically important genus comprising more than 890 species in different subgenera and sections. Approximately twenty species of subgenus Symphyomyrtus account for 95% of the world's planted eucalypts. Discrimination of closely related eucalypt taxa is challenging, consistent with their recent phylogenetic divergence and occasional hybridization in nature. Admixture, misclassification or mislabeling of Eucalyptus germplasm resources maintained as exotics have been suggested, although no reports are available. Moreover, hybrids with increased productivity and traits complementarity are planted worldwide, but little is known about their actual genomic ancestry. In this study we examined a set of 440 trees of 16 different Eucalyptus species and 44 interspecific hybrids of multi-species origin conserved in germplasm banks in Brazil. We used genome-wide SNP data to evaluate the agreement between the alleged phylogenetic classification of species and provenances as registered in their historical records, and their observed genetic clustering derived from SNP data. Genetic structure analyses correctly assigned each of the 16 species to a different cluster although the PCA positioning of E. longirostrata was inconsistent with its current taxonomy. Admixture was present for closely related species' materials derived from local germplasm banks, indicating unintended hybridization following germplasm introduction. Provenances could be discriminated for some species, indicating that SNP-based discrimination was directly proportional to geographical distance, consistent with an isolation-by-distance model. SNP-based genomic ancestry analysis showed that the majority of the hybrids displayed realized genomic composition deviating from the expected ones based on their pedigree records, consistent with admixture in their parents and pervasive genome-wide directional selection toward the fast-growing E. grandis genome. SNP data in support of tree breeding provide precise germplasm identity verification, and allow breeders to objectively recognize the actual ancestral origin of superior hybrids to more realistically guide the program toward the development of the desired genetic combinations.
Collapse
Affiliation(s)
| | | | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG, Brazil
| | - Dario Grattapaglia
- Plant Genetics Laboratory, EMBRAPA Genetic Resources and Biotechnology, Brasilia, DF, Brazil
| |
Collapse
|
4
|
Keppel G, Sarnow U, Biffin E, Peters S, Fitzgerald D, Boutsalis E, Waycott M, Guerin GR. Population decline in a Pleistocene refugium: Stepwise, drought-related dieback of a South Australian eucalypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162697. [PMID: 36898535 DOI: 10.1016/j.scitotenv.2023.162697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.
Collapse
Affiliation(s)
- Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Udo Sarnow
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Stefan Peters
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Donna Fitzgerald
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Evan Boutsalis
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Greg R Guerin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Abeyratne CR, Macaya-Sanz D, Zhou R, Barry KW, Daum C, Haiby K, Lipzen A, Stanton B, Yoshinaga Y, Zane M, Tuskan GA, DiFazio SP. High-resolution mapping reveals hotspots and sex-biased recombination in Populus trichocarpa. G3 (BETHESDA, MD.) 2023; 13:jkac269. [PMID: 36250890 PMCID: PMC9836356 DOI: 10.1093/g3journal/jkac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Fine-scale meiotic recombination is fundamental to the outcome of natural and artificial selection. Here, dense genetic mapping and haplotype reconstruction were used to estimate recombination for a full factorial Populus trichocarpa cross of 7 males and 7 females. Genomes of the resulting 49 full-sib families (N = 829 offspring) were resequenced, and high-fidelity biallelic SNP/INDELs and pedigree information were used to ascertain allelic phase and impute progeny genotypes to recover gametic haplotypes. The 14 parental genetic maps contained 1,820 SNP/INDELs on average that covered 376.7 Mb of physical length across 19 chromosomes. Comparison of parental and progeny haplotypes allowed fine-scale demarcation of cross-over regions, where 38,846 cross-over events in 1,658 gametes were observed. Cross-over events were positively associated with gene density and negatively associated with GC content and long-terminal repeats. One of the most striking findings was higher rates of cross-overs in males in 8 out of 19 chromosomes. Regions with elevated male cross-over rates had lower gene density and GC content than windows showing no sex bias. High-resolution analysis identified 67 candidate cross-over hotspots spread throughout the genome. DNA sequence motifs enriched in these regions showed striking similarity to those of maize, Arabidopsis, and wheat. These findings, and recombination estimates, will be useful for ongoing efforts to accelerate domestication of this and other biomass feedstocks, as well as future studies investigating broader questions related to evolutionary history, perennial development, phenology, wood formation, vegetative propagation, and dioecy that cannot be studied using annual plant model systems.
Collapse
Affiliation(s)
| | - David Macaya-Sanz
- Department of Forest Ecology & Genetics, CIFOR-INIA, CSIC, Madrid 28040, Spain
| | - Ran Zhou
- Warnell School of Forestry and Natural Resources, Department of Genetics, and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Christopher Daum
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Anna Lipzen
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Yuko Yoshinaga
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Matthew Zane
- Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Gerald A Tuskan
- Biosciences Division, Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
6
|
Candotti J, Christie N, Ployet R, Mostert‐O'Neill MM, Reynolds SM, Neves LG, Naidoo S, Mizrachi E, Duong TA, Myburg AA. Haplotype mining panel for genetic dissection and breeding in Eucalyptus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:174-185. [PMID: 36394447 PMCID: PMC10107644 DOI: 10.1111/tpj.16026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
To improve our understanding of genetic mechanisms underlying complex traits in plants, a comprehensive analysis of gene variants is required. Eucalyptus is an important forest plantation genus that is highly outbred. Trait dissection and molecular breeding in eucalypts currently relies on biallelic single-nucleotide polymorphism (SNP) markers. These markers fail to capture the large amount of haplotype diversity in these species, and thus multi-allelic markers are required. We aimed to develop a gene-based haplotype mining panel for Eucalyptus species. We generated 17 999 oligonucleotide probe sets for targeted sequencing of selected regions of 6293 genes implicated in growth and wood properties, pest and disease resistance, and abiotic stress responses. We identified and phased 195 834 SNPs using a read-based phasing approach to reveal SNP-based haplotypes. A total of 8915 target regions (at 4637 gene loci) passed tests for Mendelian inheritance. We evaluated the haplotype panel in four Eucalyptus species (E. grandis, E. urophylla, E. dunnii and E. nitens) to determine its ability to capture diversity across eucalypt species. This revealed an average of 3.13-4.52 haplotypes per target region in each species, and 33.36% of the identified haplotypes were shared by at least two species. This haplotype mining panel will enable the analysis of haplotype diversity within and between species, and provide multi-allelic markers that can be used for genome-wide association studies and gene-based breeding approaches.
Collapse
Affiliation(s)
- Julia Candotti
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Nanette Christie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Raphael Ployet
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Marja M. Mostert‐O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - S. Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | | | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
| |
Collapse
|
7
|
Mostert‐O'Neill MM, Tate H, Reynolds SM, Mphahlele MM, van den Berg G, Verryn SD, Acosta JJ, Borevitz JO, Myburg AA. Genomic consequences of artificial selection during early domestication of a wood fibre crop. THE NEW PHYTOLOGIST 2022; 235:1944-1956. [PMID: 35657639 PMCID: PMC9541791 DOI: 10.1111/nph.18297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
From its origins in Australia, Eucalyptus grandis has spread to every continent, except Antarctica, as a wood crop. It has been cultivated and bred for over 100 yr in places such as South Africa. Unlike most annual crops and fruit trees, domestication of E. grandis is still in its infancy, representing a unique opportunity to interrogate the genomic consequences of artificial selection early in the domestication process. To determine how a century of artificial selection has changed the genome of E. grandis, we generated single nucleotide polymorphism genotypes for 1080 individuals from three advanced South African breeding programmes using the EUChip60K chip, and investigated population structure and genome-wide differentiation patterns relative to wild progenitors. Breeding and wild populations appeared genetically distinct. We found genomic evidence of evolutionary processes known to have occurred in other plant domesticates, including interspecific introgression and intraspecific infusion from wild material. Furthermore, we found genomic regions with increased linkage disequilibrium and genetic differentiation, putatively representing early soft sweeps of selection. This is, to our knowledge, the first study of genomic signatures of domestication in a timber species looking beyond the first few generations of cultivation. Our findings highlight the importance of intra- and interspecific hybridization during early domestication.
Collapse
Affiliation(s)
- Marja M. Mostert‐O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Hannah Tate
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - S. Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| | - Makobatjatji M. Mphahlele
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
- Mondi Forests, Tree Improvement Technology Programme, Trahar Technology Centre – TTCMountain Home Estate, Off Dennis Shepstone Dr.Hilton3245South Africa
| | - Gert van den Berg
- Sappi Forests Research, Shaw Research CentrePO Box 473Howick3290South Africa
| | - Steve D. Verryn
- Creation Breeding Innovations75 Kafue St.Lynnwood Glen0081South Africa
| | - Juan J. Acosta
- Camcore, Department of Forestry and Environmental ResourcesNorth Carolina State UniversityPO Box 7626RaleighNC27695USA
| | - Justin O. Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy BiologyAustralian National UniversityCanberraACT0200Australia
| | - Alexander A. Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPrivate Bag X20Pretoria0028South Africa
| |
Collapse
|
8
|
Schneider M, Casale F, Stich B. Accurate recombination estimation from pooled genotyping and sequencing: a case study on barley. BMC Genomics 2022; 23:468. [PMID: 35752769 PMCID: PMC9233355 DOI: 10.1186/s12864-022-08701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
Sexual reproduction involves meiotic recombination and the creation of crossing over between homologous chromosomes, which leads to new allele combinations. We present a new approach that uses the allele frequency differences and the physical distance of neighboring polymorphisms to estimate the recombination rate from pool genotyping or sequencing. This allows a considerable cost reduction compared to conventional mapping based on genotyping or sequencing data of single individuals. We evaluated the approach based on computer simulations at various genotyping depths and population sizes as well as applied it to experimental data of 45 barley populations, comprising 4182 RIL. High correlations between the recombination rates from this new pool genetic mapping approach and conventional mapping in simulated and experimental barley populations were observed. The proposed method therefore provides a reliable genetic map position and recombination rate estimation in defined genomic windows.
Collapse
Affiliation(s)
- Michael Schneider
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Federico Casale
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225, Düsseldorf, Germany. .,Max Planck Institute for Plant Breeding Research, 50829, Köln, Germany. .,Cluster of Excellence on Plant Sciences, From Complex Traits Towards Synthetic Modules, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Kastally C, Niskanen AK, Perry A, Kujala ST, Avia K, Cervantes S, Haapanen M, Kesälahti R, Kumpula TA, Mattila TM, Ojeda DI, Tyrmi JS, Wachowiak W, Cavers S, Kärkkäinen K, Savolainen O, Pyhäjärvi T. Taming the massive genome of Scots pine with PiSy50k, a new genotyping array for conifer research. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1337-1350. [PMID: 34897859 PMCID: PMC9303803 DOI: 10.1111/tpj.15628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Pinus sylvestris (Scots pine) is the most widespread coniferous tree in the boreal forests of Eurasia, with major economic and ecological importance. However, its large and repetitive genome presents a challenge for conducting genome-wide analyses such as association studies, genetic mapping and genomic selection. We present a new 50K single-nucleotide polymorphism (SNP) genotyping array for Scots pine research, breeding and other applications. To select the SNP set, we first genotyped 480 Scots pine samples on a 407 540 SNP screening array and identified 47 712 high-quality SNPs for the final array (called 'PiSy50k'). Here, we provide details of the design and testing, as well as allele frequency estimates from the discovery panel, functional annotation, tissue-specific expression patterns and expression level information for the SNPs or corresponding genes, when available. We validated the performance of the PiSy50k array using samples from Finland and Scotland. Overall, 39 678 (83.2%) SNPs showed low error rates (mean = 0.9%). Relatedness estimates based on array genotypes were consistent with the expected pedigrees, and the level of Mendelian error was negligible. In addition, array genotypes successfully discriminate between Scots pine populations of Finnish and Scottish origins. The PiSy50k SNP array will be a valuable tool for a wide variety of future genetic studies and forestry applications.
Collapse
Affiliation(s)
- Chedly Kastally
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Alina K. Niskanen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Annika Perry
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Sonja T. Kujala
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Komlan Avia
- Université de StrasbourgINRAESVQV UMR‐A 1131F‐68000ColmarFrance
| | - Sandra Cervantes
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Matti Haapanen
- Natural Resources Institute Finland (Luke)Latokartanonkaari 9FI‐00790HelsinkiFinland
| | - Robert Kesälahti
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Timo A. Kumpula
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Organismal BiologyEBCUppsala UniversityNorbyvägen 18 AUppsala752 36Sweden
| | - Dario I. Ojeda
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Norwegian Institute of Bioeconomy ResearchP.O. Box 115Ås1431Norway
| | - Jaakko S. Tyrmi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Witold Wachowiak
- Institute of Environmental BiologyFaculty of BiologyAdam Mickiewicz University in PoznańUniwersytetu Poznańskiego 661‐614PoznańPoland
| | - Stephen Cavers
- UK Centre for Ecology & HydrologyBush EstatePenicuikMidlothianEH26 0QBUK
| | - Katri Kärkkäinen
- Natural Resources Institute Finland (Luke)Paavo Havaksen tie 390570OuluFinland
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
| | - Tanja Pyhäjärvi
- Department of Ecology and GeneticsUniversity of OuluP.O. Box 300090014OuluFinland
- Department of Forest SciencesUniversity of HelsinkiP.O. Box 2700014HelsinkiFinland
| |
Collapse
|
10
|
Ghosh Dasgupta M, Abdul Bari MP, Shanmugavel S, Dharanishanthi V, Muthupandi M, Kumar N, Chauhan SS, Kalaivanan J, Mohan H, Krutovsky KV, Rajasugunasekar D. Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis × E. grandis. Genomics 2021; 113:4276-4292. [PMID: 34785351 DOI: 10.1016/j.ygeno.2021.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus.
Collapse
Affiliation(s)
| | | | | | | | - Muthusamy Muthupandi
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Naveen Kumar
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | - Shakti Singh Chauhan
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | | | - Haritha Mohan
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany; Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany; Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia; Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2138, USA
| | | |
Collapse
|
11
|
BREC: an R package/Shiny app for automatically identifying heterochromatin boundaries and estimating local recombination rates along chromosomes. BMC Bioinformatics 2021; 22:396. [PMID: 34362304 PMCID: PMC8349096 DOI: 10.1186/s12859-021-04233-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 11/14/2022] Open
Abstract
Background Meiotic recombination is a vital biological process playing an essential role in genome's structural and functional dynamics. Genomes exhibit highly various recombination profiles along chromosomes associated with several chromatin states. However, eu-heterochromatin boundaries are not available nor easily provided for non-model organisms, especially for newly sequenced ones. Hence, we miss accurate local recombination rates necessary to address evolutionary questions. Results Here, we propose an automated computational tool, based on the Marey maps method, allowing to identify heterochromatin boundaries along chromosomes and estimating local recombination rates. Our method, called BREC (heterochromatin Boundaries and RECombination rate estimates) is non-genome-specific, running even on non-model genomes as long as genetic and physical maps are available. BREC is based on pure statistics and is data-driven, implying that good input data quality remains a strong requirement. Therefore, a data pre-processing module (data quality control and cleaning) is provided. Experiments show that BREC handles different markers' density and distribution issues. Conclusions BREC's heterochromatin boundaries have been validated with cytological equivalents experimentally generated on the fruit fly Drosophila melanogaster genome, for which BREC returns congruent corresponding values. Also, BREC's recombination rates have been compared with previously reported estimates. Based on the promising results, we believe our tool has the potential to help bring data science into the service of genome biology and evolution. We introduce BREC within an R-package and a Shiny web-based user-friendly application yielding a fast, easy-to-use, and broadly accessible resource. The BREC R-package is available at the GitHub repository https://github.com/GenomeStructureOrganization. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04233-1.
Collapse
|
12
|
Healey AL, Shepherd M, King GJ, Butler JB, Freeman JS, Lee DJ, Potts BM, Silva-Junior OB, Baten A, Jenkins J, Shu S, Lovell JT, Sreedasyam A, Grimwood J, Furtado A, Grattapaglia D, Barry KW, Hundley H, Simmons BA, Schmutz J, Vaillancourt RE, Henry RJ. Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Commun Biol 2021; 4:537. [PMID: 33972666 PMCID: PMC8110574 DOI: 10.1038/s42003-021-02009-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
Corymbia citriodora is a member of the predominantly Southern Hemisphere Myrtaceae family, which includes the eucalypts (Eucalyptus, Corymbia and Angophora; ~800 species). Corymbia is grown for timber, pulp and paper, and essential oils in Australia, South Africa, Asia, and Brazil, maintaining a high-growth rate under marginal conditions due to drought, poor-quality soil, and biotic stresses. To dissect the genetic basis of these desirable traits, we sequenced and assembled the 408 Mb genome of Corymbia citriodora, anchored into eleven chromosomes. Comparative analysis with Eucalyptus grandis reveals high synteny, although the two diverged approximately 60 million years ago and have different genome sizes (408 vs 641 Mb), with few large intra-chromosomal rearrangements. C. citriodora shares an ancient whole-genome duplication event with E. grandis but has undergone tandem gene family expansions related to terpene biosynthesis, innate pathogen resistance, and leaf wax formation, enabling their successful adaptation to biotic/abiotic stresses and arid conditions of the Australian continent.
Collapse
Affiliation(s)
- Adam L Healey
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA.
- University of Queensland/QAAFI, Brisbane, QLD, Australia.
| | - Mervyn Shepherd
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Jakob B Butler
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Jules S Freeman
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
- Scion, Rotorua, New Zealand
| | - David J Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Brad M Potts
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | | | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- Institute of Precision Medicine & Bioinformatics, Camperdown, NSW, Australia
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - John T Lovell
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Agnelo Furtado
- University of Queensland/QAAFI, Brisbane, QLD, Australia
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology, Brasília, Brazil
- Genomic Science Program, Universidade Catolica de Brasilia, Taguatinga, Brazil
| | - Kerrie W Barry
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Hope Hundley
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - Blake A Simmons
- University of Queensland/QAAFI, Brisbane, QLD, Australia
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - René E Vaillancourt
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - Robert J Henry
- University of Queensland/QAAFI, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics 2021; 113:1999-2009. [PMID: 33915244 DOI: 10.1016/j.ygeno.2021.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/08/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022]
Abstract
The high-quality reference-grade genome for Gossupium tomentosum can greatly promote the progress in biological research and introgression breeding for the mainly cultivated species, G. hirsutum. Here, we report a high-quality genome assembly for G. tomentosum by integrating PacBio and Hi-C technologies. Comparative genomic analysis revealed a large number of genetic variations. Two re-sequencing-based ultra-dense genetic maps were constructed which comprised 4,047,199 and 6,009,681 SNPs, 4120 and 4599 bins and covering 4126.36 cM and 4966.72 cM in the EMF2 (F2 from G. hirsutum × G. tomentosum) and GHF2 (F2 from G. hirsutum × G. barbadense). The EMF2 exhibited lower recombination rate at the whole-genome level as compared with GHF2. We mapped 22 and 33 QTL associated with crossover frequency and predicted Gh_MRE11 and Gh_FIGL1 as the candidate genes governing crossover in the EMF2 and GHF2, respectively. We identified 13 significant QTL that regulate the floral transition, and revealed that Gh_AGL18 was associated with the floral transition. Therefore, our study provides a valuable genomic resource to support a better understanding of cotton interspecific cross and recombination landscape for genetic improvement and breeding in cotton.
Collapse
|
14
|
Melo WA, Vieira LD, Novaes E, Bacon CD, Collevatti RG. Selective Sweeps Lead to Evolutionary Success in an Amazonian Hyperdominant Palm. Front Genet 2020; 11:596662. [PMID: 33424928 PMCID: PMC7786001 DOI: 10.3389/fgene.2020.596662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Despite the global importance of tropical ecosystems, few studies have identified how natural selection has shaped their megadiversity. Here, we test for the role of adaptation in the evolutionary success of the widespread, highly abundant Neotropical palm Mauritia flexuosa. We used a genome scan framework, sampling 16,262 single-nucleotide polymorphisms (SNPs) with target sequence capture in 264 individuals from 22 populations in rainforest and savanna ecosystems. We identified outlier loci as well as signal of adaptation using Bayesian correlations of allele frequency with environmental variables and detected both selective sweeps and genetic hitchhiking events. Functional annotation of SNPs with selection footprints identified loci affecting genes related to adaptation to environmental stress, plant development, and primary metabolic processes. The strong differences in climatic and soil variables between ecosystems matched the high differentiation and low admixture in population Bayesian clustering. Further, we found only small differences in allele frequency distribution in loci putatively under selection among widespread populations from different ecosystems, with fixation of a single allele in most populations. Taken together, our results indicate that adaptive selective sweeps related to environmental stress shaped the spatial pattern of genetic diversity in M. flexuosa, leading to high similarity in allele frequency among populations from different ecosystems.
Collapse
Affiliation(s)
- Warita A Melo
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lucas D Vieira
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Evandro Novaes
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Rosane G Collevatti
- Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
15
|
Mostert-O'Neill MM, Reynolds SM, Acosta JJ, Lee DJ, Borevitz JO, Myburg AA. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis. Mol Ecol 2020; 30:625-638. [PMID: 32881106 DOI: 10.1111/mec.15615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022]
Abstract
The genetic consequences of adaptation to changing environments can be deciphered using population genomics, which may help predict species' responses to global climate change. Towards this, we used genome-wide SNP marker analysis to determine population structure and patterns of genetic differentiation in terms of neutral and adaptive genetic variation in the natural range of Eucalyptus grandis, a widely cultivated subtropical and temperate species, serving as genomic reference for the genus. We analysed introgression patterns at subchromosomal resolution using a modified ancestry mapping approach and identified provenances with extensive interspecific introgression in response to increased aridity. Furthermore, we describe potentially adaptive genetic variation as explained by environment-associated SNP markers, which also led to the discovery of what is likely a large structural variant. Finally, we show that genes linked to these markers are enriched for biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Marja Mirjam Mostert-O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sharon Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Juan Jose Acosta
- Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - David John Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Justin O Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT, Australia
| | - Alexander Andrew Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
16
|
Jia H, Liu G, Li J, Zhang J, Sun P, Zhao S, Zhou X, Lu M, Hu J. Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4308-4320. [PMID: 32242238 PMCID: PMC7475257 DOI: 10.1093/jxb/eraa172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 05/07/2023]
Abstract
Populus euphratica is a dominant tree species in desert riparian forests and possesses extraordinary adaptation to salinity stress. Exploration of its genomic variation and molecular underpinning of salinity tolerance is important for elucidating population evolution and identifying stress-related genes. Here, we identify approximately 3.15 million single nucleotide polymorphisms using whole-genome resequencing. The natural populations of P. euphratica in northwest China are divided into four distinct clades that exhibit strong geographical distribution patterns. Pleistocene climatic fluctuations and tectonic deformation jointly shaped the extant genetic patterns. A seed germination rate-based salinity tolerance index was used to evaluate seed salinity tolerance of P. euphratica and a genome-wide association study was implemented. A total of 38 single nucleotide polymorphisms were associated with seed salinity tolerance and were located within or near 82 genes. Expression profiles showed that most of these genes were regulated under salt stress, revealing the genetic complexity of seed salinity tolerance. Furthermore, DEAD-box ATP-dependent RNA helicase 57 and one undescribed gene (CCG029559) were demonstrated to improve the seed salinity tolerance in transgenic Arabidopsis. These results provide new insights into the demographic history and genetic architecture of seed salinity tolerance in desert poplar.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | | | - Jianbo Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Xun Zhou
- Beijing Novogene Co. Ltd, Beijing, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Correspondence: or
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Correspondence: or
| |
Collapse
|
17
|
Mhoswa L, O'Neill MM, Mphahlele MM, Oates CN, Payn KG, Slippers B, Myburg AA, Naidoo S. A Genome-Wide Association Study for Resistance to the Insect Pest Leptocybe invasa in Eucalyptus grandis Reveals Genomic Regions and Positional Candidate Defense Genes. PLANT & CELL PHYSIOLOGY 2020; 61:1285-1296. [PMID: 32379870 DOI: 10.1093/pcp/pcaa057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/26/2020] [Indexed: 05/28/2023]
Abstract
The galling insect, Leptocybe invasa, causes significant losses in plantations of various Eucalyptus species and hybrids, threatening its economic viability. We applied a genome-wide association study (GWAS) to identify single-nucleotide polymorphism (SNP) markers associated with resistance to L. invasa. A total of 563 insect-challenged Eucalyptus grandis trees, from 61 half-sib families, were genotyped using the EUChip60K SNP chip, and we identified 15,445 informative SNP markers in the test population. Multi-locus mixed-model (MLMM) analysis identified 35 SNP markers putatively associated with resistance to L. invasa based on four discreet classes of insect damage scores: (0) not infested, (1) infested showing evidence of oviposition but no gall development, (2) infested with galls on leaves, midribs or petioles and (3) stunting and lethal gall formation. MLMM analysis identified three associated genomic regions on chromosomes 3, 7 and 8 jointly explaining 17.6% of the total phenotypic variation. SNP analysis of a validation population of 494 E. grandis trees confirmed seven SNP markers that were also detected in the initial association analysis. Based on transcriptome profiles of resistant and susceptible genotypes from an independent experiment, we identified several putative candidate genes in associated genomic loci including Nucleotide-binding ARC- domain (NB-ARC) and toll-interleukin-1-receptor-Nucleotide binding signal- Leucine rich repeat (TIR-NBS-LRR) genes. Our results suggest that Leptocybe resistance in E. grandis may be influenced by a few large-effect loci in combination with minor effect loci segregating in our test and validation populations.
Collapse
Affiliation(s)
- Lorraine Mhoswa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Marja M O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Makobatjatji M Mphahlele
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
- Mondi South Africa, Forests Operations, Research and Development Department, Trahar Technology Centre-TTC, PO Box 12, Hilton 3245, South Africa
| | - Caryn N Oates
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Kitt G Payn
- Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, 2820 Faucette Drive, Raleigh, NC, USA
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
18
|
Inferring the Genomic Landscape of Recombination Rate Variation in European Aspen ( Populus tremula). G3-GENES GENOMES GENETICS 2020; 10:299-309. [PMID: 31744900 PMCID: PMC6945010 DOI: 10.1534/g3.119.400504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The rate of meiotic recombination is one of the central factors determining genome-wide levels of linkage disequilibrium which has important consequences for the efficiency of natural selection and for the dissection of quantitative traits. Here we present a new, high-resolution linkage map for Populus tremula that we use to anchor approximately two thirds of the P. tremula draft genome assembly on to the expected 19 chromosomes, providing us with the first chromosome-scale assembly for P. tremula (Table 2). We then use this resource to estimate variation in recombination rates across the P. tremula genome and compare these results to recombination rates based on linkage disequilibrium in a large number of unrelated individuals. We also assess how variation in recombination rates is associated with a number of genomic features, such as gene density, repeat density and methylation levels. We find that recombination rates obtained from the two methods largely agree, although the LD-based method identifies a number of genomic regions with very high recombination rates that the map-based method fails to detect. Linkage map and LD-based estimates of recombination rates are positively correlated and show similar correlations with other genomic features, showing that both methods can accurately infer recombination rate variation across the genome. Recombination rates are positively correlated with gene density and negatively correlated with repeat density and methylation levels, suggesting that recombination is largely directed toward gene regions in P. tremula.
Collapse
|
19
|
Luo X, Xu L, Wang Y, Dong J, Chen Y, Tang M, Fan L, Zhu Y, Liu L. An ultra-high-density genetic map provides insights into genome synteny, recombination landscape and taproot skin colour in radish (Raphanus sativus L.). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:274-286. [PMID: 31218798 PMCID: PMC6920339 DOI: 10.1111/pbi.13195] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 05/19/2023]
Abstract
High-density genetic map is a valuable tool for exploring novel genomic information, quantitative trait locus (QTL) mapping and gene discovery of economically agronomic traits in plant species. However, high-resolution genetic map applied to tag QTLs associated with important traits and to investigate genomic features underlying recombination landscape in radish (Raphanus sativus) remains largely unexplored. In this study, an ultra-high-density genetic map with 378 738 SNPs covering 1306.8 cM in nine radish linkage groups (LGs) was developed by a whole-genome sequencing-based approach. A total of 18 QTLs for 11 horticulture traits were detected. The map-based cloning data indicated that the R2R3-MYB transcription factor RsMYB90 was a crucial candidate gene determining the taproot skin colour. Comparative genomics analysis among radish, Brassica rapa and B. oleracea genome revealed several genomic rearrangements existed in the radish genome. The highly uneven distribution of recombination was observed across the nine radish chromosomes. Totally, 504 recombination hot regions (RHRs) were enriched near gene promoters and terminators. The recombination rate in RHRs was positively correlated with the density of SNPs and gene, and GC content, respectively. Functional annotation indicated that genes within RHRs were mainly involved in metabolic process and binding. Three QTLs for three traits were found in the RHRs. The results provide novel insights into the radish genome evolution and recombination landscape, and facilitate the development of effective strategies for molecular breeding by targeting and dissecting important traits in radish.
Collapse
Affiliation(s)
- Xiaobo Luo
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
- Guizhou Institute of BiotechnologyGuizhou Academy of Agricultural SciencesGuiyangChina
| | | | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuelin Zhu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
20
|
Murray KD, Janes JK, Jones A, Bothwell HM, Andrew RL, Borevitz JO. Landscape drivers of genomic diversity and divergence in woodland Eucalyptus. Mol Ecol 2019; 28:5232-5247. [PMID: 31647597 PMCID: PMC7065176 DOI: 10.1111/mec.15287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/23/2019] [Indexed: 01/03/2023]
Abstract
Spatial genetic patterns are influenced by numerous factors, and they can vary even among coexisting, closely related species due to differences in dispersal and selection. Eucalyptus (L'Héritier 1789; the "eucalypts") are foundation tree species that provide essential habitat and modulate ecosystem services throughout Australia. Here we present a study of landscape genomic variation in two woodland eucalypt species, using whole-genome sequencing of 388 individuals of Eucalyptus albens and Eucalyptus sideroxylon. We found exceptionally high genetic diversity (π ≈ 0.05) and low genome-wide, interspecific differentiation (FST = 0.15) and intraspecific differentiation between localities (FST ≈ 0.01-0.02). We found no support for strong, discrete population structure, but found substantial support for isolation by geographic distance (IBD) in both species. Using generalized dissimilarity modelling, we identified additional isolation by environment (IBE). Eucalyptus albens showed moderate IBD, and environmental variables have a small but significant amount of additional predictive power (i.e. IBE). Eucalyptus sideroxylon showed much stronger IBD and moderate IBE. These results highlight the vast adaptive potential of these species and set the stage for testing evolutionary hypotheses of interspecific adaptive differentiation across environments.
Collapse
Affiliation(s)
| | - Jasmine K Janes
- University of New EnglandArmidaleNSWAustralia
- Vancouver Island University,NanaimoBCCanada
| | - Ashley Jones
- Australian National UniversityCanberraACTAustralia
| | | | | | | |
Collapse
|
21
|
Shen C, Wang N, Huang C, Wang M, Zhang X, Lin Z. Population genomics reveals a fine-scale recombination landscape for genetic improvement of cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:494-505. [PMID: 31002209 DOI: 10.1111/tpj.14339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 05/28/2023]
Abstract
Recombination breaks up ancestral linkage disequilibrium, creates combinations of alleles, affects the efficiency of natural selection, and plays a major role in crop domestication and improvement. However, there is little knowledge regarding the variation in the population-scaled recombination rate in cotton. We constructed recombination maps and characterized the difference in the genomic landscape of the population-scaled recombination rate between Gossypium hirsutum and G. arboreum and sub-genomes based on the 381 sequenced G. hirsutum and 215 G. arboreum accessions. Comparative genomics identified large structural variations and syntenic genes in the recombination regions, suggesting that recombination was related to structural variation and occurred preferentially in the distal chromosomal regions. Correlation analysis indicated that recombination was only slightly affected by geographical distribution and breeding period. A genome-wide association study (GWAS) was performed with 15 agronomic traits using 267 cotton accessions and identified 163 quantitative trait loci (QTL) and an important candidate gene (Ghir_COL2) for early maturity traits. Comparative analysis of recombination and a GWAS revealed that the QTL of fibre quality traits tended to be more common in high-recombination regions than were those of yield and early maturity traits. These results provide insights into the population-scaled recombination landscape, suggesting that recombination contributed to the domestication and improvement of cotton, which provides a useful reference for studying recombination in other species.
Collapse
Affiliation(s)
- Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
22
|
Cai Z, Zhou L, Ren NN, Xu X, Liu R, Huang L, Zheng XM, Meng QL, Du YS, Wang MX, Geng MF, Chen WL, Jing CY, Zou XH, Guo J, Chen CB, Zeng HZ, Liang YT, Wei XH, Guo YL, Zhou HF, Zhang FM, Ge S. Parallel Speciation of Wild Rice Associated with Habitat Shifts. Mol Biol Evol 2019; 36:875-889. [PMID: 30861529 PMCID: PMC6501882 DOI: 10.1093/molbev/msz029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The occurrence of parallel speciation strongly implies the action of natural selection. However, it is unclear how general a phenomena parallel speciation is since it was only shown in a small number of animal species. In particular, the adaptive process and mechanisms underlying the process of parallel speciation remain elusive. Here, we used an integrative approach incorporating population genomics, common garden, and crossing experiments to investigate parallel speciation of the wild rice species Oryza nivara from O. rufipogon. We demonstrated that O. nivara originated multiple times from different O. rufipogon populations and revealed that different O. nivara populations have evolved similar phenotypes under divergent selection, a reflection of recurrent local adaptation of ancient O. rufipogon populations to dry habitats. Almost completed premating isolation was detected between O. nivara and O. rufipogon in the absence of any postmating barriers between and within these species. These results suggest that flowering time is a “magic” trait that contributes to both local adaptation and reproductive isolation in the origin of wild rice species. Our study thus demonstrates a convincing case of parallel ecological speciation as a consequence of adaptation to new environments.
Collapse
Affiliation(s)
- Zhe Cai
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lian Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning-Ning Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xun Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Lei Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ming Zheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Qing-Lin Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Su Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei-Xia Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mu-Fan Geng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Li Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chun-Yan Jing
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Hui Zou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Bin Chen
- Guangxi Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Hua-Zhong Zeng
- Guangxi Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Yun-Tao Liang
- Guangxi Academy Agricultural Sciences, Nanning, Guangxi, China
| | - Xing-Hua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hai-Fei Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fu-Min Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Otyama PI, Wilkey A, Kulkarni R, Assefa T, Chu Y, Clevenger J, O'Connor DJ, Wright GC, Dezern SW, MacDonald GE, Anglin NL, Cannon EKS, Ozias-Akins P, Cannon SB. Evaluation of linkage disequilibrium, population structure, and genetic diversity in the U.S. peanut mini core collection. BMC Genomics 2019; 20:481. [PMID: 31185892 PMCID: PMC6558826 DOI: 10.1186/s12864-019-5824-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/21/2019] [Indexed: 12/03/2022] Open
Abstract
Background Due to the recent domestication of peanut from a single tetraploidization event, relatively little genetic diversity underlies the extensive morphological and agronomic diversity in peanut cultivars today. To broaden the genetic variation in future breeding programs, it is necessary to characterize germplasm accessions for new sources of variation and to leverage the power of genome-wide association studies (GWAS) to discover markers associated with traits of interest. We report an analysis of linkage disequilibrium (LD), population structure, and genetic diversity, and examine the ability of GWA to infer marker-trait associations in the U.S. peanut mini core collection genotyped with a 58 K SNP array. Results LD persists over long distances in the collection, decaying to r2 = half decay distance at 3.78 Mb. Structure within the collection is best explained when separated into four or five groups (K = 4 and K = 5). At K = 4 and 5, accessions loosely clustered according to market type and subspecies, though with numerous exceptions. Out of 107 accessions, 43 clustered in correspondence to the main market type subgroup whereas 34 did not. The remaining 30 accessions had either missing taxonomic classification or were classified as mixed. Phylogenetic network analysis also clustered accessions into approximately five groups based on their genotypes, with loose correspondence to subspecies and market type. Genome wide association analysis was performed on these lines for 12 seed composition and quality traits. Significant marker associations were identified for arachidic and behenic fatty acid compositions, which despite having low bioavailability in peanut, have been reported to raise cholesterol levels in humans. Other traits such as blanchability showed consistent associations in multiple tests, with plausible candidate genes. Conclusions Based on GWA, population structure as well as additional simulation results, we find that the primary limitations of this collection for GWAS are a small collection size, significant remaining structure/genetic similarity and long LD blocks that limit the resolution of association mapping. These results can be used to improve GWAS in peanut in future studies – for example, by increasing the size and reducing structure in the collections used for GWAS. Electronic supplementary material The online version of this article (10.1186/s12864-019-5824-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul I Otyama
- Agronomy Department, Iowa State University, Ames, IA, USA
| | - Andrew Wilkey
- ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, USA
| | - Roshan Kulkarni
- Agronomy Department, Iowa State University, Ames, IA, USA.,ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, USA
| | - Teshale Assefa
- Agronomy Department, Iowa State University, Ames, IA, USA.,ORISE Fellow, Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, USA
| | - Ye Chu
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, USA
| | - Josh Clevenger
- Mars-Wrigley Confectionery, Center for Applied Genetic Technologies, Athens, GA, USA
| | | | | | | | | | | | | | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, USA
| | - Steven B Cannon
- Corn Insects and Crop Genetics Research Unit, USDA - Agricultural Research Service, 1017 Crop Genome Lab 819 Wallace Rd, Ames, IA, 50011-4014, USA.
| |
Collapse
|
24
|
Ahrens CW, Byrne M, Rymer PD. Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Mol Ecol 2019; 28:2502-2516. [PMID: 30950536 DOI: 10.1111/mec.15092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Global climate is rapidly changing, and the ability for tree species to adapt is dependent on standing genomic variation; however, the distribution and abundance of functional and adaptive variants are poorly understood in natural systems. We test key hypotheses regarding the genetics of adaptive variation in a foundation tree: genomic variation is associated with climate, and genomic variation is more likely to be associated with temperature than precipitation or aridity. To test these hypotheses, we used 9,593 independent, genomic single-nucleotide polymorphisms (SNPs) from 270 individuals sampled from Corymbia calophylla's entire distribution in south-western Western Australia, spanning orthogonal temperature and precipitation gradients. Environmental association analyses returned 537 unique SNPs putatively adaptive to climate. We identified SNPs associated with climatic variation (i.e., temperature [458], precipitation [75] and aridity [78]) across the landscape. Of these, 78 SNPs were nonsynonymous (NS), while 26 SNPs were found within gene regulatory regions. The NS and regulatory candidate SNPs associated with temperature explained more deviance (27.35%) than precipitation (5.93%) and aridity (4.77%), suggesting that temperature provides stronger adaptive signals than precipitation. Genes associated with adaptive variants include functions important in stress responses to temperature and precipitation. Patterns of allelic turnover of NS and regulatory SNPs show small patterns of change through climate space with the exception of an aldehyde dehydrogenase gene variant with 80% allelic turnover with temperature. Together, these findings provide evidence for the presence of adaptive variation to climate in a foundation species and provide critical information to guide adaptive management practices.
Collapse
Affiliation(s)
- Collin W Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Margaret Byrne
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Perth, Western Australia, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
25
|
Du Q, Lu W, Quan M, Xiao L, Song F, Li P, Zhou D, Xie J, Wang L, Zhang D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. FRONTIERS IN PLANT SCIENCE 2018; 9:1912. [PMID: 30622554 PMCID: PMC6309013 DOI: 10.3389/fpls.2018.01912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Wood formation is an excellent model system for quantitative trait analysis due to the strong associations between the transcriptional and metabolic traits that contribute to this complex process. Investigating the genetic architecture and regulatory mechanisms underlying wood formation will enhance our understanding of the quantitative genetics and genomics of complex phenotypic variation. Genome-wide association studies (GWASs) represent an ideal statistical strategy for dissecting the genetic basis of complex quantitative traits. However, elucidating the molecular mechanisms underlying many favorable loci that contribute to wood formation and optimizing GWAS design remain challenging in this omics era. In this review, we summarize the recent progress in GWAS-based functional genomics of wood property traits in major timber species such as Eucalyptus, Populus, and various coniferous species. We discuss several appropriate experimental designs for extensive GWAS in a given undomesticated tree population, such as omics-wide association studies and high-throughput phenotyping technologies. We also explain why more attention should be paid to rare allelic and major structural variation. Finally, we explore the potential use of GWAS for the molecular breeding of trees. Such studies will help provide an integrated understanding of complex quantitative traits and should enable the molecular design of new cultivars.
Collapse
Affiliation(s)
- Qingzhang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenjie Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingyang Quan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Liang Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fangyuan Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Peng Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Daling Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Longxin Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Tuskan GA, Groover AT, Schmutz J, DiFazio SP, Myburg A, Grattapaglia D, Smart LB, Yin T, Aury JM, Kremer A, Leroy T, Le Provost G, Plomion C, Carlson JE, Randall J, Westbrook J, Grimwood J, Muchero W, Jacobson D, Michener JK. Hardwood Tree Genomics: Unlocking Woody Plant Biology. FRONTIERS IN PLANT SCIENCE 2018; 9:1799. [PMID: 30619389 PMCID: PMC6304363 DOI: 10.3389/fpls.2018.01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/19/2018] [Indexed: 05/07/2023]
Abstract
Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative ("evo-devo") approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.
Collapse
Affiliation(s)
- Gerald A. Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Andrew T. Groover
- Pacific Southwest Research Station, USDA Forest Service, Davis, CA, United States
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
- Joint Genome Institute, Walnut Creek, CA, United States
| | | | - Alexander Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Dario Grattapaglia
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Brazil
- Universidade Católica de Brasília, Brasília, Brazil
| | - Lawrence B. Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY, United States
| | - Tongming Yin
- The Key Laboratory for Poplar Improvement of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | - Jean-Marc Aury
- Commissariat à l’Energie Atomique, Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | - Thibault Leroy
- BIOGECO, INRA, Université de Bordeaux, Cestas, France
- ISEM, CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| | | | | | - John E. Carlson
- Schatz Center for Tree Molecular Genetics, Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, United States
| | - Jennifer Randall
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, United States
| | - Jared Westbrook
- The American Chestnut Foundation, Asheville, NC, United States
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Daniel Jacobson
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| | - Joshua K. Michener
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory (DOE), Oak Ridge, TN, United States
| |
Collapse
|
27
|
Supple MA, Bragg JG, Broadhurst LM, Nicotra AB, Byrne M, Andrew RL, Widdup A, Aitken NC, Borevitz JO. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. eLife 2018; 7:31835. [PMID: 29685183 PMCID: PMC5951681 DOI: 10.7554/elife.31835] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/07/2018] [Indexed: 01/01/2023] Open
Abstract
As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. Yellow box, or Eucalyptus melliodora, is an emblematic Australian tree that is essential to many native ecosystems. Some of these environments are now critically endangered, and replanting yellow box trees is one of the first steps to try to restore them. However, it can be difficult for reforestation practitioners to decide where to collect the seeds they will use to replant an area. They have to select seeds that carry the genetic information that gives the trees the best chances of surviving now and in the future. This is a complex task because climate change creates fast-changing environments. Here, Supple et al. collect genetic material from 275 E. melliodora trees at 36 different sites. Genetic analyses show that the yellow box trees from these sites exchange their genetic material and do not form isolated populations. This means that the seeds do not need to be sourced from near the reforestation site, but can be collected from areas much further away. This results in higher quality seeds for reforestation because seeds from more sites will include more genetic diversity. Supple et al. then use information about the local climate, such as temperature and rain levels, at the sites where the samples were gathered to create a model that describes the relationship between genetic, geographical, and environmental factors. This helps identify which sites produce the seeds that will grow best under particular conditions. In addition, the seedlings from these sites are grown in the laboratory to see how well they fare in different types of environments. It therefore becomes possible to match a reforestation site with the seeds that will thrive in the future climate of the area. Sharing this knowledge with conservationists will help to guide their replanting strategies for E. melliodora. The method can also be applied to other plant species and restoration projects, so it could ultimately shape resilient ecosystems that can cope with climate change.
Collapse
Affiliation(s)
- Megan Ann Supple
- Research School of Biology, The Australian National University, Canberra, Australia.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, United States
| | - Jason G Bragg
- Research School of Biology, The Australian National University, Canberra, Australia.,National Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, Sydney, Australia
| | - Linda M Broadhurst
- Centre for Australian National Biodiversity Research, Commonwealth Scientific and Industrial Research Organisation (CSIRO), National Research Collections and Facilities, Canberra, Australia
| | - Adrienne B Nicotra
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Margaret Byrne
- Biodiverstiy and Conservation Science, Department of Biodiversity, Conservation and Attractions Western Australia, Bentley, Australia
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Abigail Widdup
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Nicola C Aitken
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Justin O Borevitz
- Research School of Biology, The Australian National University, Canberra, Australia.,Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
28
|
Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Mo X, Huang H, Lu W, Luo J, Li F, Gan S. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér. (Myrtaceae). Sci Rep 2018; 8:2319. [PMID: 29396525 DOI: 10.1038/s41598-41018-20780-41599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/24/2018] [Indexed: 05/28/2023] Open
Abstract
Genomic loci related with resistance to gall-inducing insects have not been identified in any plants. Here, association mapping was used to identify molecular markers for resistance to the gall wasp Leptocybe invasa in two Eucalyptus species. A total of 86 simple sequence repeats (SSR) markers were screened out from 839 SSRs and used for association mapping in E. grandis. By applying the mixed linear model, seven markers were identified to be associated significantly (P ≤ 0.05) with the gall wasp resistance in E. grandis, including two validated with a correction of permutation test (P ≤ 0.008). The proportion of the variance in resistance explained by a significant marker ranged from 3.3% to 37.8%. Four out of the seven significant associations in E. grandis were verified and also validated (P ≤ 0.073 in a permutation test) in E. tereticornis, with the variation explained ranging from 24.3% to 48.5%. Favourable alleles with positive effect were also mined from the significant markers in both species. These results provide insight into the genetic control of gall wasp resistance in plants and have great potential for marker-assisted selection for resistance to L. invasa in the important tree genus Eucalyptus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Changpin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- Baoshan University, Yuanzheng Road, Baoshan, 678000, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Hongxia Ji
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Wanhong Lu
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Jianzhong Luo
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
29
|
Zhang M, Zhou C, Song Z, Weng Q, Li M, Ji H, Mo X, Huang H, Lu W, Luo J, Li F, Gan S. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L'Hér. (Myrtaceae). Sci Rep 2018; 8:2319. [PMID: 29396525 PMCID: PMC5797152 DOI: 10.1038/s41598-018-20780-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 01/24/2018] [Indexed: 01/30/2023] Open
Abstract
Genomic loci related with resistance to gall-inducing insects have not been identified in any plants. Here, association mapping was used to identify molecular markers for resistance to the gall wasp Leptocybe invasa in two Eucalyptus species. A total of 86 simple sequence repeats (SSR) markers were screened out from 839 SSRs and used for association mapping in E. grandis. By applying the mixed linear model, seven markers were identified to be associated significantly (P ≤ 0.05) with the gall wasp resistance in E. grandis, including two validated with a correction of permutation test (P ≤ 0.008). The proportion of the variance in resistance explained by a significant marker ranged from 3.3% to 37.8%. Four out of the seven significant associations in E. grandis were verified and also validated (P ≤ 0.073 in a permutation test) in E. tereticornis, with the variation explained ranging from 24.3% to 48.5%. Favourable alleles with positive effect were also mined from the significant markers in both species. These results provide insight into the genetic control of gall wasp resistance in plants and have great potential for marker-assisted selection for resistance to L. invasa in the important tree genus Eucalyptus.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Changpin Zhou
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhijiao Song
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
- Baoshan University, Yuanzheng Road, Baoshan, 678000, China
| | - Qijie Weng
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Mei Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Hongxia Ji
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Xiaoyong Mo
- College of Forestry, South China Agricultural University, 284 Block, Wushan Street, Guangzhou, 510642, China
| | - Huanhua Huang
- Guangdong Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Wanhong Lu
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Jianzhong Luo
- China Eucalypt Research Centre, Zhanjiang, 524022, China
| | - Fagen Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| | - Siming Gan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Road, Beijing, 100091, China.
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
30
|
Copetti D, Búrquez A, Bustamante E, Charboneau JLM, Childs KL, Eguiarte LE, Lee S, Liu TL, McMahon MM, Whiteman NK, Wing RA, Wojciechowski MF, Sanderson MJ. Extensive gene tree discordance and hemiplasy shaped the genomes of North American columnar cacti. Proc Natl Acad Sci U S A 2017; 114:12003-12008. [PMID: 29078296 PMCID: PMC5692538 DOI: 10.1073/pnas.1706367114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Few clades of plants have proven as difficult to classify as cacti. One explanation may be an unusually high level of convergent and parallel evolution (homoplasy). To evaluate support for this phylogenetic hypothesis at the molecular level, we sequenced the genomes of four cacti in the especially problematic tribe Pachycereeae, which contains most of the large columnar cacti of Mexico and adjacent areas, including the iconic saguaro cactus (Carnegiea gigantea) of the Sonoran Desert. We assembled a high-coverage draft genome for saguaro and lower coverage genomes for three other genera of tribe Pachycereeae (Pachycereus, Lophocereus, and Stenocereus) and a more distant outgroup cactus, Pereskia We used these to construct 4,436 orthologous gene alignments. Species tree inference consistently returned the same phylogeny, but gene tree discordance was high: 37% of gene trees having at least 90% bootstrap support conflicted with the species tree. Evidently, discordance is a product of long generation times and moderately large effective population sizes, leading to extensive incomplete lineage sorting (ILS). In the best supported gene trees, 58% of apparent homoplasy at amino sites in the species tree is due to gene tree-species tree discordance rather than parallel substitutions in the gene trees themselves, a phenomenon termed "hemiplasy." The high rate of genomic hemiplasy may contribute to apparent parallelisms in phenotypic traits, which could confound understanding of species relationships and character evolution in cacti.
Collapse
Affiliation(s)
- Dario Copetti
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Alberto Búrquez
- Instituto de Ecología, Unidad Hermosillo, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico
| | - Enriquena Bustamante
- Instituto de Ecología, Unidad Hermosillo, Universidad Nacional Autónoma de México, Hermosillo, Sonora, Mexico
| | - Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Seunghee Lee
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
| | - Tiffany L Liu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California, Berkeley, CA 94720
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721;
| |
Collapse
|
31
|
Jordan R, Hoffmann AA, Dillon SK, Prober SM. Evidence of genomic adaptation to climate in
Eucalyptus microcarpa
: Implications for adaptive potential to projected climate change. Mol Ecol 2017; 26:6002-6020. [DOI: 10.1111/mec.14341] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Rebecca Jordan
- Bio21 Institute School of BioSciences University of Melbourne Parkville Vic Australia
| | - Ary A. Hoffmann
- Bio21 Institute School of BioSciences University of Melbourne Parkville Vic Australia
| | | | | |
Collapse
|
32
|
Chanroj V, Rattanawong R, Phumichai T, Tangphatsornruang S, Ukoskit K. Genome-wide association mapping of latex yield and girth in Amazonian accessions of Hevea brasiliensis grown in a suboptimal climate zone. Genomics 2017; 109:475-484. [PMID: 28751185 DOI: 10.1016/j.ygeno.2017.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/07/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
Latex yield and growth are the key complex traits in commercial rubber production. The present study is the first to report genome-wide association mapping of latex yield and girth, for 170 Amazonian accessions grown in a suboptimal area characterized by limited rainfall and a lengthy dry season. Targeted sequence enrichment to capture gene transcripts generated 14,155 high quality filtered single nucleotide polymorphisms (SNPs) of which 94.3% resided in coding regions. The rapid decay of linkage disequilibrium over physical and genetic distance found in the accessions was comparable to those previously reported for several outcrossing species. A mixed linear model detected three significant SNPs in three candidate genes involved in plant adaptation to drought stress, individually explaining 12.7-15.7% of the phenotypic variance. The SNPs identified in the study will help to extend understanding, and to support genetic improvement of rubber trees grown in drought-affected regions.
Collapse
Affiliation(s)
- Vipavee Chanroj
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12121, Thailand
| | - Ratchanee Rattanawong
- Nong Khai Rubber Research Center, Rubber Research Institute of Thailand, Rattanawapi District, Nong Khai, 43120, Thailand
| | | | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, 113 Phaholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathumtani 12121, Thailand.
| |
Collapse
|
33
|
Müller BSF, Neves LG, de Almeida Filho JE, Resende MFR, Muñoz PR, Dos Santos PET, Filho EP, Kirst M, Grattapaglia D. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genomics 2017; 18:524. [PMID: 28693539 PMCID: PMC5504793 DOI: 10.1186/s12864-017-3920-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/03/2017] [Indexed: 02/05/2023] Open
Abstract
Background The advent of high-throughput genotyping technologies coupled to genomic prediction methods established a new paradigm to integrate genomics and breeding. We carried out whole-genome prediction and contrasted it to a genome-wide association study (GWAS) for growth traits in breeding populations of Eucalyptus benthamii (n =505) and Eucalyptus pellita (n =732). Both species are of increasing commercial interest for the development of germplasm adapted to environmental stresses. Results Predictive ability reached 0.16 in E. benthamii and 0.44 in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or different Bayesian methods were similar, suggesting that growth adequately fits the infinitesimal model. Genomic prediction models using ~5000–10,000 SNPs provided predictive abilities equivalent to using all 13,787 and 19,506 SNPs genotyped in the E. benthamii and E. pellita populations, respectively. No difference was detected in predictive ability when different sets of SNPs were utilized, based on position (equidistantly genome-wide, inside genes, linkage disequilibrium pruned or on single chromosomes), as long as the total number of SNPs used was above ~5000. Predictive abilities obtained by removing relatedness between training and validation sets fell near zero for E. benthamii and were halved for E. pellita. These results corroborate the current view that relatedness is the main driver of genomic prediction, although some short-range historical linkage disequilibrium (LD) was likely captured for E. pellita. A GWAS identified only one significant association for volume growth in E. pellita, illustrating the fact that while genome-wide regression is able to account for large proportions of the heritability, very little or none of it is captured into significant associations using GWAS in breeding populations of the size evaluated in this study. Conclusions This study provides further experimental data supporting positive prospects of using genome-wide data to capture large proportions of trait heritability and predict growth traits in trees with accuracies equal or better than those attainable by phenotypic selection. Additionally, our results document the superiority of the whole-genome regression approach in accounting for large proportions of the heritability of complex traits such as growth in contrast to the limited value of the local GWAS approach toward breeding applications in forest trees. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3920-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bárbara S F Müller
- Cell Biology Department, Molecular Biology Program, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil.,EMBRAPA Genetic Resources and Biotechnology, Estação Parque Biológico, Brasília, DF, 70770-910, Brazil.,Forest Genomics Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | | | - Janeo E de Almeida Filho
- Forest Genomics Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | | | - Patricio R Muñoz
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | | | | | - Matias Kirst
- Forest Genomics Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Dario Grattapaglia
- Cell Biology Department, Molecular Biology Program, Biological Sciences Institute, University of Brasília, Campus Darcy Ribeiro, Brasília, DF, 70910-900, Brazil. .,EMBRAPA Genetic Resources and Biotechnology, Estação Parque Biológico, Brasília, DF, 70770-910, Brazil.
| |
Collapse
|
34
|
Tan B, Grattapaglia D, Martins GS, Ferreira KZ, Sundberg B, Ingvarsson PK. Evaluating the accuracy of genomic prediction of growth and wood traits in two Eucalyptus species and their F 1 hybrids. BMC PLANT BIOLOGY 2017; 17:110. [PMID: 28662679 PMCID: PMC5492818 DOI: 10.1186/s12870-017-1059-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/15/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Genomic prediction is a genomics assisted breeding methodology that can increase genetic gains by accelerating the breeding cycle and potentially improving the accuracy of breeding values. In this study, we use 41,304 informative SNPs genotyped in a Eucalyptus breeding population involving 90 E.grandis and 78 E.urophylla parents and their 949 F1 hybrids to develop genomic prediction models for eight phenotypic traits - basic density and pulp yield, circumference at breast height and height and tree volume scored at age three and six years. We assessed the impact of different genomic prediction methods, the composition and size of the training and validation set and the number and genomic location of SNPs on the predictive ability (PA). RESULTS Heritabilities estimated using the realized genomic relationship matrix (GRM) were considerably higher than estimates based on the expected pedigree, mainly due to inconsistencies in the expected pedigree that were readily corrected by the GRM. Moreover, the GRM more precisely capture Mendelian sampling among related individuals, such that the genetic covariance was based on the true proportion of the genome shared between individuals. PA improved considerably when increasing the size of the training set and by enhancing relatedness to the validation set. Prediction models trained on pure species parents could not predict well in F1 hybrids, indicating that model training has to be carried out in hybrid populations if one is to predict in hybrid selection candidates. The different genomic prediction methods provided similar results for all traits, therefore either GBLUP or rrBLUP represents better compromises between computational time and prediction efficiency. Only slight improvement was observed in PA when more than 5000 SNPs were used for all traits. Using SNPs in intergenic regions provided slightly better PA than using SNPs sampled exclusively in genic regions. CONCLUSIONS The size and composition of the training set and number of SNPs used are the two most important factors for model prediction, compared to the statistical methods and the genomic location of SNPs. Furthermore, training the prediction model based on pure parental species only provide limited ability to predict traits in interspecific hybrids. Our results provide additional promising perspectives for the implementation of genomic prediction in Eucalyptus breeding programs by the selection of interspecific hybrids.
Collapse
Affiliation(s)
- Biyue Tan
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, SE-90187 Sweden
- Biomaterials Division, Stora Enso AB, Nacka, SE-13104 Sweden
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology – EPqB, Brasilia, DF 70770-910 Brazil
- Universidade Católica de Brasília- SGAN, 916 modulo B, Brasilia, DF 70790-160 Brazil
| | | | | | - Björn Sundberg
- Biomaterials Division, Stora Enso AB, Nacka, SE-13104 Sweden
| | - Pär K. Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, SE-90187 Sweden
- Present address: Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, SE-75007 Sweden
| |
Collapse
|
35
|
Valdisser PAMR, Pereira WJ, Almeida Filho JE, Müller BSF, Coelho GRC, de Menezes IPP, Vianna JPG, Zucchi MI, Lanna AC, Coelho ASG, de Oliveira JP, Moraes ADC, Brondani C, Vianello RP. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 2017; 18:423. [PMID: 28558696 PMCID: PMC5450071 DOI: 10.1186/s12864-017-3805-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Common bean is a legume of social and nutritional importance as a food crop, cultivated worldwide especially in developing countries, accounting for an important source of income for small farmers. The availability of the complete sequences of the two common bean genomes has dramatically accelerated and has enabled new experimental strategies to be applied for genetic research. DArTseq has been widely used as a method of SNP genotyping allowing comprehensive genome coverage with genetic applications in common bean breeding programs. RESULTS Using this technology, 6286 SNPs (1 SNP/86.5 Kbp) were genotyped in genic (43.3%) and non-genic regions (56.7%). Genetic subdivision associated to the common bean gene pools (K = 2) and related to grain types (K = 3 and K = 5) were reported. A total of 83% and 91% of all SNPs were polymorphic within the Andean and Mesoamerican gene pools, respectively, and 26% were able to differentiate the gene pools. Genetic diversity analysis revealed an average H E of 0.442 for the whole collection, 0.102 for Andean and 0.168 for Mesoamerican gene pools (F ST = 0.747 between gene pools), 0.440 for the group of cultivars and lines, and 0.448 for the group of landrace accessions (F ST = 0.002 between cultivar/line and landrace groups). The SNP effects were predicted with predominance of impact on non-coding regions (77.8%). SNPs under selection were identified within gene pools comparing landrace and cultivar/line germplasm groups (Andean: 18; Mesoamerican: 69) and between the gene pools (59 SNPs), predominantly on chromosomes 1 and 9. The LD extension estimate corrected for population structure and relatedness (r2SV) was ~ 88 kbp, while for the Andean gene pool was ~ 395 kbp, and for the Mesoamerican was ~ 130 kbp. CONCLUSIONS For common bean, DArTseq provides an efficient and cost-effective strategy of generating SNPs for large-scale genome-wide studies. The DArTseq resulted in an operational panel of 560 polymorphic SNPs in linkage equilibrium, providing high genome coverage. This SNP set could be used in genotyping platforms with many applications, such as population genetics, phylogeny relation between common bean varieties and support to molecular breeding approaches.
Collapse
Affiliation(s)
- Paula A. M. R. Valdisser
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Wendell J. Pereira
- Programa de Pós-Graduação em Biologia Molecular, Universidade de Brasília (UnB), Brasília, DF Brazil
| | - Jâneo E. Almeida Filho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, RJ Brazil
| | - Bárbara S. F. Müller
- Programa de Pós-Graduação em Biologia Molecular, Universidade de Brasília (UnB), Brasília, DF Brazil
| | | | - Ivandilson P. P. de Menezes
- Laboratório de Genética e Biologia Molecular, Departamento de Biologia, Instituto Federal Goiano (IF Goiano), Urutaí, GO Brazil
| | - João P. G. Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria I. Zucchi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Anna C. Lanna
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| | | | | | | | - Claudio Brondani
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| | - Rosana P. Vianello
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| |
Collapse
|
36
|
Butler JB, Vaillancourt RE, Potts BM, Lee DJ, King GJ, Baten A, Shepherd M, Freeman JS. Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement. BMC Genomics 2017; 18:397. [PMID: 28532390 PMCID: PMC5441008 DOI: 10.1186/s12864-017-3782-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. RESULTS We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. CONCLUSIONS These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.
Collapse
Affiliation(s)
- J B Butler
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - R E Vaillancourt
- School of Biological Science and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - B M Potts
- School of Biological Science and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - D J Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD, 4558, Australia
| | - G J King
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - A Baten
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - M Shepherd
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - J S Freeman
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
37
|
Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J, Mackay J, Isabel N, Bousquet J. A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:189-203. [PMID: 28090692 DOI: 10.1111/tpj.13478] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 05/21/2023]
Abstract
Over the last decade, extensive genetic and genomic resources have been developed for the conifer white spruce (Picea glauca, Pinaceae), which has one of the largest plant genomes (20 Gbp). Draft genome sequences of white spruce and other conifers have recently been produced, but dense genetic maps are needed to comprehend genome macrostructure, delineate regions involved in quantitative traits, complement functional genomic investigations, and assist the assembly of fragmented genomic sequences. A greatly expanded P. glauca composite linkage map was generated from a set of 1976 full-sib progeny, with the positioning of 8793 expressed genes. Regions with significant low or high gene density were identified. Gene family members tended to be mapped on the same chromosomes, with tandemly arrayed genes significantly biased towards specific functional classes. The map was integrated with transcriptome data surveyed across eight tissues. In total, 69 clusters of co-expressed and co-localising genes were identified. A high level of synteny was found with pine genetic maps, which should facilitate the transfer of structural information in the Pinaceae. Although the current white spruce genome sequence remains highly fragmented, dozens of scaffolds encompassing more than one mapped gene were identified. From these, the relationship between genetic and physical distances was examined and the genome-wide recombination rate was found to be much smaller than most estimates reported for angiosperm genomes. This gene linkage map shall assist the large-scale assembly of the next-generation white spruce genome sequence and provide a reference resource for the conifer genomics community.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Manuel Lamothe
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Betty Pelgas
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - France Gagnon
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Inanç Birol
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Joerg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - John Mackay
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, 0X1 3RB, UK
| | - Nathalie Isabel
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Québec, QC, G1V 4C7, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Forest Research Centre and Institute for Systems and Integrative Biology, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
38
|
Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. THE NEW PHYTOLOGIST 2017; 213:1287-1300. [PMID: 28079935 DOI: 10.1111/nph.14266] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/08/2016] [Indexed: 05/18/2023]
Abstract
Although genome-wide association studies (GWAS) have provided valuable insights into the decoding of the relationships between sequence variation and complex phenotypes, they have explained little heritability. Regional heritability mapping (RHM) provides heritability estimates for genomic segments containing both common and rare allelic effects that individually contribute too little variance to be detected by GWAS. We carried out GWAS and RHM for seven growth, wood and disease resistance traits in a breeding population of 768 Eucalyptus hybrid trees using EuCHIP60K. Total genomic heritabilities accounted for large proportions (64-89%) of pedigree-based trait heritabilities, providing additional evidence that complex traits in eucalypts are controlled by many sequence variants across the frequency spectrum, each with small contributions to the phenotypic variance. RHM detected 26 quantitative trait loci (QTLs) encompassing 2191 single nucleotide polymorphisms (SNPs), whereas GWAS detected 13 single SNP-trait associations. RHM and GWAS QTLs individually explained 5-15% and 4-6% of the genomic heritability, respectively. RHM was superior to GWAS in capturing larger proportions of genomic heritability. Equated to previously mapped QTLs, our results highlighted genomic regions for further examination towards gene discovery. RHM-QTLs bearing a combination of common and rare variants could be useful enhancements to incorporate prior knowledge of the underlying genetic architecture in genomic prediction models.
Collapse
Affiliation(s)
| | - Marcos Deon Vilela Resende
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- EMBRAPA Forestry Research, Colombo, PR, 83411-000, Brazil
| | - Fabyano Fonseca Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | - Orzenil Bonfim Silva-Junior
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade Católica de Brasília - SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| | - Dario Grattapaglia
- EMBRAPA Genetic Resources and Biotechnology - EPqB, 70770-910, Brasilia, DF, Brazil
- Universidade Católica de Brasília - SGAN, 916 modulo B, Brasilia, DF, 70790-160, Brazil
| |
Collapse
|
39
|
Steane DA, Potts BM, McLean EH, Collins L, Holland BR, Prober SM, Stock WD, Vaillancourt RE, Byrne M. Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon. Genome Biol Evol 2017; 9:253-265. [PMID: 28391293 PMCID: PMC5381606 DOI: 10.1093/gbe/evw290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Widespread species spanning strong environmental (e.g., climatic) gradients frequently display morphological and physiological adaptations to local conditions. Some adaptations are common to different species that occupy similar environments. However, the genomic architecture underlying such convergent traits may not be the same between species. Using genomic data from previous studies of three widespread eucalypt species that grow along rainfall gradients in southern Australia, our probabilistic approach provides evidence that adaptation to aridity is a genome-wide phenomenon, likely to involve multiple and diverse genes, gene families and regulatory regions that affect a multitude of complex genetic and biochemical processes.
Collapse
Affiliation(s)
- Dorothy A. Steane
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
- CSIRO Land and Water, Wembley, Western Australia, Australia
| | - Brad M. Potts
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Elizabeth H. McLean
- CSIRO Land and Water, Wembley, Western Australia, Australia
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery Centre, Western Australia, Australia
| | - Lesley Collins
- Faculty of Health Science, Universal College of Learning, Palmerston North, New Zealand
| | - Barbara R. Holland
- School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - William D. Stock
- Centre for Ecosystem Management, School of Natural Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - René E. Vaillancourt
- School of Biological Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery Centre, Western Australia, Australia
| |
Collapse
|
40
|
Ingvarsson PK, Hvidsten TR, Street NR. Towards integration of population and comparative genomics in forest trees. THE NEW PHYTOLOGIST 2016; 212:338-44. [PMID: 27575589 DOI: 10.1111/nph.14153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/27/2016] [Indexed: 05/08/2023]
Abstract
Contents 338 I. 338 II. 339 III. 340 IV. 342 343 References 343 SUMMARY: The past decade saw the initiation of an ongoing revolution in sequencing technologies that is transforming all fields of biology. This has been driven by the advent and widespread availability of high-throughput, massively parallel short-read sequencing (MPS) platforms. These technologies have enabled previously unimaginable studies, including draft assemblies of the massive genomes of coniferous species and population-scale resequencing. Transcriptomics studies have likewise been transformed, with RNA-sequencing enabling studies in nonmodel organisms, the discovery of previously unannotated genes (novel transcripts), entirely new classes of RNAs and previously unknown regulatory mechanisms. Here we touch upon current developments in the areas of genome assembly, comparative regulomics and population genetics as they relate to studies of forest tree species.
Collapse
Affiliation(s)
- Pär K Ingvarsson
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
41
|
Gion JM, Hudson CJ, Lesur I, Vaillancourt RE, Potts BM, Freeman JS. Genome-wide variation in recombination rate in Eucalyptus. BMC Genomics 2016; 17:590. [PMID: 27507140 PMCID: PMC4979139 DOI: 10.1186/s12864-016-2884-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
Background Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Results Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = −0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = −0.75). Conclusions The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst chromosomes in recombination rates appear stable across Eucalyptus species. Together with the strong correlations between recombination rate and features of the Eucalyptus reference genome, we maintain these findings provide further evidence for a broad conservation of genome architecture across the globally significant lineages of Eucalyptus.
Collapse
Affiliation(s)
| | - Corey J Hudson
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.,Present address: Tasmanian Alkaloids, P.O. Box 130, Westbury, TAS, 7303, Australia
| | | | - René E Vaillancourt
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Brad M Potts
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Jules S Freeman
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
42
|
Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome. G3-GENES GENOMES GENETICS 2016; 6:1767-76. [PMID: 27172189 PMCID: PMC4889672 DOI: 10.1534/g3.116.028001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin.
Collapse
|
43
|
Hedrick PW, Hellsten U, Grattapaglia D. Examining the cause of high inbreeding depression: analysis of whole-genome sequence data in 28 selfed progeny of Eucalyptus grandis. THE NEW PHYTOLOGIST 2016; 209:600-11. [PMID: 26356869 DOI: 10.1111/nph.13639] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/09/2015] [Indexed: 05/15/2023]
Abstract
The genome-wide heterozygosity at 9590 genes, all heterozygous in a single Eucalyptus grandis parent tree, was examined in a group of 28 S1 offspring. Heterozygosity ranged from 52-79%, averaging 65.5%, much higher than the 50% expected under random segregation, supporting the occurrence of strong (47%) selection against homozygosity. The expected pattern of heterozygosity from theoretical calculations and simulations for recessive detrimentals (pseudo-overdominance) and intrinsic heterozygote advantage was examined and compared with that observed. The observed patterns are consistent with at least several detrimental loci with large effects on both parental chromosomes of the 11 pairs. It is likely that 100 or more genes, many with substantial effects on viability, are contributing to this inbreeding depression. Although our genome-wide analysis of nearly 10 000 genes strongly suggested that pseudo-overdominance was responsible for the observed high inbreeding depression, heterozygote advantage could not be excluded. Finding inconvertible evidence of the cause of inbreeding depression still presents a difficult challenge. This study is the first theoretical examination of the genomic effect of inbreeding in a forest tree and provides an approach to analyze these data to determine the extent and cause of inbreeding depression across other plant genomes.
Collapse
Affiliation(s)
- Philip W Hedrick
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Uffe Hellsten
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Dario Grattapaglia
- Laboratório de Genética Vegetal, EMBRAPA Recursos Genéticos e Biotecnologia, PqEB, Brasilia, DF, 70770-970, Brasil
- Programa de Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916, Brasilia, DF, 70790-160, Brasil
| |
Collapse
|
44
|
Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species. Genetics 2015; 202:1185-200. [PMID: 26721855 PMCID: PMC4788117 DOI: 10.1534/genetics.115.183152] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/24/2015] [Indexed: 12/30/2022] Open
Abstract
A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.
Collapse
|
45
|
Modeling additive and non-additive effects in a hybrid population using genome-wide genotyping: prediction accuracy implications. Heredity (Edinb) 2015; 116:146-57. [PMID: 26328760 DOI: 10.1038/hdy.2015.78] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/03/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022] Open
Abstract
Hybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and DD) effects. Five complementary models, involving the gametic phase to estimate marker-based relationships among hybrid progenies, were developed to assess the same effects. The models were compared using tree height and 3303 single-nucleotide polymorphism markers from 1130 cloned individuals obtained via controlled crosses of 13 Eucalyptus urophylla females with 9 Eucalyptus grandis males. Akaike information criterion (AIC), variance ratios, asymptotic correlation matrices of estimates, goodness-of-fit, prediction accuracy and mean square error (MSE) were used for the comparisons. The variance components and variance ratios differed according to the model. Models with a parent marker-based relationship matrix performed better than those that were pedigree-based, that is, an absence of singularities, lower AIC, higher goodness-of-fit and accuracy and smaller MSE. However, AD and DD variances were estimated with high s.es. Using the same criteria, progeny gametic phase-based models performed better in fitting the observations and predicting genetic values. However, DD variance could not be separated from the dominance variance and null estimates were obtained for AA and AD effects. This study highlighted the advantages of progeny models using genome-wide information.
Collapse
|