1
|
Sands E, Davies S, Puxty RJ, Vergé V, Bouget FY, Scanlan DJ, Carré IA. Genetic and physiological responses to light quality in a deep ocean ecotype of Ostreococcus, an ecologically important photosynthetic picoeukaryote. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6773-6789. [PMID: 37658791 PMCID: PMC10662239 DOI: 10.1093/jxb/erad347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Phytoplankton are exposed to dramatic variations in light quality when cells are carried by upwelling or downwelling currents or encounter sediment. We investigated the potential impact of light quality changes in Ostreococcus, a key marine photosynthetic picoeukaryote, by analysing changes in its transcriptome, pigment content, and photophysiology after acclimation to monochromatic red, green, or blue light. The clade B species RCC809, isolated from the deep euphotic zone of the tropical Atlantic Ocean, responded to blue light by accelerating cell division at the expense of storage reserves and by increasing the relative level of blue-light-absorbing pigments. It responded to red and green light by increasing its potential for photoprotection. In contrast, the clade A species OTTH0595, which originated from a shallow water environment, showed no difference in photosynthetic properties and minor differences in carotenoid contents between light qualities. This was associated with the loss of candidate light-quality responsive promoter motifs identified in RCC809 genes. These results demonstrate that light quality can have a major influence on the physiology of eukaryotic phytoplankton and suggest that different light quality environments can drive selection for diverse patterns of responsiveness and environmental niche partitioning.
Collapse
Affiliation(s)
- Elizabeth Sands
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sian Davies
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Valerie Vergé
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | - François-Yves Bouget
- Université Pierre et Marie Curie, Paris 06, UMR 7621, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls sur Mer, France
| | | | | |
Collapse
|
2
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
3
|
Hart JE, Gardner KH. Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors. J Biol Chem 2021; 296:100594. [PMID: 33781746 PMCID: PMC8086140 DOI: 10.1016/j.jbc.2021.100594] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue-light-sensing Light-Oxygen-Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small-angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis, leading to models where the domains have an extended linear arrangement, with the regulatory LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances that have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels.
Collapse
Affiliation(s)
- Jaynee E Hart
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; Department of Chemistry and Biochemistry, City College of New York, New York, USA; PhD Programs in Biochemistry, Chemistry, and Biology, Graduate Center, City University of New York, New York, USA.
| |
Collapse
|
4
|
Papanatsiou M, Petersen J, Henderson L, Wang Y, Christie JM, Blatt MR. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 2019; 363:1456-1459. [PMID: 30923223 DOI: 10.1126/science.aaw0046] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/27/2019] [Indexed: 01/02/2023]
Abstract
Stomata serve dual and often conflicting roles, facilitating carbon dioxide influx into the plant leaf for photosynthesis and restricting water efflux via transpiration. Strategies for reducing transpiration without incurring a cost for photosynthesis must circumvent this inherent coupling of carbon dioxide and water vapor diffusion. We expressed the synthetic, light-gated K+ channel BLINK1 in guard cells surrounding stomatal pores in Arabidopsis to enhance the solute fluxes that drive stomatal aperture. BLINK1 introduced a K+ conductance and accelerated both stomatal opening under light exposure and closing after irradiation. Integrated over the growth period, BLINK1 drove a 2.2-fold increase in biomass in fluctuating light without cost in water use by the plant. Thus, we demonstrate the potential of enhancing stomatal kinetics to improve water use efficiency without penalty in carbon fixation.
Collapse
Affiliation(s)
- M Papanatsiou
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.,Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - J Petersen
- Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - L Henderson
- Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Y Wang
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.,Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - J M Christie
- Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.
| | - M R Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK. .,Plant Science Group, Institute of Molecular, Cell and Systems Biology, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK.,Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
5
|
Engineering the phototropin photocycle improves photoreceptor performance and plant biomass production. Proc Natl Acad Sci U S A 2019; 116:12550-12557. [PMID: 31160455 PMCID: PMC6589663 DOI: 10.1073/pnas.1902915116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A key challenge for plant molecular biologists is to increase plant yield by altering photosynthetic productivity to secure food, energy, and environmental sustainability. In the model plant Arabidopsis thaliana, the plasma-membrane–associated phototropin kinases, phot1 and phot2, are activated by blue light and play important roles in regulating several responses that optimize photosynthetic efficiency. However, little effort has been made to target these pathways to increase plant growth. Here, we demonstrate that modifying the photocycle of phot1 and phot2 increases their sensitivity to light. Plants with these engineered phototropins exhibit more rapid and robust chloroplast movement responses and improved leaf positioning and expansion, leading to improved biomass accumulation under light-limiting conditions. The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta. Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin’s sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.
Collapse
|
6
|
Kimura Y, Kimura I, Kanegae T. Phototropins of the moss Physcomitrella patens function as blue-light receptors for phototropism in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1525995. [PMID: 30265188 PMCID: PMC6204831 DOI: 10.1080/15592324.2018.1525995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Four phototropin genes (PHOTA1, PHOTA2, PHOTB1, PHOTB2) have been isolated in the moss Physcomitrella patens. These genes encode phototropins that mediate blue-light-induced chloroplast movement. However, the individual functions of these phototropins, including the function of mediating blue-light-induced phototropism, remain unclear. To elucidate the individual functions of P. patens phototropins, each of these phototropin genes was expressed in a phototropin-deficient mutant of Arabidopsis (phot1-5 phot2-1). In addition, fluorescence of GFP fused to these phototropins was examined to determine the subcellular localization of each phototropin. Our results demonstrate that all four P. patens phototropins mediate blue-light-induced phototropism and are associated with the plasma membrane in Arabidopsis. Abbreviations GFP: green fluorescent protein; Pp_phot: Physcomitrella patens phototropin.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Izumi Kimura
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Takeshi Kanegae
- Department of Biological Sciences, Graduate School of Science and Technology, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
7
|
Schnabel J, Hombach P, Waksman T, Giuriani G, Petersen J, Christie JM. A chemical genetic approach to engineer phototropin kinases for substrate labeling. J Biol Chem 2018; 293:5613-5623. [PMID: 29475950 DOI: 10.1074/jbc.ra118.001834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
Protein kinases (PKs) control many aspects of plant physiology by regulating signaling networks through protein phosphorylation. Phototropins (phots) are plasma membrane-associated serine/threonine PKs that control a range of physiological processes that collectively serve to optimize photosynthetic efficiency in plants. These include phototropism, leaf positioning and flattening, chloroplast movement, and stomatal opening. Despite their identification over two decades ago, only a handful of substrates have been identified for these PKs. Progress in this area has been hampered by the lack of a convenient means to confirm the identity of potential substrate candidates. Here we demonstrate that the kinase domain of Arabidopsis phot1 and phot2 can be successfully engineered to accommodate non-natural ATP analogues by substituting the bulky gatekeeper residue threonine for glycine. This approach circumvents the need for radioactivity to track phot kinase activity and follow light-induced receptor autophosphorylation in vitro by incorporating thiophosphate from N6-benzyl-ATPγS. Consequently, thiophosphorylation of phot substrate candidates can be readily monitored when added or co-expressed with phots in vitro Furthermore, gatekeeper-modified phot1 retained its functionality and its ability to accommodate N6-benzyl-ATPγS as a phosphodonor when expressed in Arabidopsis We therefore anticipate that this chemical genetic approach will provide new opportunities for labeling and identifying substrates for phots and other related AGC kinases under in vitro and near-native in vivo conditions.
Collapse
Affiliation(s)
- Jonathan Schnabel
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - Peter Hombach
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and.,RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Waksman
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - Giovanni Giuriani
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - Jan Petersen
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| | - John M Christie
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom and
| |
Collapse
|
8
|
Harmer SL, Brooks CJ. Growth-mediated plant movements: hidden in plain sight. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:89-94. [PMID: 29107827 PMCID: PMC5826749 DOI: 10.1016/j.pbi.2017.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 05/18/2023]
Abstract
While fast plant movements are spectacular but rare, almost all plants exhibit relatively slow, growth-mediated tropic movements that are key to their survival in the natural world. In this brief review, we discuss recent insights into the molecular mechanisms underlying phototropism, gravitropism, hydrotropism, and autostraightening. Careful molecular genetic and physiological studies have helped confirm the importance of lateral auxin gradients in gravitropic and phototropic responses. However, auxin signaling does not explain all tropisms: recent work has shown that abscisic acid signaling mediates root hydrotropism and has implicated mechanosensing in autostraightening, the organ straightening process recently modeled as a proprioceptive response. The interactions between distinct tropic signaling pathways and other internal and external sensory processes are also now being untangled.
Collapse
Affiliation(s)
- Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Christopher J Brooks
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
9
|
Suetsugu N, Higa T, Wada M. Ferns, mosses and liverworts as model systems for light-mediated chloroplast movements. PLANT, CELL & ENVIRONMENT 2017; 40:2447-2456. [PMID: 27859339 DOI: 10.1111/pce.12867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 05/05/2023]
Abstract
Light-induced chloroplast movement is found in most plant species, including algae and land plants. In land plants with multiple small chloroplasts, under weak light conditions, the chloroplasts move towards the light and accumulate on the periclinal cell walls to efficiently perceive light for photosynthesis (the accumulation response). Under strong light conditions, chloroplasts escape from light to avoid photodamage (the avoidance response). In most plant species, blue light induces chloroplast movement, and phototropin receptor kinases are the blue light receptors. Molecular mechanisms for photoreceptors, signal transduction and chloroplast motility systems are being studied using the model plant Arabidopsis thaliana. However, to further understand the molecular mechanisms and evolutionary history of chloroplast movement in green plants, analyses using other plant systems are required. Here, we review recent works on chloroplast movement in green algae, liverwort, mosses and ferns that provide new insights on chloroplast movement.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takeshi Higa
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Masamitsu Wada
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| |
Collapse
|
10
|
Petersen J, Inoue SI, Kelly SM, Sullivan S, Kinoshita T, Christie JM. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1. J Biol Chem 2017; 292:13843-13852. [PMID: 28663371 PMCID: PMC5566536 DOI: 10.1074/jbc.m117.799643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/21/2017] [Indexed: 01/14/2023] Open
Abstract
Phototropins (phots) are plasma membrane–associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light–absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A′α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A′α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation.
Collapse
Affiliation(s)
- Jan Petersen
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | | | - Sharon M Kelly
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | - Stuart Sullivan
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom
| | - Toshinori Kinoshita
- the Division of Biological Science, Graduate School of Science and.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - John M Christie
- From the Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, United Kingdom,
| |
Collapse
|
11
|
Jaubert M, Bouly JP, Ribera d'Alcalà M, Falciatore A. Light sensing and responses in marine microalgae. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:70-77. [PMID: 28456112 DOI: 10.1016/j.pbi.2017.03.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Marine eukaryotic phytoplankton are major contributors to global primary production. To adapt and thrive in the oceans, phytoplankton relies on a variety of light-regulated responses and light-acclimation capacities probably driven by sophisticated photoregulatory mechanisms. A plethora of photoreceptor-like sequences from marine microalgae have been identified in omics approaches. Initial studies have revealed that some algal photoreceptors are similar to those known in plants. In addition, new variants with different spectral tuning and algal-specific light sensors have also been found, changing current views and perspectives on how photoreceptor structure and function have diversified in phototrophs experiencing different environmental conditions.
Collapse
Affiliation(s)
- Marianne Jaubert
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 4, Place de Jussieu, 75005 Paris, France
| | - Jean-Pierre Bouly
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 4, Place de Jussieu, 75005 Paris, France
| | - Maurizio Ribera d'Alcalà
- Stazione Zoologica Anton Dohrn, Laboratory of Ecology and Evolution of Plankton, Villa Comunale, 80121 Naples, Italy.
| | - Angela Falciatore
- Sorbonne Universités, UPMC, Institut de Biologie Paris-Seine, CNRS, Laboratoire de Biologie Computationnelle et Quantitative, 4, Place de Jussieu, 75005 Paris, France.
| |
Collapse
|
12
|
Losi A, Gärtner W. Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors. Photochem Photobiol 2017; 93:141-158. [PMID: 27861974 DOI: 10.1111/php.12674] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022]
Abstract
Detection of blue light (BL) via flavin-binding photoreceptors (Fl-Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV-based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light-to-signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen-mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL-driven reactions; the evolutionary pathways of LOV-based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| |
Collapse
|
13
|
Sullivan S, Takemiya A, Kharshiing E, Cloix C, Shimazaki K, Christie JM. Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:907-920. [PMID: 27545835 PMCID: PMC5215551 DOI: 10.1111/tpj.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 05/10/2023]
Abstract
Phototropin (phot1) is a blue light-activated plasma membrane-associated kinase that acts as the principal photoreceptor for shoot phototropism in Arabidopsis in conjunction with the signalling component Non-Phototropic Hypocotyl 3 (NPH3). PHOT1 is uniformly expressed throughout the Arabidopsis hypocotyl, yet decapitation experiments have localized the site of light perception to the upper hypocotyl. This prompted us to investigate in more detail the functional role of the hypocotyl apex, and the regions surrounding it, in establishing phototropism. We used a non-invasive approach where PHOT1-GFP (P1-GFP) expression was targeted to the hypocotyl apex of the phot-deficient mutant using the promoters of CUP-SHAPED COTYLEDON 3 (CUC3) and AINTEGUMENTA (ANT). Expression of CUC3::P1-GFP was clearly visible at the hypocotyl apex, with weaker expression in the cotyledons, whereas ANT::P1-GFP was specifically targeted to the developing leaves. Both lines showed impaired curvature to 0.005 μmol m-2 sec-1 unilateral blue light, indicating that regions below the apical meristem are necessary for phototropism. Curvature was however apparent at higher fluence rates. Moreover, CUC3::P1-GFP partially or fully complemented petiole positioning, leaf flattening and chloroplast accumulation, but not stomatal opening. Yet, tissue analysis of NPH3 de-phosphorylation showed that CUC3::P1-GFP and ANT::P1-GFP mis-express very low levels of phot1 that likely account for this responsiveness. Our spatial targeting approach therefore excludes the hypocotyl apex as the site for light perception for phototropism and shows that phot1-mediated NPH3 de-phosphorylation is tissue autonomous and occurs more prominently in the basal hypocotyl.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 Motooka, Nishi‐kuFukuoka819‐395Japan
- Present address: Graduate School of Sciences and Technology for InnovationYamaguchi University1677‐1 YoshidaYamaguchi753‐8512Japan
| | - Eros Kharshiing
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
- Department of BotanySt. Edmund's CollegeShillong793003MeghalayaIndia
| | - Catherine Cloix
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
- Present address: Beatson Institute for Cancer ResearchGarscube Estate, Switchback RoadBearsden, GlasgowG61 1BDUK
| | - Ken‐ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 Motooka, Nishi‐kuFukuoka819‐395Japan
| | - John M. Christie
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowBower BuildingGlasgowG12 8QQUK
| |
Collapse
|
14
|
Li FW, Mathews S. Evolutionary aspects of plant photoreceptors. JOURNAL OF PLANT RESEARCH 2016; 129:115-22. [PMID: 26843269 DOI: 10.1007/s10265-016-0785-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/27/2015] [Indexed: 05/04/2023]
Abstract
Plant photoreceptors link environmental light cues with physiological responses, determining how individual plants complete their life cycles. Structural and functional evolution of photoreceptors has co-occurred as plants diversified and faced the challenge of new light environments, during the transition of plants to land and as substantial plant canopies evolved. Large-scale comparative sequencing projects allow us for the first time to document photoreceptor evolution in understudied clades, revealing some surprises. Here we review recent progress in evolutionary studies of three photoreceptor families: phytochromes, phototropins and neochromes.
Collapse
Affiliation(s)
- Fay-Wei Li
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia.
| |
Collapse
|
15
|
Ishishita K, Suetsugu N, Hirose Y, Higa T, Doi M, Wada M, Matsushita T, Gotoh E. Functional characterization of blue-light-induced responses and PHOTOTROPIN 1 gene in Welwitschia mirabilis. JOURNAL OF PLANT RESEARCH 2016; 129:175-87. [PMID: 26858202 DOI: 10.1007/s10265-016-0790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/04/2016] [Indexed: 05/05/2023]
Abstract
The blue light (BL) receptor phototropin (phot) is specifically found in green plants; it regulates various BL-induced responses such as phototropism, chloroplast movement, stomatal opening, and leaf flattening. In Arabidopsis thaliana, two phototropins--phot1 and phot2--respond to blue light in overlapping but distinct ways. These BL-receptor-mediated responses enhance the photosynthetic activity of plants under weak light and minimize photodamage under strong light conditions. Welwitschia mirabilis Hook.f. found in the Namib Desert, and it has adapted to severe environmental stresses such as limiting water and strong sunlight. Although the plant has physiologically and ecologically unique features, it is unknown whether phototropin is functional in this plant. In this study, we assessed the functioning of phot-mediated BL responses in W. mirabilis. BL-dependent phototropism and stomatal opening was observed but light-dependent chloroplast movement was not detected. We performed a functional analysis of the PHOT1 gene of W. mirabilis, WmPHOT1, in Arabidopsis thaliana. We generated transgenic A. thaliana lines expressing WmPHOT1 in a phot1 phot2 double mutant background. Several Wmphot1 transgenic plants showed normal growth, although phot1 phot2 double mutant plants showed stunted growth. Furthermore, Wmphot1 transgenic plants showed normal phot1-mediated responses including phototropism, chloroplast accumulation, stomatal opening, and leaf flattening, but lacked the chloroplast avoidance response that is specifically mediated by phot2. Thus, our findings indicate that W. mirabilis possesses typical phot-mediated BL responses that were at least partially mediated by functional phototropin 1, an ortholog of Atphot1.
Collapse
Affiliation(s)
- Kazuhiro Ishishita
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
| | - Noriyuki Suetsugu
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Yuki Hirose
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
| | - Takeshi Higa
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Department of Plant Gene and Totipotency, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Michio Doi
- Faculty of Art and Science, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Masamitsu Wada
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Tomonao Matsushita
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan
- PRESTO, JST, Saitama, 332-0012, Japan
| | - Eiji Gotoh
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka, 812-8581, Japan.
| |
Collapse
|
16
|
Liscum E. Blue Light-Induced Intracellular Movement of Phototropins: Functional Relevance or Red Herring? FRONTIERS IN PLANT SCIENCE 2016; 7:827. [PMID: 27375670 PMCID: PMC4899458 DOI: 10.3389/fpls.2016.00827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Affiliation(s)
- Emmanuel Liscum
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
- *Correspondence: Emmanuel Liscum
| |
Collapse
|
17
|
Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM. Phytochrome A Mediates Blue-Light Enhancement of Second-Positive Phototropism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:290. [PMID: 27014313 PMCID: PMC4786545 DOI: 10.3389/fpls.2016.00290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/23/2016] [Indexed: 05/05/2023]
Abstract
Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m(-2) s(-1)) is enhanced by overhead pre-treatment with red light (20 μmol m(-2) s(-1) for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m(-2) s(-1)). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m(-2) s(-1) unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.
Collapse
|