1
|
Davis JK, Cohen AD, Getman-Pickering ZL, Grab HL, Hodgden B, Maher RM, Pelzer CJ, Rangarajan A, Ryan MR, Ugine TA, Thaler JS. Agricultural soil legacy influences multitrophic interactions between crops, their pathogens and pollinators. Proc Biol Sci 2023; 290:20231453. [PMID: 38018107 PMCID: PMC10685131 DOI: 10.1098/rspb.2023.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
Soil legacy influences plant interactions with antagonists and below-ground mutualists. Plant-antagonist interactions can jeopardize plant-pollinator interactions, while soil mutualists can enhance plant-pollinator interactions. This suggests that soil legacy, either directly or mediated through plant symbionts, affects pollinators. Despite the importance of pollinators to natural and managed ecosystems, information on how soil legacy affects plant-pollinator interactions is limited. We assessed effects of soil management legacy (organic versus conventional) on floral rewards and plant interactions with wild pollinators, herbivores, beneficial fungi and pathogens. We used an observational dataset and structural equation models to evaluate hypothesized relationships between soil and pollinators, then tested observed correlations in a manipulative experiment. Organic legacy increased mycorrhizal fungal colonization and improved resistance to powdery mildew, which promoted pollinator visitation. Further, soil legacy and powdery mildew independently and interactively impacted floral traits and floral reward nutrients, which are important to pollinators. Our results indicate that pollination could be an overlooked consequence of soil legacy and suggests opportunity to develop long-term soil management plans that benefit pollinators and pollination.
Collapse
Affiliation(s)
- Jules K. Davis
- Department of Entomology, Cornell University, NY 14853, USA
| | - Anna D. Cohen
- Department of Ecology and Evolutionary Biology, Cornell University, NY 14853, USA
| | | | - Heather L. Grab
- Department of Entomology, Cornell University, NY 14853, USA
- School School of Integrative Plant Science, Cornell University, NY 14853, USA
| | - Blythe Hodgden
- Department of Entomology, Cornell University, NY 14853, USA
| | - Ryan M. Maher
- School School of Integrative Plant Science, Cornell University, NY 14853, USA
| | - Chris J. Pelzer
- Section of Soil and Crop Sciences, Cornell University, NY 14853, USA
| | - Anu Rangarajan
- School School of Integrative Plant Science, Cornell University, NY 14853, USA
| | - Matthew R. Ryan
- Section of Soil and Crop Sciences, Cornell University, NY 14853, USA
| | - Todd A. Ugine
- Department of Entomology, Cornell University, NY 14853, USA
| | - Jennifer S. Thaler
- Department of Entomology, Cornell University, NY 14853, USA
- Department of Ecology and Evolutionary Biology, Cornell University, NY 14853, USA
| |
Collapse
|
2
|
A Genome-Wide Association study in Arabidopsis thaliana to decipher the adaptive genetics of quantitative disease resistance in a native heterogeneous environment. PLoS One 2022; 17:e0274561. [PMID: 36190949 PMCID: PMC9529085 DOI: 10.1371/journal.pone.0274561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Pathogens are often the main selective agents acting in plant communities, thereby influencing the distribution of polymorphism at loci affecting resistance within and among natural plant populations. In addition, the outcome of plant-pathogen interactions can be drastically affected by abiotic and biotic factors at different spatial and temporal grains. The characterization of the adaptive genetic architecture of disease resistance in native heterogeneous environments is however still missing. In this study, we conducted an in situ Genome-Wide Association study in the spatially heterogeneous native habitat of a highly genetically polymorphic local mapping population of Arabidopsis thaliana, to unravel the adaptive genetic architecture of quantitative disease resistance. Disease resistance largely differed among three native soils and was affected by the presence of the grass Poa annua. The observation of strong crossing reactions norms among the 195 A. thaliana genotypes for disease resistance among micro-habitats, combined with a negative fecundity-disease resistance relationship in each micro-habitat, suggest that alternative local genotypes of A. thaliana are favored under contrasting environmental conditions at the scale of few meters. A complex genetic architecture was detected for disease resistance and fecundity. However, only few QTLs were common between these two traits. Heterogeneous selection in this local population should therefore promote the maintenance of polymorphism at only few candidate resistance genes.
Collapse
|
3
|
van Dijk LJA, Abdelfattah A, Ehrlén J, Tack AJM. Soil microbiomes drive aboveground plant–pathogen–insect interactions. OIKOS 2022. [DOI: 10.1111/oik.09366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Laura J. A. van Dijk
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Ahmed Abdelfattah
- Inst. of Environmental Biotechnology, Graz Univ. of Technology Graz Austria
| | - Johan Ehrlén
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| |
Collapse
|
4
|
Smith EA, Holden EM, Brown C, Cahill Jr JF. Disturbance has lasting effects on functional traits and diversity of grassland plant communities. PeerJ 2022; 10:e13179. [PMID: 35356466 PMCID: PMC8958970 DOI: 10.7717/peerj.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background Localized disturbances within grasslands alter biological properties and may shift species composition. For example, rare species in established communities may become dominant in successional communities if they exhibit traits well-suited to disturbance conditions. Although the idea that plant species exhibit different trait 'strategies' is well established, it is unclear how ecological selection for specific traits may change as a function of disturbance. Further, there is little data available testing whether disturbances select for single trait-characters within communities (homogenization), or allow multiple trait-types to persist (diversification). We investigated how (a) traits and (b) functional diversity of post-disturbance gap communities compared to those in adjacent undisturbed grasslands, and (c) if altered functional diversity resulted in the homogenization or diversification of functional traits. Methods Here we emulate the impacts of an extreme disturbance in a native grassland site. We measured plant community composition of twelve paired 50 × 50 cm plots (24 total) in Alberta, Canada. Each pair consisted of one undisturbed plot and one which had all plants terminated 2 years prior. We used species abundances and a local trait database to calculate community weighted means for maximum height, specific leaf area, specific root length, leaf nitrogen percent, and root nitrogen percent. To test the impacts of disturbance on community functional traits, we calculated functional diversity measures and compared them between disturbed and undisturbed communities. Results Within 2 years, species richness and evenness in disturbed communities had recovered and was equivalent to undisturbed communities. However, disturbed and undisturbed communities had distinct community compositions, resulting in lower functional divergence in disturbed plots. Further, disturbance was linked to increases in community-weighted mean trait values for resource-acquisitive traits, such as specific leaf area, and leaf and root nitrogen. Discussion Disturbance had lasting effects on the functional traits and diversity of communities, despite traditional biodiversity measures such as richness and evenness recovering within 2 years. The trait space of gap communities shifted compared to undisturbed communities such that gap communities were dominated by traits enhancing resource uptake and growth rates. Overall, these results show that short-term disturbance fundamentally changes the functional character of early-successional communities, even if they superficially appear recovered.
Collapse
Affiliation(s)
- Ellen A. Smith
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Emily M. Holden
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Charlotte Brown
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada,Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, Arizona, United States
| | - James F. Cahill Jr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Penczykowski RM, Sieg RD. Plantago spp. as Models for Studying the Ecology and Evolution of Species Interactions across Environmental Gradients. Am Nat 2021; 198:158-176. [PMID: 34143715 DOI: 10.1086/714589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractA central challenge in ecology and evolutionary biology is to understand how variation in abiotic and biotic factors combine to shape the distribution, abundance, and diversity of focal species. Environmental gradients, whether natural (e.g., latitude, elevation, ocean proximity) or anthropogenic (e.g., land-use intensity, urbanization), provide compelling settings for addressing this challenge. However, not all organisms are amenable to the observational and experimental approaches required for untangling the factors that structure species along gradients. Here we highlight herbaceous plants in the genus Plantago as models for studying the ecology and evolution of species interactions along abiotic gradients. Plantago lanceolata and P. major are native to Europe and Asia but distributed globally, and they are established models for studying population ecology and interactions with herbivores, pathogens, and soil microbes. Studying restricted range congeners in comparison with those cosmopolitan species can provide insight into abiotic and biotic determinants of range size and population structure. We highlight one such species, P. rugelii, which is endemic to eastern North America. We give an overview of the literature on these focal Plantago species and explain why they are logical candidates for studies of species interactions across environmental gradients. Finally, we emphasize collaborative and community science approaches that can facilitate such research and note the amenability of Plantago for authentic research projects in science education.
Collapse
|
6
|
Liu Y, Bortier MF, Nijs I, Fu Y, Li Z, Hou F, De Boeck HJ. Three‐dimensional soil heterogeneity modulates responses of grassland mesocosms to an experimentally imposed drought extreme. OIKOS 2021. [DOI: 10.1111/oik.07810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yongjie Liu
- State Key Laboratory of Grassland Agro‐ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou Univ. Lanzhou China
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| | - Michiel F. Bortier
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| | - Ivan Nijs
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| | - Yongshuo Fu
- College of Water Sciences, Beijing Normal Univ. Beijing China
| | - Zhenqing Li
- State Key Laboratory of Vegetation and Environmental Change, Inst. of Botany, Chinese Academy of Sciences Beijing China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro‐ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou Univ. Lanzhou China
| | - Hans J. De Boeck
- Plants and Ecosystems, Dept of Biology, Univ. of Antwerp Wilrijk Belgium
| |
Collapse
|
7
|
Wickander NJ, Rasmussen PU, Marteinsdóttir B, Ehrlén J, Tack AJM. Ecological and evolutionary responses of an arctic plant to variation in microclimate and soil. OIKOS 2020. [DOI: 10.1111/oik.07794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Niklas J. Wickander
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Pil U. Rasmussen
- The National Research Centre for the Working Environment Copenhagen Denmark
| | - Bryndís Marteinsdóttir
- The Soil Conservation Service of Iceland Gunnarsholt Hella Iceland
- Inst. of Life and Environmental Sciences, Univ. of Iceland Reykjavík Iceland
| | - Johan Ehrlén
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| | - Ayco J. M. Tack
- Dept of Ecology, Environment and Plant Sciences, Stockholm Univ. Stockholm Sweden
| |
Collapse
|
8
|
van Dijk LJA, Ehrlén J, Tack AJM. The timing and asymmetry of plant-pathogen-insect interactions. Proc Biol Sci 2020; 287:20201303. [PMID: 32962544 PMCID: PMC7542815 DOI: 10.1098/rspb.2020.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insects and pathogens frequently exploit the same host plant and can potentially impact each other's performance. However, studies on plant–pathogen–insect interactions have mainly focused on a fixed temporal setting or on a single interaction partner. In this study, we assessed the impact of time of attacker arrival on the outcome and symmetry of interactions between aphids (Tuberculatus annulatus), powdery mildew (Erysiphe alphitoides), and caterpillars (Phalera bucephala) feeding on pedunculate oak, Quercus robur, and explored how single versus multiple attackers affect oak performance. We used a multifactorial greenhouse experiment in which oak seedlings were infected with either zero, one, two, or three attackers, with the order of attacker arrival differing among treatments. The performances of all involved organisms were monitored throughout the experiment. Overall, attackers had a weak and inconsistent impact on plant performance. Interactions between attackers, when present, were asymmetric. For example, aphids performed worse, but powdery mildew performed better, when co-occurring. Order of arrival strongly affected the outcome of interactions, and early attackers modified the strength and direction of interactions between later-arriving attackers. Our study shows that interactions between plant attackers can be asymmetric, time-dependent, and species specific. This is likely to shape the ecology and evolution of plant–pathogen–insect interactions.
Collapse
Affiliation(s)
- Laura J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
VanWallendael A, Bonnette J, Juenger TE, Fritschi FB, Fay PA, Mitchell RB, Lloyd-Reilley J, Rouquette FM, Bergstrom GC, Lowry DB. Geographic variation in the genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop switchgrass (Panicum virgatum). THE NEW PHYTOLOGIST 2020; 227:1696-1708. [PMID: 32202657 DOI: 10.1111/nph.16555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/06/2020] [Indexed: 05/28/2023]
Abstract
Local adaptation is an important process in plant evolution, which can be impacted by differential pathogen pressures along environmental gradients. However, the degree to which pathogen resistance loci vary in effect across space and time is incompletely described. To understand how the genetic architecture of resistance varies across time and geographic space, we quantified rust (Puccinia spp.) severity in switchgrass (Panicum virgatum) plantings at eight locations across the central USA for 3 yr and conducted quantitative trait locus (QTL) mapping for rust progression. We mapped several variable QTLs, but two large-effect QTLs which we have named Prr1 and Prr2 were consistently associated with rust severity in multiple sites and years, particularly in northern sites. By contrast, there were numerous small-effect QTLs at southern sites, indicating a genotype-by-environment interaction in rust resistance loci. Interestingly, Prr1 and Prr2 had a strong epistatic interaction, which also varied in the strength and direction of effect across space. Our results suggest that abiotic factors covarying with latitude interact with the genetic loci underlying plant resistance to control rust infection severity. Furthermore, our results indicate that segregating genetic variation in epistatically interacting loci may play a key role in determining response to infection across geographic space.
Collapse
Affiliation(s)
- Acer VanWallendael
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Jason Bonnette
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65201, USA
| | - Philip A Fay
- Soil and Water Research Laboratory, USDA-ARS Grassland, Temple, TX, 76508, USA
| | - Robert B Mitchell
- USDA-ARS Wheat, Sorghum, and Forage Research Unit, University of Nebraska, Lincoln, NE, 68588, USA
| | - John Lloyd-Reilley
- USDA-NRCS, Kika de la Garza Plant Materials Center, Kingsville, TX, 78572, USA
| | - Francis M Rouquette
- Texas A&M AgriLife Research, Texas A&M AgriLife Research and Extension Center, Overton, TX, 75684, USA
| | - Gary C Bergstrom
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
10
|
Kirchhoff L, Kirschbaum A, Joshi J, Bossdorf O, Scheepens JF, Heinze J. Plant-Soil Feedbacks of Plantago lanceolata in the Field Depend on Plant Origin and Herbivory. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Gibson AK, Stoy KS, Lively CM. Bloody-minded parasites and sex: the effects of fluctuating virulence. J Evol Biol 2018; 31:611-620. [PMID: 29460507 PMCID: PMC5882519 DOI: 10.1111/jeb.13252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
Abstract
Asexual lineages can grow at a faster rate than sexual lineages. Why then is sexual reproduction so widespread? Much empirical evidence supports the Red Queen hypothesis. Under this hypothesis, coevolving parasites favour sexual reproduction by adapting to infect common asexual clones and driving them down in frequency. One limitation, however, seems to challenge the generality of the Red Queen: in theoretical models, parasites must be very virulent to maintain sex. Moreover, experiments show virulence to be unstable, readily shifting in response to environmental conditions. Does variation in virulence further limit the ability of coevolving parasites to maintain sex? To address this question, we simulated temporal variation in virulence and evaluated the outcome of competition between sexual and asexual females. We found that variation in virulence did not limit the ability of coevolving parasites to maintain sex. In fact, relatively high variation in virulence promoted parasite-mediated maintenance of sex. With sufficient variation, sexual females persisted even when mean virulence fell well below the threshold virulence required to maintain sex under constant conditions. We conclude that natural variation in virulence does not limit the relevance of the Red Queen hypothesis for natural populations; on the contrary, it could expand the range of conditions over which coevolving parasites can maintain sex.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|