1
|
Kara MF, Guo W, Zhang R, Denby K. LsRTDv1, a reference transcript dataset for accurate transcript-specific expression analysis in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:370-386. [PMID: 39145419 DOI: 10.1111/tpj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.
Collapse
Affiliation(s)
- Mehmet Fatih Kara
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
2
|
He W, Ke X, Li T, Wu Y, Tang X, Chen W, Liu T, Du H. Comparison and improvement of RNA extraction methods in Sargassum (Phaeophyta). JOURNAL OF PHYCOLOGY 2023; 59:822-834. [PMID: 37656660 DOI: 10.1111/jpy.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 09/03/2023]
Abstract
Sargassum (Sargassaceae) is widely distributed globally and plays an important role in regulating climate change, but the landscape of genomes and transcripts is less known. High-quality nucleic acids are the basis for molecular biology experiments such as high-throughput sequencing. Although extensive studies have documented methods of RNA extraction, these methods are not very applicable to Sargassum, which contains high levels of polysaccharides and polyphenols. To find a suitable method to improve the quality of RNA extracted, we compared and modified several popular RNA extraction methods and screened one practical method with three specific Sargassum spp. The results showed that three CTAB methods (denoted as Methods 1, 2, and 3) and the RNAprep Pure Plant Kit (denoted as Method 4) could, with slight modifications, effectively isolate RNA from Sargassum species, except for Method 4 used with S. fusiforme. By performing further screening, we determined Method 4 was the best choice for S. hemiphyllum and S. henslowianum, as revealed by RNA yields, RNA Integrity Number (RIN), extraction time, and unigene mapped ratio. For S. fusiforme, Methods 1, 2, and 3 showed no obvious differences among the yields, quality, or time to perform. In addition, one other method was tested, but we found the quality of the RNA extracted by TRIzol reagent methods (denoted as Method 5) performed the worst when compared with the above four methods. Therefore, our study provides four suitable methods for RNA extraction in Sargassum and is essential for future genetic exploration of Sargassum.
Collapse
Affiliation(s)
- Weiling He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Xiao Ke
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Yuming Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| |
Collapse
|
3
|
Srikakulam N, Sridevi G, Pandi G. High-quality reference transcriptome construction improves RNA-seq quantification in Oryza sativa indica. Front Genet 2022; 13:995072. [PMID: 36246658 PMCID: PMC9558114 DOI: 10.3389/fgene.2022.995072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Reference Transcriptomic Dataset (RTD) is an accurate and comprehensive collection of transcripts originating from a given organism. It holds the key to precise transcript quantification and downstream analysis of differential expressions and regulations. Currently, transcriptome annotations for most crop plants are far from complete. For example, Oryza sativa indica (O. sativa indica) is reported to have 40,759 transcripts in the Ensembl database without alternative transcript isoforms and alternative splicing (AS) events. To generate a high-quality RTD, we conducted RNA sequencing of rice leaf samples collected at various time points during Rhizoctonia solani infection. The obtained reads were analyzed by adopting the recently developed computational analysis pipeline to assemble the RTD with increased transcript and AS diversity for O. sativa indica (IndicaRTD). After stringent quality filtering, the newly constructed transcriptome annotation was comprised of 122,968 non-redundant transcripts from 53,695 genes. This study identified many novel transcripts compared to Ensembl deposited data that are important for regulating molecular and physiological processes in the plant system. Currently, the assembled IndicaRTD must allow fast quantification of transcript and gene expression with high precision.
Collapse
Affiliation(s)
- Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| |
Collapse
|
4
|
Xiang Q, Rathinasabapathi B. Differential tolerance to heat stress of young leaves compared to mature leaves of whole plants relate to differential transcriptomes involved in metabolic adaptations to stress. AOB PLANTS 2022; 14:plac024. [PMID: 35854682 PMCID: PMC9280325 DOI: 10.1093/aobpla/plac024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Plants respond to heat shock by regulating gene expression. While transcriptomic changes in response to heat stress are well studied, it is not known whether young and old leaves reprogram transcription differently upon stress. When whole plants of Arabidopsis thaliana were subjected to heat shock, young leaves were affected significantly less than older leaves based on measurements of tissue damage. To identify quantitative changes to transcriptomes between young and old leaves upon heat stress, we used RNA sequencing on young and old leaves from plants exposed to control and heat stress at 42 °C for 1 h and 10 h. A total of 6472 differentially expressed genes between young and old leaf were identified under control condition, and 9126 and 6891 under 1 h and 10 h heat stress, respectively. Analyses of differentially expressed transcripts led to the identification of multiple functional clusters of genes that may have potential roles in the increased heat tolerance of young leaves including higher level of expression in young leaves of genes encoding chaperones, heat shock proteins and proteins known in oxidative stress resistance. Differential levels of transcripts for genes implicated in pectin metabolism, cutin and wax biosynthesis, pentose and glucuronate interconversions, cellulose degradation, indole glucosinolate metabolism and RNA splicing between young and old leaves under heat stress suggest that cell wall remodelling, cuticular wax synthesis and carbohydrate modifications impacted by alternative splicing may also have roles in the improved heat stress tolerance of young leaves.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
5
|
Coulter M, Entizne JC, Guo W, Bayer M, Wonneberger R, Milne L, Schreiber M, Haaning A, Muehlbauer GJ, McCallum N, Fuller J, Simpson C, Stein N, Brown JWS, Waugh R, Zhang R. BaRTv2: a highly resolved barley reference transcriptome for accurate transcript-specific RNA-seq quantification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1183-1202. [PMID: 35704392 PMCID: PMC9546494 DOI: 10.1111/tpj.15871] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Accurate characterisation of splice junctions (SJs) as well as transcription start and end sites in reference transcriptomes allows precise quantification of transcripts from RNA-seq data, and enables detailed investigations of transcriptional and post-transcriptional regulation. Using novel computational methods and a combination of PacBio Iso-seq and Illumina short-read sequences from 20 diverse tissues and conditions, we generated a comprehensive and highly resolved barley reference transcript dataset from the European 2-row spring barley cultivar Barke (BaRTv2.18). Stringent and thorough filtering was carried out to maintain the quality and accuracy of the SJs and transcript start and end sites. BaRTv2.18 shows increased transcript diversity and completeness compared with an earlier version, BaRTv1.0. The accuracy of transcript level quantification, SJs and transcript start and end sites have been validated extensively using parallel technologies and analysis, including high-resolution reverse transcriptase-polymerase chain reaction and 5'-RACE. BaRTv2.18 contains 39 434 genes and 148 260 transcripts, representing the most comprehensive and resolved reference transcriptome in barley to date. It provides an important and high-quality resource for advanced transcriptomic analyses, including both transcriptional and post-transcriptional regulation, with exceptional resolution and precision.
Collapse
Affiliation(s)
- Max Coulter
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Juan Carlos Entizne
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Wenbin Guo
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Micha Bayer
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Ronja Wonneberger
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3D‐06466Stadt SeelandGermany
| | - Linda Milne
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Miriam Schreiber
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Allison Haaning
- Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford Circle, 542 Borlaug HallSt PaulMinnesota55108USA
| | - Gary J. Muehlbauer
- Department of Agronomy and Plant GeneticsUniversity of Minnesota1991 Upper Buford Circle, 542 Borlaug HallSt PaulMinnesota55108USA
| | - Nicola McCallum
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - John Fuller
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Craig Simpson
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstrasse 3D‐06466Stadt SeelandGermany
- Center for Integrated Breeding Research (CiBreed)Georg‐August‐UniversityGöttingenGermany
| | - John W. S. Brown
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| | - Robbie Waugh
- Division of Plant SciencesUniversity of Dundee, James Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
- School of Agriculture and Wine & Waite Research InstituteUniversity of AdelaideWaite CampusGlen OsmondSouth Australia5064Australia
| | - Runxuan Zhang
- Information and Computational SciencesJames Hutton InstituteInvergowrieDundeeDD2 5DAScotlandUK
| |
Collapse
|
6
|
Guo W, Coulter M, Waugh R, Zhang R. The value of genotype-specific reference for transcriptome analyses in barley. Life Sci Alliance 2022; 5:e202101255. [PMID: 35459738 PMCID: PMC9034525 DOI: 10.26508/lsa.202101255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
It is increasingly apparent that although different genotypes within a species share "core" genes, they also contain variable numbers of "specific" genes and different structures of "core" genes that are only present in a subset of individuals. Using a common reference genome may thus lead to a loss of genotype-specific information in the assembled Reference Transcript Dataset (RTD) and the generation of erroneous, incomplete or misleading transcriptomics analysis results. In this study, we assembled genotype-specific RTD (sRTD) and common reference-based RTD (cRTD) from RNA-seq data of cultivated Barke and Morex barley, respectively. Our quantitative evaluation showed that the sRTD has a significantly higher diversity of transcripts and alternative splicing events, whereas the cRTD missed 40% of transcripts present in the sRTD and it only has ∼70% accurate transcript assemblies. We found that the sRTD is more accurate for transcript quantification as well as differential expression analysis. However, gene-level quantification is less affected, which may be a reasonable compromise when a high-quality genotype-specific reference is not available.
Collapse
Affiliation(s)
- Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| | - Max Coulter
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Dundee, UK
| | - Robbie Waugh
- Plant Sciences Division, School of Life Sciences, University of Dundee at The James Hutton Institute, Dundee, UK
- Cell and Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, UK
| |
Collapse
|
7
|
Li T, Mann R, Kaur J, Spangenberg G, Sawbridge T. Transcriptome Analyses of Barley Roots Inoculated with Novel Paenibacillus sp. and Erwinia gerundensis Strains Reveal Beneficial Early-Stage Plant-Bacteria Interactions. PLANTS 2021; 10:plants10091802. [PMID: 34579335 PMCID: PMC8467301 DOI: 10.3390/plants10091802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Plant growth-promoting bacteria can improve host plant traits including nutrient uptake and metabolism and tolerance to biotic and abiotic stresses. Understanding the molecular basis of plant–bacteria interactions using dual RNA-seq analyses provides key knowledge of both host and bacteria simultaneously, leading to future enhancements of beneficial interactions. In this study, dual RNA-seq analyses were performed to provide insights into the early-stage interactions between barley seedlings and three novel bacterial strains (two Paenibacillus sp. strains and one Erwinia gerundensis strain) isolated from the perennial ryegrass seed microbiome. Differentially expressed bacterial and barley genes/transcripts involved in plant–bacteria interactions were identified, with varying species- and strain-specific responses. Overall, transcriptome profiles suggested that all three strains improved stress response, signal transduction, and nutrient uptake and metabolism of barley seedlings. Results also suggested potential improvements in seedling root growth via repressing ethylene biosynthesis in roots. Bacterial secondary metabolite gene clusters producing compounds that are potentially associated with interactions with the barley endophytic microbiome and associated with stress tolerance of plants under nutrient limiting conditions were also identified. The results of this study provided the molecular basis of plant growth-promoting activities of three novel bacterial strains in barley, laid a solid foundation for the future development of these three bacterial strains as biofertilisers, and identified key differences between bacterial strains of the same species in their responses to plants.
Collapse
Affiliation(s)
- Tongda Li
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Correspondence: ; Tel.: +61-3-9032-7088
| | - Ross Mann
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
| | - Jatinder Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
| | - German Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Timothy Sawbridge
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia; (R.M.); (J.K.); (G.S.); (T.S.)
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| |
Collapse
|
8
|
Vitoriano CB, Calixto CPG. Reading between the Lines: RNA-seq Data Mining Reveals the Alternative Message of the Rice Leaf Transcriptome in Response to Heat Stress. PLANTS 2021; 10:plants10081647. [PMID: 34451692 PMCID: PMC8400768 DOI: 10.3390/plants10081647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022]
Abstract
Rice (Oryza sativa L.) is a major food crop but heat stress affects its yield and grain quality. To identify mechanistic solutions to improve rice yield under rising temperatures, molecular responses of thermotolerance must be understood. Transcriptional and post-transcriptional controls are involved in a wide range of plant environmental responses. Alternative splicing (AS), in particular, is a widespread mechanism impacting the stress defence in plants but it has been completely overlooked in rice genome-wide heat stress studies. In this context, we carried out a robust data mining of publicly available RNA-seq datasets to investigate the extension of heat-induced AS in rice leaves. For this, datasets of interest were subjected to filtering and quality control, followed by accurate transcript-specific quantifications. Powerful differential gene expression (DE) and differential AS (DAS) identified 17,143 and 2162 heat response genes, respectively, many of which are novel. Detailed analysis of DAS genes coding for key regulators of gene expression suggests that AS helps shape transcriptome and proteome diversity in response to heat. The knowledge resulting from this study confirmed a widespread transcriptional and post-transcriptional response to heat stress in plants, and it provided novel candidates for rapidly advancing rice breeding in response to climate change.
Collapse
|
9
|
Ma X, Vaistij FE, Li Y, Jansen van Rensburg WS, Harvey S, Bairu MW, Venter SL, Mavengahama S, Ning Z, Graham IA, Van Deynze A, Van de Peer Y, Denby KJ. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:613-628. [PMID: 33960539 DOI: 10.1111/tpj.15298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Traditional crops have historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over-reliant on a small number of internationally traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (particularly where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture. Using short-read, long-read and phased sequencing technologies, we generated a high-quality chromosome-level genome assembly for Amaranthus cruentus, an under-researched crop with micronutrient- and protein-rich leaves and gluten-free seed, but lacking improved varieties, with respect to productivity and quality traits. The 370.9 Mb genome demonstrates a shared whole genome duplication with a related species, Amaranthus hypochondriacus. Comparative genome analysis indicates chromosomal loss and fusion events following genome duplication that are common to both species, as well as fission of chromosome 2 in A. cruentus alone, giving rise to a haploid chromosome number of 17 (versus 16 in A. hypochondriacus). Genomic features potentially underlying the nutritional value of this crop include two A. cruentus-specific genes with a likely role in phytic acid synthesis (an anti-nutrient), expansion of ion transporter gene families, and identification of biosynthetic gene clusters conserved within the amaranth lineage. The A. cruentus genome assembly will underpin much-needed research and global breeding efforts to develop improved varieties for economically viable cultivation and realization of the benefits to global nutrition security and agrobiodiversity.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9054, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9054, Belgium
| | - Fabián E Vaistij
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Willem S Jansen van Rensburg
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sarah Harvey
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Michael W Bairu
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sonja L Venter
- Agricultural Research Council, Vegetable, Industrial and Medicinal Plants Research Campus, Private Bag X293, Pretoria, 0001, South Africa
| | - Sydney Mavengahama
- Crop Science Department, Faculty of Natural and Agricultural Sciences, North West University, P/Bag X2046, Mmabatho, 2735, South Africa
| | - Zemin Ning
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ian A Graham
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Allen Van Deynze
- Department of Plant Sciences, Seed Biotechnology Center, University of California, Davis, CA, 95616, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9054, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9054, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Katherine J Denby
- Department of Biology, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
10
|
Jacobsen AGR, Jervis G, Xu J, Topping JF, Lindsey K. Root growth responses to mechanical impedance are regulated by a network of ROS, ethylene and auxin signalling in Arabidopsis. THE NEW PHYTOLOGIST 2021; 231:225-242. [PMID: 33428776 PMCID: PMC8651006 DOI: 10.1111/nph.17180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/05/2021] [Indexed: 05/21/2023]
Abstract
The growth and development of root systems is influenced by mechanical properties of the substrate in which the plants grow. Mechanical impedance, such as by compacted soil, can reduce root elongation and limit crop productivity. To understand better the mechanisms involved in plant root responses to mechanical impedance stress, we investigated changes in the root transcriptome and hormone signalling responses of Arabidopsis to artificial root barrier systems in vitro. We demonstrate that upon encountering a barrier, reduced Arabidopsis root growth and a characteristic 'step-like' growth pattern is due to a reduction in cell elongation associated with changes in signalling gene expression. Data from RNA-sequencing combined with reporter line and mutant studies identified essential roles for reactive oxygen species, ethylene and auxin signalling during the barrier response. We propose a model in which early responses to mechanical impedance include reactive oxygen signalling integrated with ethylene and auxin responses to mediate root growth changes. Inhibition of ethylene responses allows improved growth in response to root impedance, an observation that may inform future crop breeding programmes.
Collapse
Affiliation(s)
| | - George Jervis
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Jian Xu
- Department of Plant Systems PhysiologyInstitute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJthe Netherlands
- Department of Biological Sciences and Centre for BioImaging SciencesNational University of SingaporeSingapore117543Singapore
| | | | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| |
Collapse
|
11
|
Modern Approaches for Transcriptome Analyses in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:11-50. [DOI: 10.1007/978-3-030-80352-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mahmood K, Orabi J, Kristensen PS, Sarup P, Jørgensen LN, Jahoor A. De novo transcriptome assembly, functional annotation, and expression profiling of rye (Secale cereale L.) hybrids inoculated with ergot (Claviceps purpurea). Sci Rep 2020; 10:13475. [PMID: 32778722 PMCID: PMC7417550 DOI: 10.1038/s41598-020-70406-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Rye is used as food, feed, and for bioenergy production and remain an essential grain crop for cool temperate zones in marginal soils. Ergot is known to cause severe problems in cross-pollinated rye by contamination of harvested grains. The molecular response of the underlying mechanisms of this disease is still poorly understood due to the complex infection pattern. RNA sequencing can provide astonishing details about the transcriptional landscape, hence we employed a transcriptomic approach to identify genes in the underlying mechanism of ergot infection in rye. In this study, we generated de novo assemblies from twelve biological samples of two rye hybrids with identified contrasting phenotypic responses to ergot infection. The final transcriptome of ergot susceptible (DH372) and moderately ergot resistant (Helltop) hybrids contain 208,690 and 192,116 contigs, respectively. By applying the BUSCO pipeline, we confirmed that these transcriptome assemblies contain more than 90% of gene representation of the available orthologue groups at Virdiplantae odb10. We employed a de novo assembled and the draft reference genome of rye to count the differentially expressed genes (DEGs) between the two hybrids with and without inoculation. The gene expression comparisons revealed that 228 genes were linked to ergot infection in both hybrids. The genome ontology enrichment analysis of DEGs associated them with metabolic processes, hydrolase activity, pectinesterase activity, cell wall modification, pollen development and pollen wall assembly. In addition, gene set enrichment analysis of DEGs linked them to cell wall modification and pectinesterase activity. These results suggest that a combination of different pathways, particularly cell wall modification and pectinesterase activity contribute to the underlying mechanism that might lead to resistance against ergot in rye. Our results may pave the way to select genetic material to improve resistance against ergot through better understanding of the mechanism of ergot infection at molecular level. Furthermore, the sequence data and de novo assemblies are valuable as scientific resources for future studies in rye.
Collapse
Affiliation(s)
- Khalid Mahmood
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark. .,Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200, Slagelse, Denmark.
| | - Jihad Orabi
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark
| | | | | | - Lise Nistrup Jørgensen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Forsøgsvej 1, Flakkebjerg, 4200, Slagelse, Denmark
| | - Ahmed Jahoor
- Nordic Seed A/S, Grindsnabevej 25, 8300, Odder, Denmark.,Department of Plant Breeding, The Swedish University of Agricultural Sciences, 23053, Alnarp, Sweden
| |
Collapse
|
13
|
Qiu Z, Chen S, Qi Y, Liu C, Zhai J, Xie S, Ma C. Exploring transcriptional switches from pairwise, temporal and population RNA-Seq data using deepTS. Brief Bioinform 2020; 22:5877690. [PMID: 32728687 DOI: 10.1093/bib/bbaa137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022] Open
Abstract
Transcriptional switch (TS) is a widely observed phenomenon caused by changes in the relative expression of transcripts from the same gene, in spatial, temporal or other dimensions. TS has been associated with human diseases, plant development and stress responses. Its investigation is often hampered by a lack of suitable tools allowing comprehensive and flexible TS analysis for high-throughput RNA sequencing (RNA-Seq) data. Here, we present deepTS, a user-friendly web-based implementation that enables a fully interactive, multifunctional identification, visualization and analysis of TS events for large-scale RNA-Seq datasets from pairwise, temporal and population experiments. deepTS offers rich functionality to streamline RNA-Seq-based TS analysis for both model and non-model organisms and for those with or without reference transcriptome. The presented case studies highlight the capabilities of deepTS and demonstrate its potential for the transcriptome-wide TS analysis of pairwise, temporal and population RNA-Seq data. We believe deepTS will help research groups, regardless of their informatics expertise, perform accessible, reproducible and collaborative TS analyses of large-scale RNA-Seq data.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chuang Ma
- Bioinformatics Laboratory at Northwest A&F University
| |
Collapse
|
14
|
Rapazote-Flores P, Bayer M, Milne L, Mayer CD, Fuller J, Guo W, Hedley PE, Morris J, Halpin C, Kam J, McKim SM, Zwirek M, Casao MC, Barakate A, Schreiber M, Stephen G, Zhang R, Brown JWS, Waugh R, Simpson CG. BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics 2019; 20:968. [PMID: 31829136 PMCID: PMC6907147 DOI: 10.1186/s12864-019-6243-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The time required to analyse RNA-seq data varies considerably, due to discrete steps for computational assembly, quantification of gene expression and splicing analysis. Recent fast non-alignment tools such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available in plants. RESULTS A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts - BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley cv. Morex reference genome (Mascher et al. Nature; 544: 427-433, 2017). Full-length cDNAs from the barley variety Haruna nijo (Matsumoto et al. Plant Physiol; 156: 20-28, 2011) determined transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due to variation in 5' and 3' UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes, 2791 differentially alternatively spliced genes and 2768 transcripts with differential transcript usage. CONCLUSION A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240 transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene models that are well supported by splice junction reads. Precise transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.
Collapse
Affiliation(s)
- Paulo Rapazote-Flores
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Micha Bayer
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Linda Milne
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - John Fuller
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wenbin Guo
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Jason Kam
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- Present address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Monika Zwirek
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- Present Address: MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - M Cristina Casao
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Gordon Stephen
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
15
|
Rapazote-Flores P, Bayer M, Milne L, Mayer CD, Fuller J, Guo W, Hedley PE, Morris J, Halpin C, Kam J, McKim SM, Zwirek M, Casao MC, Barakate A, Schreiber M, Stephen G, Zhang R, Brown JWS, Waugh R, Simpson CG. BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics 2019; 20:968. [PMID: 31829136 DOI: 10.1186/s12864-019-6243-6247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/29/2019] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The time required to analyse RNA-seq data varies considerably, due to discrete steps for computational assembly, quantification of gene expression and splicing analysis. Recent fast non-alignment tools such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive reference transcripts dataset (RTD), which are rarely available in plants. RESULTS A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts - BaRTv1.0) has been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts assembled and aligned to the barley cv. Morex reference genome (Mascher et al. Nature; 544: 427-433, 2017). Full-length cDNAs from the barley variety Haruna nijo (Matsumoto et al. Plant Physiol; 156: 20-28, 2011) determined transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due to variation in 5' and 3' UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes, 2791 differentially alternatively spliced genes and 2768 transcripts with differential transcript usage. CONCLUSION A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240 transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer, have less fragmentation and improved gene models that are well supported by splice junction reads. Precise transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.
Collapse
Affiliation(s)
- Paulo Rapazote-Flores
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Micha Bayer
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Linda Milne
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - John Fuller
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wenbin Guo
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Claire Halpin
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Jason Kam
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- Present address: Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Monika Zwirek
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
- Present Address: MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - M Cristina Casao
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Abdellah Barakate
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Miriam Schreiber
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Gordon Stephen
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Division of Plant Sciences, School of Life Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
16
|
Hoang NV, Furtado A, Perlo V, Botha FC, Henry RJ. The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome. Front Genet 2019; 10:654. [PMID: 31396260 PMCID: PMC6664245 DOI: 10.3389/fgene.2019.00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/20/2019] [Indexed: 11/13/2022] Open
Abstract
Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed, and many new generally shorter transcripts were detected by normalization. For the same input cDNA and data yield, the normalized library recovered more total transcript isoforms and number of predicted gene families and orthologous groups, resulting in a higher representation for the sugarcane transcriptome, compared to the non-normalized library. The non-normalized library, on the other hand, included a wider transcript length range with more longer transcripts above ∼1.25 kb and more transcript isoforms per gene family and gene ontology terms per transcript. A large proportion of the unique transcripts comprising ∼52% of the normalized library were expressed at a lower level than the unique transcripts from the non-normalized library, across three tissue types tested including leaf, stalk, and root. About 83% of the total 5,348 predicted long noncoding transcripts was derived from the normalized library, of which ∼80% was derived from the lowly expressed fraction. Functional annotation of the unique transcripts suggested that each library enriched different functional transcript fractions. This demonstrated the complementation of the two approaches in obtaining a complete transcriptome of a complex genome at the sequencing depth used in this study.
Collapse
Affiliation(s)
- Nam V. Hoang
- College of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Virginie Perlo
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Frederik C. Botha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- Sugar Research Australia, Indooroopilly, QLD, Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
17
|
Cossard GG, Toups MA, Pannell JR. Sexual dimorphism and rapid turnover in gene expression in pre-reproductive seedlings of a dioecious herb. ANNALS OF BOTANY 2019; 123:1119-1131. [PMID: 30289430 PMCID: PMC6612945 DOI: 10.1093/aob/mcy183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/06/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Sexual dimorphism in morphology, physiology or life history traits is common in dioecious plants at reproductive maturity, but it is typically inconspicuous or absent in juveniles. Although plants of different sexes probably begin to diverge in gene expression both before their reproduction commences and before dimorphism becomes readily apparent, to our knowledge transcriptome-wide differential gene expression has yet to be demonstrated for any angiosperm species. METHODS The present study documents differences in gene expression in both above- and below-ground tissues of early pre-reproductive individuals of the wind-pollinated dioecious annual herb, Mercurialis annua, which otherwise shows clear sexual dimorphism only at the adult stage. KEY RESULTS Whereas males and females differed in their gene expression at the first leaf stage, sex-biased gene expression peaked just prior to, and after, flowering, as might be expected if sexual dimorphism is partly a response to differential costs of reproduction. Sex-biased genes were over-represented among putative sex-linked genes in M. annua but showed no evidence for more rapid evolution than unbiased genes. CONCLUSIONS Sex-biased gene expression in M. annua occurs as early as the first whorl of leaves is produced, is highly dynamic during plant development and varies substantially between vegetative tissues.
Collapse
Affiliation(s)
- Guillaume G Cossard
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Melissa A Toups
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - John R Pannell
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Abstract
Assembly of the barley genome and extensive use of RNA-seq has resulted in an abundance of gene expression data and the recognition of wide-scale production of alternatively spliced transcripts. Here, we describe in detail a high-resolution reverse transcription-PCR based panel (HR RT-PCR) that confirms the accuracy of alternatively spliced transcripts from RNA-seq and allows quantification of changes in the proportion of splice isoforms between different experimental conditions, time points, tissues, genotypes, ecotypes, and treatments. By validating a selection of barley genes, use of the panel gives confidence or otherwise to the genome-wide global changes in alternatively spliced transcripts reported by RNA-seq. This simple assay can readily be applied to perform detailed transcript isoform analysis for any gene in any species.
Collapse
|
19
|
Bazin J, Romero N, Rigo R, Charon C, Blein T, Ariel F, Crespi M. Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:1209. [PMID: 30186296 PMCID: PMC6111844 DOI: 10.3389/fpls.2018.01209] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/27/2018] [Indexed: 05/25/2023]
Abstract
Nuclear speckle RNA binding proteins (NSRs) act as regulators of alternative splicing (AS) and auxin-regulated developmental processes such as lateral root formation in Arabidopsis thaliana. These proteins were shown to interact with specific alternatively spliced mRNA targets and at least with one structured lncRNA, named Alternative Splicing Competitor RNA. Here, we used genome-wide analysis of RNAseq to monitor the NSR global role on multiple tiers of gene expression, including RNA processing and AS. NSRs affect AS of 100s of genes as well as the abundance of lncRNAs particularly in response to auxin. Among them, the FPA floral regulator displayed alternative polyadenylation and differential expression of antisense COOLAIR lncRNAs in nsra/b mutants. This may explains the early flowering phenotype observed in nsra and nsra/b mutants. GO enrichment analysis of affected lines revealed a novel link of NSRs with the immune response pathway. A RIP-seq approach on an NSRa fusion protein in mutant background identified that lncRNAs are privileged direct targets of NSRs in addition to specific AS mRNAs. The interplay of lncRNAs and AS mRNAs in NSR-containing complexes may control the crosstalk between auxin and the immune response pathway.
Collapse
Affiliation(s)
- Jérémie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Natali Romero
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Richard Rigo
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Celine Charon
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Thomas Blein
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Federico Ariel
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
- Instituto de Agrobiotecnologıa del Litoral, CONICET, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| |
Collapse
|
20
|
Trincado JL, Entizne JC, Hysenaj G, Singh B, Skalic M, Elliott DJ, Eyras E. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol 2018; 19:40. [PMID: 29571299 PMCID: PMC5866513 DOI: 10.1186/s13059-018-1417-1] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/02/2018] [Indexed: 02/08/2023] Open
Abstract
Despite the many approaches to study differential splicing from RNA-seq, many challenges remain unsolved, including computing capacity and sequencing depth requirements. Here we present SUPPA2, a new method that addresses these challenges, and enables streamlined analysis across multiple conditions taking into account biological variability. Using experimental and simulated data, we show that SUPPA2 achieves higher accuracy compared to other methods, especially at low sequencing depth and short read length. We use SUPPA2 to identify novel Transformer2-regulated exons, novel microexons induced during differentiation of bipolar neurons, and novel intron retention events during erythroblast differentiation.
Collapse
Affiliation(s)
| | | | - Gerald Hysenaj
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Babita Singh
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - Miha Skalic
- Pompeu Fabra University, E08003, Barcelona, Spain
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, UK
| | - Eduardo Eyras
- Pompeu Fabra University, E08003, Barcelona, Spain. .,Catalan Institution for Research and Advanced Studies, E08010, Barcelona, Spain.
| |
Collapse
|
21
|
Zhang R, Calixto CPG, Marquez Y, Venhuizen P, Tzioutziou NA, Guo W, Spensley M, Entizne JC, Lewandowska D, Ten Have S, Frei Dit Frey N, Hirt H, James AB, Nimmo HG, Barta A, Kalyna M, Brown JWS. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res 2017; 45:5061-5073. [PMID: 28402429 PMCID: PMC5435985 DOI: 10.1093/nar/gkx267] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.
Collapse
Affiliation(s)
- Runxuan Zhang
- Informatics and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Cristiane P G Calixto
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Yamile Marquez
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030 Vienna, Austria
| | - Peter Venhuizen
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030 Vienna, Austria
| | - Nikoleta A Tzioutziou
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Wenbin Guo
- Informatics and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.,Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Mark Spensley
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada
| | - Juan Carlos Entizne
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK
| | - Dominika Lewandowska
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Sara Ten Have
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Heribert Hirt
- Institute of Plant Sciences Paris Saclay, INRA-CNRS-UEVE, Orsay 91405, France
| | - Allan B James
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hugh G Nimmo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrea Barta
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, 1030 Vienna, Austria
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences - BOKU, Muthgasse 18, 1190 Vienna, Austria
| | - John W S Brown
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee DD2 5DA, UK.,Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
22
|
AlShareef S, Ling Y, Butt H, Mariappan KG, Benhamed M, Mahfouz MM. Herboxidiene triggers splicing repression and abiotic stress responses in plants. BMC Genomics 2017; 18:260. [PMID: 28347276 PMCID: PMC5369228 DOI: 10.1186/s12864-017-3656-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/22/2017] [Indexed: 12/28/2022] Open
Abstract
Background Constitutive and alternative splicing of pre-mRNAs from multiexonic genes controls the diversity of the proteome; these precisely regulated processes also fine-tune responses to cues related to growth, development, and stresses. Small-molecule inhibitors that perturb splicing provide invaluable tools for use as chemical probes to uncover the molecular underpinnings of splicing regulation and as potential anticancer compounds. Results Here, we show that herboxidiene (GEX1A) inhibits both constitutive and alternative splicing. Moreover, GEX1A activates genome-wide transcriptional patterns involved in abiotic stress responses in plants. GEX1A treatment -activated ABA-inducible promoters, and led to stomatal closure. Interestingly, GEX1A and pladienolide B (PB) elicited similar cellular changes, including alterations in the patterns of transcription and splicing, suggesting that these compounds might target the same spliceosome complex in plant cells. Conclusions Our study establishes GEX1A as a potent splicing inhibitor in plants that can be used to probe the assembly, dynamics, and molecular functions of the spliceosome and to study the interplay between splicing stress and abiotic stresses, as well as having potential biotechnological applications. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3656-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sahar AlShareef
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yu Ling
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kiruthiga G Mariappan
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Moussa Benhamed
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|