1
|
Moravcová M, Siatka T, Krčmová LK, Matoušová K, Mladěnka P. Biological properties of vitamin B 12. Nutr Res Rev 2024:1-33. [PMID: 39376196 DOI: 10.1017/s0954422424000210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Vitamin B12, cobalamin, is indispensable for humans owing to its participation in two biochemical reactions: the conversion of l-methylmalonyl coenzyme A to succinyl coenzyme A, and the formation of methionine by methylation of homocysteine. Eukaryotes, encompassing plants, fungi, animals and humans, do not synthesise vitamin B12, in contrast to prokaryotes. Humans must consume it in their diet. The most important sources include meat, milk and dairy products, fish, shellfish and eggs. Due to this, vegetarians are at risk to develop a vitamin B12 deficiency and it is recommended that they consume fortified food. Vitamin B12 behaves differently to most vitamins of the B complex in several aspects, e.g. it is more stable, has a very specific mechanism of absorption and is stored in large amounts in the organism. This review summarises all its biological aspects (including its structure and natural sources as well as its stability in food, pharmacokinetics and physiological function) as well as causes, symptoms, diagnosis (with a summary of analytical methods for its measurement), prevention and treatment of its deficiency, and its pharmacological use and potential toxicity.
Collapse
Affiliation(s)
- Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Younker IT, Molnar N, Scorza K, Weed R, Light SH, Pfister CA. Bacteria on the foundational kelp in kelp forest ecosystems: Insights from culturing, whole genome sequencing and metabolic assays. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13270. [PMID: 38778582 PMCID: PMC11112141 DOI: 10.1111/1758-2229.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/06/2024] [Indexed: 05/25/2024]
Abstract
In coastal marine ecosystems, kelp forests serve as a vital habitat for numerous species and significantly influence local nutrient cycles. Bull kelp, or Nereocystis luetkeana, is a foundational species in the iconic kelp forests of the northeast Pacific Ocean and harbours a complex microbial community with potential implications for kelp health. Here, we report the isolation and functional characterisation of 16 Nereocystis-associated bacterial species, comprising 13 Gammaproteobacteria, 2 Flavobacteriia and 1 Actinomycetia. Genome analyses of these isolates highlight metabolisms potentially beneficial to the host, such as B vitamin synthesis and nitrogen retention. Assays revealed that kelp-associated bacteria thrive on amino acids found in high concentrations in the ocean and in the kelp (glutamine and asparagine), generating ammonium that may facilitate host nitrogen acquisition. Multiple isolates have genes indicative of interactions with key elemental cycles in the ocean, including carbon, nitrogen and sulphur. We thus report a collection of kelp-associated microbial isolates that provide functional insight for the future study of kelp-microbe interactions.
Collapse
Affiliation(s)
- Isaac T. Younker
- Committee on MicrobiologyThe University of ChicagoChicagoIllinoisUSA
| | - Nichos Molnar
- The CollegeThe University of ChicagoChicagoIllinoisUSA
| | - Kaylie Scorza
- The CollegeThe University of ChicagoChicagoIllinoisUSA
| | - Roo Weed
- The Graduate Program in Biophysical SciencesThe University of ChicagoChicagoIllinoisUSA
| | - Samuel H. Light
- Department of MicrobiologyThe University of ChicagoChicagoIllinoisUSA
| | | |
Collapse
|
3
|
Dupuis S, Lingappa UF, Mayali X, Sindermann ES, Chastain JL, Weber PK, Stuart R, Merchant SS. Scarcity of fixed carbon transfer in a model microbial phototroph-heterotroph interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577492. [PMID: 38328118 PMCID: PMC10849638 DOI: 10.1101/2024.01.26.577492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Although the green alga Chlamydomonas reinhardtii has long served as a reference organism, few studies have interrogated its role as a primary producer in microbial interactions. Here, we quantitatively investigated C. reinhardtii's capacity to support a heterotrophic microbe using the established coculture system with Mesorhizobium japonicum , a vitamin B 12 -producing α-proteobacterium. Using stable isotope probing and nanoscale secondary ion mass spectrometry (nanoSIMS), we tracked the flow of photosynthetic fixed carbon and consequent bacterial biomass synthesis under continuous and diurnal light with single-cell resolution. We found that more 13 C fixed by the alga was taken up by bacterial cells under continuous light, invalidating the hypothesis that the alga's fermentative degradation of starch reserves during the night would boost M. japonicum heterotrophy. 15 NH 4 assimilation rates and changes in cell size revealed that M. japonicum cells reduced new biomass synthesis in coculture with the alga but continued to divide - a hallmark of nutrient limitation often referred to as reductive division. Despite this sign of starvation, the bacterium still synthesized vitamin B 12 and supported the growth of a B 12 -dependent C. reinhardtii mutant. Finally, we showed that bacterial proliferation could be supported solely by the algal lysis that occurred in coculture, highlighting the role of necromass in carbon cycling. Collectively, these results reveal the scarcity of fixed carbon in this microbial trophic relationship (particularly under environmentally relevant light regimes), demonstrate B 12 exchange even during bacterial starvation, and underscore the importance of quantitative approaches for assessing metabolic coupling in algal-bacterial interactions.
Collapse
|
4
|
Dupuis S, Lingappa UF, Mayali X, Sindermann ES, Chastain JL, Weber PK, Stuart R, Merchant SS. Scarcity of fixed carbon transfer in a model microbial phototroph-heterotroph interaction. THE ISME JOURNAL 2024; 18:wrae140. [PMID: 39046282 PMCID: PMC11316394 DOI: 10.1093/ismejo/wrae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Although the green alga Chlamydomonas reinhardtii has long served as a reference organism, few studies have interrogated its role as a primary producer in microbial interactions. Here, we quantitatively investigated C. reinhardtii's capacity to support a heterotrophic microbe using the established coculture system with Mesorhizobium japonicum, a vitamin B12-producing α-proteobacterium. Using stable isotope probing and nanoscale secondary ion mass spectrometry (nanoSIMS), we tracked the flow of photosynthetic fixed carbon and consequent bacterial biomass synthesis under continuous and diurnal light with single-cell resolution. We found that more 13C fixed by the alga was taken up by bacterial cells under continuous light, invalidating the hypothesis that the alga's fermentative degradation of starch reserves during the night would boost M. japonicum heterotrophy. 15NH4 assimilation rates and changes in cell size revealed that M. japonicum cells reduced new biomass synthesis in coculture with the alga but continued to divide-a hallmark of nutrient limitation often referred to as reductive division. Despite this sign of starvation, the bacterium still synthesized vitamin B12 and supported the growth of a B12-dependent C. reinhardtii mutant. Finally, we showed that bacterial proliferation could be supported solely by the algal lysis that occurred in coculture, highlighting the role of necromass in carbon cycling. Collectively, these results reveal the scarcity of fixed carbon in this microbial trophic relationship (particularly under environmentally relevant light regimes), demonstrate B12 exchange even during bacterial starvation, and underscore the importance of quantitative approaches for assessing metabolic coupling in algal-bacterial interactions.
Collapse
Affiliation(s)
- Sunnyjoy Dupuis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, United States
| | - Usha F Lingappa
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Eve S Sindermann
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, United States
| | - Jordan L Chastain
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, United States
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Rhona Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Sabeeha S Merchant
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| |
Collapse
|
5
|
Costas-Selas C, Martínez-García S, Delgadillo-Nuño E, Justel-Díez M, Fuentes-Lema A, Fernández E, Teira E. Linking the impact of bacteria on phytoplankton growth with microbial community composition and co-occurrence patterns. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106262. [PMID: 38035521 DOI: 10.1016/j.marenvres.2023.106262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
The interactions between microalgae and bacteria have recently emerged as key control factors which might contribute to a better understanding on how phytoplankton communities assemble and respond to environmental disturbances. We analyzed partial 16S rRNA and 18S rRNA genes from a total of 42 antibiotic bioassays, where phytoplankton growth was assessed in the presence or absence of an active bacterial community. A significant negative impact of bacteria was observed in 18 bioassays, a significant positive impact was detected in 5 of the cases, and a non-detectable effect occurred in 19 bioassays. Thalasiossira spp., Chlorophytes, Vibrionaceae and Alteromonadales were relatively more abundant in the samples where a positive effect of bacteria was observed compared to those where a negative impact was observed. Phytoplankton diversity was lower when bacteria negatively affect their growth than when the effect was beneficial. The phytoplankton-bacteria co-occurrence subnetwork included many significant Chlorophyta-Alteromonadales and Bacillariophyceae-Alteromonadales positive associations. Phytoplankton-bacteria co-exclusions were not detected in the network, which contrasts with the negative effect of bacteria on phytoplankton growth frequently detected in the bioassays, suggesting strong competitive interactions. Overall, this study adds strong evidence supporting the key role of phytoplankton-bacteria interactions in the microbial communities.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Erick Delgadillo-Nuño
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Maider Justel-Díez
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Antonio Fuentes-Lema
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Emilio Fernández
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| |
Collapse
|
6
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
7
|
Maire J, Philip GK, Livingston J, Judd LM, Blackall LL, van Oppen MJH. Functional potential and evolutionary response to long-term heat selection of bacterial associates of coral photosymbionts. mSystems 2023; 8:e0086023. [PMID: 37909753 PMCID: PMC10746172 DOI: 10.1128/msystems.00860-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Symbiotic microorganisms are crucial for the survival of corals and their resistance to coral bleaching in the face of climate change. However, the impact of microbe-microbe interactions on coral functioning is mostly unknown but could be essential factors for coral adaption to future climates. Here, we investigated interactions between cultured dinoflagellates of the Symbiodiniaceae family, essential photosymbionts of corals, and associated bacteria. By assessing the genomic potential of 49 bacteria, we found that they are likely beneficial for Symbiodiniaceae, through the production of B vitamins and antioxidants. Additionally, bacterial genes involved in host-symbiont interactions, such as secretion systems, accumulated mutations following long-term exposure to heat, suggesting symbiotic interactions may change under climate change. This highlights the importance of microbe-microbe interactions in coral functioning.
Collapse
Affiliation(s)
- Justin Maire
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Gayle K. Philip
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Jadzia Livingston
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Madeleine J. H. van Oppen
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
8
|
Kim KH, Han DM, Lee JK, Jeon CO. Alkalicoccobacillus porphyridii sp. nov., isolated from a marine red alga, reclassification of Shouchella plakortidis and Shouchella gibsonii as Alkalicoccobacillus plakortidis comb. nov. and Alkalicoccobacillus gibsonii comb. nov., and emended description of the genus Alkalicoccobacillus Joshi et al. 2022. Int J Syst Evol Microbiol 2023; 73. [PMID: 37610811 DOI: 10.1099/ijsem.0.006019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A Gram-stain-positive alkali-tolerant and strictly aerobic bacterium, designated strain P16T, was isolated from a marine red alga, Porphyridium cruentum, in the Yellow Sea, Republic of Korea. Cells were motile rods with peritrichous flagella and exhibited catalase and oxidase activities. The optimal growth of strain P16T was observed to occur at 30 °C and pH 8.0 and in the presence of 2.0 % (w/v) NaCl. Menaquinone-7 was identified as the sole respiratory quinone. Strain P16T contained anteiso-C15 : 0, iso-C15 : 0, iso-C14 : 0 and iso-C16 : 0, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major cellular fatty acids and polar lipids, respectively. The G+C content of strain P16T was 40.8 mol%. Strain P16T was most closely related to Shouchella plakortidis P203T, Shouchella gibsonii DSM 8722T and Alkalicoccobacillus murimartini LMG 21005T with 98.1, 98.1 and 98.0 % 16S rRNA gene sequence similarities, respectively. Phylogenetic analyses based on 16S rRNA gene and genome sequences revealed that strain P16T, S, plakortidis, S. gibsonii and A. murimartini formed a single phylogenetic lineage cluster, and genomic relatedness analyses showed that they are different species. Based on phylogenetic, phenotypic, chemotaxonomic and molecular features, strain P16T represents a novel species of the genus Alkalicoccobacillus, for which the name Alkalicoccobacillus porphyridii sp. nov. is proposed. The type strain is P16T (=KACC 19520T=JCM 32931T). In addition, S. plakortidis and S. gibsonii are reclassified as Alkalicoccobacillus plakortidis comb. nov. (type strain P203T=DSM 19153T=NCIMB 14288T) and Alkalicoccobacillus gibsonii comb. nov. (type strain PN-109T=ATCC 700164T=DSM 8722T=KCCM 41407T), respectively.
Collapse
Affiliation(s)
- Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Biological Sciences and Biotechnology, Hannam University, Daejon 34054, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jae Kyeong Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Mateeva A, Kondeva-Burdina M, Peikova L, Guncheva S, Zlatkov A, Georgieva M. Simultaneous analysis of water-soluble and fat-soluble vitamins through RP-HPLC/DAD in food supplements and brewer's yeast. Heliyon 2022; 9:e12706. [PMID: 36632098 PMCID: PMC9826864 DOI: 10.1016/j.heliyon.2022.e12706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
The current study is focused on investigation and quantitation of seven commercially available on the Bulgarian market food supplements, containing multivitamin mixtures of water-soluble and fat-soluble vitamins. In addition, a second fermentation brewer's yeast is also analyzed. The analytical procedures are performed on a RP-HPLC/DAD using Purospher STAR C18 (Merck Millipore, Germany) 5 μm, 25 × 0.46 cm column, conditioned at 25 °C in a column oven. Dionex UltiMate 3000 high performance liquid chromatograph was carried out in diode array detector, set up at 270 nm for water-soluble vitamins, except for vitamin B5, where 210 nm was applied as analytical wavelength. The fat-soluble vitamins were detected at 325 nm and 265 nm for vitamin A and vitamin E, respectively. Two general methods were developed where Method 1 was based on gradient elution and Method 2 was based on isocratic elution. Both methods identified stated by the manufacturer labeled amounts. The developed methods are applicable for routine analysis of vitamin contents both in multivitamin preparations and in brewer's yeast from secondary fermentation.
Collapse
Affiliation(s)
- Alexandrina Mateeva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University – Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University – Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria,Corresponding author.
| | - Lily Peikova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University – Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Silvia Guncheva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University – Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University – Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University – Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| |
Collapse
|
10
|
Costas-Selas C, Martínez-García S, Logares R, Hernández-Ruiz M, Teira E. Role of Bacterial Community Composition as a Driver of the Small-Sized Phytoplankton Community Structure in a Productive Coastal System. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02125-2. [PMID: 36305941 DOI: 10.1007/s00248-022-02125-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present here the first detailed description of the seasonal patterns in bacterial community composition (BCC) in shelf waters off the Ría de Vigo (Spain), based on monthly samplings during 2 years. Moreover, we studied the relationship between bacterial and small-sized eukaryotic community composition to identify potential biotic interactions among components of these two communities. Bacterial operational taxonomic unit (OTU) richness and diversity systematically peaked in autumn-winter, likely related to low resource availability during this period. BCC showed seasonal and vertical patterns, with Rhodobacteraceae and Flavobacteriaceae families dominating in surface waters, and SAR11 clade dominating at the base of the photic zone (30 m depth). BCC variability was significantly explained by environmental variables (e.g., temperature of water, solar radiation, or dissolved organic matter). Interestingly, a strong and significant correlation was found between BCC and small-sized eukaryotic community composition (ECC), which suggests that biotic interactions may play a major role as structuring factors of the microbial plankton in this productive area. In addition, co-occurrence network analyses revealed strong and significant, mostly positive, associations between bacteria and small-sized phytoplankton. Positive associations likely result from mutualistic relationships (e.g., between Dinophyceae and Rhodobacteraceae), while some negative correlations suggest antagonistic interactions (e.g., between Pseudo-nitzchia sp. and SAR11). These results support the key role of biotic interactions as structuring factors of the small-sized eukaryotic community, mostly driven by positive associations between small-sized phytoplankton and bacteria.
Collapse
Affiliation(s)
- Cecilia Costas-Selas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain.
| | - Sandra Martínez-García
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Ramiro Logares
- Departament de Biologia Marina I Oceanografia, Institut de Ciéncies del Mar (ICM), CSIC, Catalonia, Barcelona, Spain
| | - Marta Hernández-Ruiz
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| | - Eva Teira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, 36310, Vigo, Spain
| |
Collapse
|
11
|
Abstract
Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus, and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.), the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 63 metagenome-assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic activity. Host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis in addition to a range of nitrogen and sulfur metabolisms that recycle dissolved inorganic nutrients into forms more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms and contributes to the functional capabilities of microbes and their influences on carbon and nitrogen cycling in nearshore ecosystems. IMPORTANCE Kelps, seagrasses, and surfgrasses are ecosystem engineers on rocky shorelines, where they show remarkably high levels of primary production. Through analysis of their associated microbial communities, we found a variety of microbial metabolisms that may benefit the host, including nitrogen metabolisms, sulfur oxidation, and the production of B vitamins. In turn, these microbes have the genetic capabilities to assimilate the dissolved organic compounds released by their macrophyte hosts. We describe a range of oxygen environments associated with surfgrass, including low-oxygen microhabitats in their rhizomes that host genes for nitrogen fixation. The tremendous productivity of coastal seaweeds and seagrasses is likely due in part to the activities of associated microbes, and an increased understanding of these associations is needed.
Collapse
|
12
|
Sanchez-Garcia S, Wang H, Wagner-Döbler I. The microbiome of the dinoflagellate Prorocentrum cordatum in laboratory culture and its changes at higher temperatures. Front Microbiol 2022; 13:952238. [PMID: 36246277 PMCID: PMC9555710 DOI: 10.3389/fmicb.2022.952238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
In the ocean, phytoplankton are dependent on communities of bacteria living in the phycosphere, a hot spot of metabolic and genetic exchange. Many types of interactions between phytoplankton and phycosphere bacteria have been shown, but it is unclear if the microbial communities associated with microalgae strains in culture collections are beneficial or harmful to the host strain. Here, we studied the microbial communities associated with four strains of the dinoflagellate Prorocentrum cordatum that had been isolated from distant geographical locations and maintained in culture collection for hundreds of generations. Community composition was determined by 16S rRNA gene amplicon sequencing. The dinoflagellate host strain was the strongest parameter separating communities, while growth phase, lifestyle (particle-attached versus free-living) and temperature had only a modulating effect. Although the strains had been isolated from distant locations in the Atlantic and Pacific Ocean, 14 ASVs were shared among all strains, the most abundant ones being Gilvibacter, Marivita, uncultivated Rhodobacteraceae, Marinobacter, Hyphomonadaceae, Cupriavidus, Variovorax, and Paucibacter. Adaptation to higher temperatures resulted in specific changes in each phycosphere microbiome, including increased abundance of rare community members. We then compared the growth of the four xenic cultures to that of the axenic P. cordatum CCMP1329. At 20°C, growth of the xenic cultures was similar or slower than that of CCMP1329. At 26°C, all four xenic cultures experienced a death phase, while the axenic culture stably remained in the stationary phase. At 30°C, only two of the xenic cultures were able to grow. A shift of dinoflagellate metabolism from autotrophy to mixotrophy and competition between dinoflagellate and bacteria for limiting nutrients, including essential vitamins, may contribute to these differences in growth patterns.
Collapse
Affiliation(s)
| | | | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Han X, Jing Y, Xu C, Gao L, Li M, Liu Y, Qi H. Root-Zone CO2 Concentration Affects Partitioning and Assimilation of Carbon in Oriental Melon Seedlings. Int J Mol Sci 2022; 23:ijms231810694. [PMID: 36142602 PMCID: PMC9500774 DOI: 10.3390/ijms231810694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Root-zone CO2 is essential for plant growth and metabolism. However, the partitioning and assimilation processes of CO2 absorbed by roots remain unclear in various parts of the oriental melon. We investigated the time at which root-zone CO2 enters the oriental melon root system, and its distribution in different parts of the plant, using 13C stable isotopic tracer experiments, as well as the effects of high root-zone CO2 on leaf carbon assimilation-related enzyme activities and gene expressions under 0.2%, 0.5% and 1% root-zone CO2 concentrations. The results showed that oriental melon roots could absorb CO2 and transport it quickly to the stems and leaves. The distribution of 13C in roots, stems and leaves increased with an increase in the labeled root-zone CO2 concentration, and the δ13C values in roots, stems and leaves increased initially, and then decreased with an increase in feeding time, reaching a peak at 24 h after 13C isotope labeling. The total accumulation of 13C in plants under the 0.5% and 1% 13CO2 concentrations was lower than that in the 0.2% 13CO2 treatment. However, the distributional proportion of 13C in leaves under 0.5% and 1% 13CO2 was significantly higher than that under the 0.2% CO2 concentration. Photosynthetic carbon assimilation-related enzyme activities and gene expressions in the leaves of oriental melon seedlings were inhibited after 9 days of high root-zone CO2 treatment. According to these results, oriental melon plants’ carbon distribution was affected by long-term high root-zone CO2, and reduced the carbon assimilation ability of the leaves. These findings provide a basis for the further quantification of the contribution of root-zone CO2 to plant communities in natural field conditions.
Collapse
Affiliation(s)
- Xintong Han
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yuna Jing
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Lijia Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Minghui Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yiling Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- Correspondence: (Y.L.); (H.Q.)
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- Correspondence: (Y.L.); (H.Q.)
| |
Collapse
|
14
|
Mars Brisbin M, Mitarai S, Saito MA, Alexander H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. THE ISME JOURNAL 2022; 16:2255-2264. [PMID: 35764675 PMCID: PMC9381791 DOI: 10.1038/s41396-022-01263-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 05/29/2023]
Abstract
Phaeocystis is a cosmopolitan, bloom-forming phytoplankton genus that contributes significantly to global carbon and sulfur cycles. During blooms, Phaeocystis species produce large carbon-rich colonies, creating a unique interface for bacterial interactions. While bacteria are known to interact with phytoplankton-e.g., they promote growth by producing phytohormones and vitamins-such interactions have not been shown for Phaeocystis. Therefore, we investigated the composition and function of P. globosa microbiomes. Specifically, we tested whether microbiome compositions are consistent across individual colonies from four P. globosa strains, whether similar microbiomes are re-recruited after antibiotic treatment, and how microbiomes affect P. globosa growth under limiting conditions. Results illuminated a core colonial P. globosa microbiome-including bacteria from the orders Alteromonadales, Burkholderiales, and Rhizobiales-that was re-recruited after microbiome disruption. Consistent microbiome composition and recruitment is indicative that P. globosa microbiomes are stable-state systems undergoing deterministic community assembly and suggests there are specific, beneficial interactions between Phaeocystis and bacteria. Growth experiments with axenic and nonaxenic cultures demonstrated that microbiomes allowed continued growth when B-vitamins were withheld, but that microbiomes accelerated culture collapse when nitrogen was withheld. In sum, this study reveals symbiotic and opportunistic interactions between Phaeocystis colonies and microbiome bacteria that could influence large-scale phytoplankton bloom dynamics and biogeochemical cycles.
Collapse
Affiliation(s)
- Margaret Mars Brisbin
- Marine Biophysics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
15
|
Lin S, Hu Z, Song X, Gobler CJ, Tang YZ. Vitamin B 12-auxotrophy in dinoflagellates caused by incomplete or absent cobalamin-independent methionine synthase genes ( metE). FUNDAMENTAL RESEARCH 2022; 2:727-737. [PMID: 38933134 PMCID: PMC11197592 DOI: 10.1016/j.fmre.2021.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022] Open
Abstract
Dinoflagellates are responsible for most marine harmful algal blooms (HABs) and play vital roles in many ocean processes. More than 90% of dinoflagellates are vitamin B12 auxotrophs and that B12 availability can control dinoflagellate HABs, yet the genetic basis of B12 auxotrophy in dinoflagellates in the framework of the ecology of dinoflagellates and particularly HABs, which was the objective of this work. Here, we investigated the presence, phylogeny, and transcription of two methionine synthase genes (B12-dependent metH and B12-independent metE) via searching and assembling transcripts and genes from transcriptomic and genomic databases, cloning 38 cDNA isoforms of the two genes from 14 strains of dinoflagellates, measuring the expression at different scenarios of B12, and comprehensive phylogenetic analyses of more than 100 organisms. We found that 1) metH was present in all 58 dinoflagellates accessible and metE was present in 40 of 58 species, 2) all metE genes lacked N-terminal domains, 3) metE of dinoflagellates were phylogenetically distinct from other known metE genes, and 4) expression of metH in dinoflagellates was responsive to exogenous B12 levels while expression of metE was not responding as that of genuine metE genes. We conclude that most, hypothetically all, dinoflagellates have either non-functional metE genes lacking N-terminal domain for most species, or do not possess metE for other species, which provides the genetic basis for the widespread nature of B12 auxotrophy in dinoflagellates. The work elucidated a fundamental aspect of the nutritional ecology of dinoflagellates.
Collapse
Affiliation(s)
- Siheng Lin
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Current address: Department of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoying Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
16
|
Sohani E, Pajoum Shariati F, Pajoum Shariati SR. Assessment of various colored lights on the growth pattern and secondary metabolites synthesis in Spirulina platensis. Prep Biochem Biotechnol 2022; 53:412-423. [PMID: 35895500 DOI: 10.1080/10826068.2022.2098320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cyanobacteria are photosynthetic aquatic microorganisms with light and dark photosynthesis reactions. In the present study, the effect of various light spectrums on light and dark reactions in Spirulina platensis was investigated. Chlorophyll a and phycocyanin as light reaction pigments and vitamin B12 as a product of dark reaction were examined. S. platensis was exposed to four different color LEDs (white, red, blue, and yellow) at a fixed intensity. In light reaction, chlorophyll-a has the highest amount in blue, red, white, and yellow by 61.23, 45.46, 34.85, and 22.55 mg·g-1, respectively. Those microalgae cultured in the blue color produced the highest amount of Chlorophyll a and c-phycocyanin. For C-phycocyanin, the highest to the lowest amount belong to blue, red, yellow, and white light by 168.6, 102.4, 85.77, and 53.81 mg·g-1. The amount of vitamin B12, from high to low is related to blue, red, white, and yellow light by 68.91, 59.73, 52.56, and 10.2 µg·g-1. The trend of vitamin B12's production was similar to the chlorophyll a. In conclusion, blue color can increase the production of vitamin B12 while keeping light reaction products at their highest level.
Collapse
Affiliation(s)
- Elnaz Sohani
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
17
|
Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL, Warren MJ, Smith AG. Exploring the onset of B 12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B 12 -producing bacteria. Environ Microbiol 2022; 24:3134-3147. [PMID: 35593514 PMCID: PMC9545926 DOI: 10.1111/1462-2920.16035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Andrew P Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Vaibhav Bhardwaj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellen L Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
18
|
Ma X, Johnson KB, Gu B, Zhang H, Li G, Huang X, Xia X. The in-situ release of algal bloom populations and the role of prokaryotic communities in their establishment and growth. WATER RESEARCH 2022; 219:118565. [PMID: 35597219 DOI: 10.1016/j.watres.2022.118565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Harmful algal blooms (HABs) may quickly travel and inoculate new water bodies via currents and runoff in estuaries. The role of in-situ prokaryotic communities in the re-establishment and growth of inoculated algal blooms remains unknown. A novel on-board incubation experiment was employed to simulate the sudden surge of algal blooms to new estuarine waters and reveal possible outcomes. A dinoflagellate (Amphidinium carterae) and a diatom species (Thalassiosira weissflogii) which had bloomed in the Pearl River Estuary (PRE) area were cultured to bloom densities and reintroduced back into PRE natural seawaters. The diatom showed better adaptation ability to the new environment and increased significantly after the incubation. Simultaneously, particle-attached (PA) prokaryotic community structure was strongly influenced by adding of the diatom, with some opportunistic prokaryotes significantly enhanced in the diatom treatment. Whereas the dinoflagellate population did not increase following incubation, and their PA prokaryotic community showed no significant differences relative to the control. Metagenomic analyzes revealed that labile carbohydrates and organic nitrogen produced by the diatom contributed to the surge of certain PA prokaryotes. Genomic properties of a bacteria strain, which is affiliated with genus GMD16E07 (Planctomycetaceae) and comprised up to 50% of PA prokaryotes in the diatom treatment, was described here for the first time. Notably, the association of Planctomycetaceae and T. weissflogii likely represents symbiotic mutualism, with the diatom providing organic matter for Planctomycetaceae and the bacteria supplying vitamins and detoxifying nitriles and hydrogen peroxides in exchange. Therefore, the close association between Planctomycetaceae and T. weissflogii promoted the growth of both populations, and eventually facilitated the diatom bloom establishment.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Kevin B Johnson
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL, United States
| | - Bowei Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hao Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Gang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China.
| |
Collapse
|
19
|
Bannon C, Rapp I, Bertrand EM. Community Interaction Co-limitation: Nutrient Limitation in a Marine Microbial Community Context. Front Microbiol 2022; 13:846890. [PMID: 35711751 PMCID: PMC9196195 DOI: 10.3389/fmicb.2022.846890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
The simultaneous limitation of productivity by two or more nutrients, commonly referred to as nutrient co-limitation, affects microbial communities throughout the marine environment and is of profound importance because of its impacts on various biogeochemical cycles. Multiple types of co-limitation have been described, enabling distinctions based on the hypothesized mechanisms of co-limitation at a biochemical level. These definitions usually pertain to individuals and do not explicitly, or even implicitly, consider complex ecological dynamics found within a microbial community. However, limiting and co-limiting nutrients can be produced in situ by a subset of microbial community members, suggesting that interactions within communities can underpin co-limitation. To address this, we propose a new category of nutrient co-limitation, community interaction co-limitation (CIC). During CIC, one part of the community is limited by one nutrient, which results in the insufficient production or transformation of a biologically produced nutrient that is required by another part of the community, often primary producers. Using cobalamin (vitamin B12) and nitrogen fixation as our models, we outline three different ways CIC can arise based on current literature and discuss CIC's role in biogeochemical cycles. Accounting for the inherent and complex roles microbial community interactions play in generating this type of co-limitation requires an expanded toolset - beyond the traditional approaches used to identify and study other types of co-limitation. We propose incorporating processes and theories well-known in microbial ecology and evolution to provide meaningful insight into the controls of community-based feedback loops and mechanisms that give rise to CIC in the environment. Finally, we highlight the data gaps that limit our understanding of CIC mechanisms and suggest methods to overcome these and further identify causes and consequences of CIC. By providing this framework for understanding and identifying CIC, we enable systematic examination of the impacts this co-limitation can have on current and future marine biogeochemical processes.
Collapse
Affiliation(s)
- Catherine Bannon
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| | - Insa Rapp
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Erin M. Bertrand
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
20
|
Raina JB, Lambert BS, Parks DH, Rinke C, Siboni N, Bramucci A, Ostrowski M, Signal B, Lutz A, Mendis H, Rubino F, Fernandez VI, Stocker R, Hugenholtz P, Tyson GW, Seymour JR. Chemotaxis shapes the microscale organization of the ocean's microbiome. Nature 2022; 605:132-138. [PMID: 35444277 DOI: 10.1038/s41586-022-04614-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 03/04/2022] [Indexed: 01/04/2023]
Abstract
The capacity of planktonic marine microorganisms to actively seek out and exploit microscale chemical hotspots has been widely theorized to affect ocean-basin scale biogeochemistry1-3, but has never been examined comprehensively in situ among natural microbial communities. Here, using a field-based microfluidic platform to quantify the behavioural responses of marine bacteria and archaea, we observed significant levels of chemotaxis towards microscale hotspots of phytoplankton-derived dissolved organic matter (DOM) at a coastal field site across multiple deployments, spanning several months. Microscale metagenomics revealed that a wide diversity of marine prokaryotes, spanning 27 bacterial and 2 archaeal phyla, displayed chemotaxis towards microscale patches of DOM derived from ten globally distributed phytoplankton species. The distinct DOM composition of each phytoplankton species attracted phylogenetically and functionally discrete populations of bacteria and archaea, with 54% of chemotactic prokaryotes displaying highly specific responses to the DOM derived from only one or two phytoplankton species. Prokaryotes exhibiting chemotaxis towards phytoplankton-derived compounds were significantly enriched in the capacity to transport and metabolize specific phytoplankton-derived chemicals, and displayed enrichment in functions conducive to symbiotic relationships, including genes involved in the production of siderophores, B vitamins and growth-promoting hormones. Our findings demonstrate that the swimming behaviour of natural prokaryotic assemblages is governed by specific chemical cues, which dictate important biogeochemical transformation processes and the establishment of ecological interactions that structure the base of the marine food web.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Bennett S Lambert
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,Center for Environmental Genomics, School of Oceanography, University of Washington, Seattle, WA, USA.,Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anna Bramucci
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Brandon Signal
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Adrian Lutz
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Himasha Mendis
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Francesco Rubino
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Vicente I Fernandez
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Centre for Microbiome Research, School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Woolloongabba, Queensland, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia.
| |
Collapse
|
21
|
Facey JA, King JJ, Apte SC, Mitrovic SM. Assessing the importance of cobalt as a micronutrient for freshwater cyanobacteria. JOURNAL OF PHYCOLOGY 2022; 58:71-79. [PMID: 34633686 DOI: 10.1111/jpy.13216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Micronutrients play key roles in numerous metabolic processes in cyanobacteria. However, our understanding of whether the micronutrient cobalt influences the productivity of freshwater systems or the occurrence of cyanobacterial blooms is limited. This study aimed to quantify the concentration of Co necessary for optimal cyanobacterial growth by exposing Microcystis aeruginosa to a range of Co concentrations under culture conditions. Extended exposure to concentrations below ˜0.06 μg · L-1 resulted in notable inhibition of M. aeruginosa growth. A clear negative relationship was observed between Co concentration in solution and intracellular Fe quota of M. aeruginosa, possibly due to decreased transport of Fe at higher Co concentrations. Cyanocobalamin and any Co within the structure of cyanocobalamin appears to be non-bioavailable to M. aeruginosa, instead they likely rely on the synthesis of a structural variant - pseudocobalamin, which may have implications for the wider algal community as the variants of cobalamin are not necessarily functionally exchangeable. To evaluate the likelihood of Co limitation of cyanobacterial growth under field conditions, a survey of 10 freshwater reservoirs in South-Eastern Australia was conducted. Four of the ten sites had dissolved Co concentrations below the 0.06 μg · L-1 threshold value. All four of these sites rarely undergo cyanobacterial blooms, strengthening evidence of the potential for Co to limit growth, perhaps either alone or in combination with phosphorus.
Collapse
Affiliation(s)
- Jordan A Facey
- Freshwater and Estuarine Research Group, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Josh J King
- CSIRO Land and Water, Lucas Heights, Australia
| | | | - Simon M Mitrovic
- Freshwater and Estuarine Research Group, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
22
|
Microbial Plankton Community Structure and Function Responses to Vitamin B 12 and B 1 Amendments in an Upwelling System. Appl Environ Microbiol 2021; 87:e0152521. [PMID: 34495690 PMCID: PMC8552899 DOI: 10.1128/aem.01525-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
B vitamins are essential cofactors for practically all living organisms on Earth and are produced by a selection of microorganisms. An imbalance between high demand and limited production, in concert with abiotic processes, may explain the low availability of these vitamins in marine systems. Natural microbial communities from surface shelf water in the productive area off northwestern Spain were enclosed in mesocosms in winter, spring, and summer 2016. In order to explore the impact of B-vitamin availability on microbial community composition (16S and 18S rRNA gene sequence analysis) and bacterial function (metatranscriptomics analysis) in different seasons, enrichment experiments were conducted with seawater from the mesocosms. Our findings revealed that significant increases in phytoplankton or prokaryote biomass associated with vitamin B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most of the microbial taxa benefited from the external B-vitamin supply. Metatranscriptome analysis suggested that many bacteria were potential consumers of vitamins B12 and B1, although the relative abundance of reads related to synthesis was ca. 3.6-fold higher than that related to uptake. Alteromonadales and Oceanospirillales accounted for important portions of vitamin B1 and B12 synthesis gene transcription, despite accounting for only minor portions of the bacterial community. Flavobacteriales appeared to be involved mostly in vitamin B12 and B1 uptake, and Pelagibacterales expressed genes involved in vitamin B1 uptake. Interestingly, the relative expression of vitamin B12 and B1 synthesis genes among bacteria strongly increased upon inorganic nutrient amendment. Collectively, these findings suggest that upwelling events intermittently occurring during spring and summer in productive ecosystems may ensure an adequate production of these cofactors to sustain high levels of phytoplankton growth and biomass. IMPORTANCE B vitamins are essential growth factors for practically all living organisms on Earth that are produced by a selection of microorganisms. An imbalance between high demand and limited production may explain the low concentration of these compounds in marine systems. In order to explore the impact of B-vitamin availability on bacteria and algae in the coastal waters off northwestern Spain, six experiments were conducted with natural surface water enclosed in winter, spring, and summer. Our findings revealed that increases in phytoplankton or bacterial growth associated with B12 and/or B1 amendments were not accompanied by significant changes in community composition, suggesting that most microorganisms benefited from the B-vitamin supply. Our analyses confirmed the role of many bacteria as consumers of vitamins B12 and B1, although the relative abundance of genes related to synthesis was ca. 3.6-fold higher than that related to uptake. Interestingly, prokaryote expression of B12 and B1 synthesis genes strongly increased when inorganic nutrients were added. Collectively, these findings suggest that upwelling of cold and nutrient-rich waters occurring during spring and summer in this coastal area may ensure an adequate production of B vitamins to sustain high levels of algae growth and biomass.
Collapse
|
23
|
Martin N, Bernat T, Dinasquet J, Stofko A, Damon A, Deheyn DD, Azam F, Smith JE, Davey MP, Smith AG, Vignolini S, Wangpraseurt D. Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:2805-2815. [PMID: 39660099 PMCID: PMC7617206 DOI: 10.1007/s10811-021-02528-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2024]
Abstract
Photosynthetic microalgae are an attractive source of food, fuel, or nutraceuticals, but commercial production of microalgae is limited by low spatial efficiency. In the present study we developed a simple photosynthetic hydrogel system that cultivates the green microalga, Marinichlorella kaistiae KAS603, together with a novel strain of the bacteria, Erythrobacter sp. We tested the performance of the co-culture in the hydrogel using a combination of chlorophyll-a fluorimetry, microsensing, and bio-optical measurements. Our results showed that growth rates in algal-bacterial hydrogels were about threefold enhanced compared to hydrogels with algae alone. Chlorophyll-a fluorimetry-based light curves found that electron transport rates were enhanced about 20% for algal-bacterial hydrogels compared to algal hydrogels for intermediate irradiance levels. We also show that the living hydrogel is stable under different environmental conditions and when exposed to natural seawater. Our study provides a potential bio-inspired solution for problems that limit the space-efficient cultivation of microalgae for biotechnological applications.
Collapse
Affiliation(s)
- Noah Martin
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Tatum Bernat
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Julie Dinasquet
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Andrea Stofko
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - April Damon
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Dimitri D. Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Farooq Azam
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Jennifer E. Smith
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
| | - Matthew P. Davey
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Scottish Association for Marine Science, Oban PA37 1QA, UK
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, UK
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0205, USA
- Department of Chemistry, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093-0205, USA
| |
Collapse
|
24
|
Dow L. How Do Quorum-Sensing Signals Mediate Algae-Bacteria Interactions? Microorganisms 2021; 9:microorganisms9071391. [PMID: 34199114 PMCID: PMC8307130 DOI: 10.3390/microorganisms9071391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) describes a process by which bacteria can sense the local cell density of their own species, thus enabling them to coordinate gene expression and physiological processes on a community-wide scale. Small molecules called autoinducers or QS signals, which act as intraspecies signals, mediate quorum sensing. As our knowledge of QS has progressed, so too has our understanding of the structural diversity of QS signals, along with the diversity of bacteria conducting QS and the range of ecosystems in which QS takes place. It is now also clear that QS signals are more than just intraspecies signals. QS signals mediate interactions between species of prokaryotes, and between prokaryotes and eukaryotes. In recent years, our understanding of QS signals as mediators of algae-bacteria interactions has advanced such that we are beginning to develop a mechanistic understanding of their effects. This review will summarize the recent efforts to understand how different classes of QS signals contribute to the interactions between planktonic microalgae and bacteria in our oceans, primarily N-acyl-homoserine lactones, their degradation products of tetramic acids, and 2-alkyl-4-quinolones. In particular, this review will discuss the ways in which QS signals alter microalgae growth and metabolism, namely as direct effectors of photosynthesis, regulators of the cell cycle, and as modulators of other algicidal mechanisms. Furthermore, the contribution of QS signals to nutrient acquisition is discussed, and finally, how microalgae can modulate these small molecules to dampen their effects.
Collapse
Affiliation(s)
- Lachlan Dow
- Root Microbe Interactions Laboratory, Australian National University, Canberra 0200, Australia
| |
Collapse
|
25
|
Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, Barnes S, Zhao Y, Thrash JC, Luo H. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME JOURNAL 2021; 15:3576-3586. [PMID: 34145391 DOI: 10.1038/s41396-021-01036-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
Members of the marine Roseobacter group are key players in the global carbon and sulfur cycles. While over 300 species have been described, only 2% possess reduced genomes (mostly 3-3.5 Mbp) compared to an average roseobacter (>4 Mbp). These taxonomic minorities are phylogenetically diverse but form a Pelagic Roseobacter Cluster (PRC) at the genome content level. Here, we cultivated eight isolates constituting a novel Roseobacter lineage which we named 'CHUG'. Metagenomic and metatranscriptomic read recruitment analyses showed that CHUG members are globally distributed and active in marine pelagic environments. CHUG members possess some of the smallest genomes (~2.6 Mb) among all known roseobacters, but they do not exhibit canonical features of typical bacterioplankton lineages theorized to have undergone genome streamlining processes, like higher coding density, fewer paralogues and rarer pseudogenes. While CHUG members form a genome content cluster with traditional PRC members, they show important differences. Unlike other PRC members, neither the relative abundances of CHUG members nor their relative gene expression levels are correlated with chlorophyll a concentration across the global samples. CHUG members cannot utilize most phytoplankton-derived metabolites or synthesize vitamin B12, a key metabolite mediating the roseobacter-phytoplankton interactions. This combination of features is evidence for the hypothesis that CHUG members may have evolved a free-living lifestyle decoupled from phytoplankton. This ecological transition was accompanied by the loss of signature genes involved in roseobacter-phytoplankton symbiosis, suggesting that relaxation of purifying selection owing to lifestyle shift is likely an important driver of genome reduction in CHUG.
Collapse
Affiliation(s)
- Xiaoyuan Feng
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Yang Qian
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong
| | - Michael W Henson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - V Celeste Lanclos
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shelby Barnes
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, SAR, Hong Kong. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
26
|
Wang M, Liu X, Nie Y, Wu XL. Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities. THE ISME JOURNAL 2021; 15:1387-1401. [PMID: 33343001 PMCID: PMC8115099 DOI: 10.1038/s41396-020-00858-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/14/2020] [Accepted: 11/24/2020] [Indexed: 12/28/2022]
Abstract
Microbes release a wide variety of metabolites to the environment that benefit the whole population, called public goods. Public goods sharing drives adaptive function loss, and allows the rise of metabolic cross-feeding. However, how public goods sharing governs the succession of communities over evolutionary time scales remains unclear. To resolve this issue, we constructed an individual-based model, where an autonomous population that possessed functions to produce three essential public goods, was allowed to randomly lose functions. Simulations revealed that function loss genotypes could evolve from the autonomous ancestor, driven by the selfish public production trade-off at the individual level. These genotypes could then automatically develop to three possible types of interdependent patterns: complete functional division, one-way dependency, and asymmetric functional complementation, which were influenced by function cost and function redundancy. In addition, we found random evolutionary events, i.e., the priority and the relative spatial positioning of genotype emergence, are also important in governing community assembly. Moreover, communities occupied by interdependent patterns exhibited better resistance to environmental perturbation, suggesting such patterns are selectively favored. Our work integrates ecological interactions with evolution dynamics, providing a new perspective to explain how reductive evolution shapes microbial interdependencies and governs the succession of communities.
Collapse
Affiliation(s)
- Miaoxiao Wang
- College of Engineering, Peking University, 100871, Beijing, China
| | - Xiaonan Liu
- College of Engineering, Peking University, 100871, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, 100871, Beijing, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, 100871, Beijing, China.
- Institute of Ocean Research, Peking University, 100871, Beijing, China.
- Institute of Ecology, Peking University, 100871, Beijing, China.
| |
Collapse
|
27
|
Behrenfeld MJ, Boss ES, Halsey KH. Phytoplankton community structuring and succession in a competition-neutral resource landscape. ISME COMMUNICATIONS 2021; 1:12. [PMID: 36720909 PMCID: PMC9645248 DOI: 10.1038/s43705-021-00011-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/03/2023]
Abstract
Phytoplankton community composition and succession affect aquatic food webs and biogeochemistry. Resource competition is commonly viewed as an important governing factor for community structuring and this perception is imbedded in modern ecosystem models. Quantitative consideration of the physical spacing between phytoplankton cells, however, suggests that direct competition for growth-limiting resources is uncommon. Here we describe how phytoplankton size distributions and temporal successions are compatible with a competition-neutral resource landscape. Consideration of phytoplankton-herbivore interactions with proportional feeding size ranges yields small-cell dominated size distributions consistent with observations for stable aquatic environments, whereas predator-prey temporal lags and blooming physiologies shift this distribution to larger mean cell sizes in temporally dynamic environments. We propose a conceptual mandala for understanding phytoplankton community composition where species successional series are initiated by environmental disturbance, guided by the magnitude of these disturbances and nutrient stoichiometry, and terminated with the return toward a 'stable solution'. Our conceptual mandala provides a framework for interpreting and modeling the environmental structuring of natural phytoplankton populations.
Collapse
Affiliation(s)
- Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA.
| | - Emmanuel S Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Kimberly H Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
28
|
Vancaester E, Depuydt T, Osuna-Cruz CM, Vandepoele K. Comprehensive and Functional Analysis of Horizontal Gene Transfer Events in Diatoms. Mol Biol Evol 2021; 37:3243-3257. [PMID: 32918458 DOI: 10.1093/molbev/msaa182] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are a diverse group of mainly photosynthetic algae, responsible for 20% of worldwide oxygen production, which can rapidly respond to favorable conditions and often outcompete other phytoplankton. We investigated the contribution of horizontal gene transfer (HGT) to its ecological success. A large-scale phylogeny-based prokaryotic HGT detection procedure across nine sequenced diatoms showed that 3-5% of their proteome has a horizontal origin and a large influx occurred at the ancestor of diatoms. More than 90% of HGT genes are expressed, and species-specific HGT genes in Phaeodactylum tricornutum undergo strong purifying selection. Genes derived from HGT are implicated in several processes including environmental sensing and expand the metabolic toolbox. Cobalamin (vitamin B12) is an essential cofactor for roughly half of the diatoms and is only produced by bacteria. Five consecutive genes involved in the final synthesis of the cobalamin biosynthetic pathway, which could function as scavenging and repair genes, were detected as HGT. The full suite of these genes was detected in the cold-adapted diatom Fragilariopsis cylindrus. This might give diatoms originating from the Southern Ocean, a region typically depleted in cobalamin, a competitive advantage. Overall, we show that HGT is a prevalent mechanism that is actively used in diatoms to expand its adaptive capabilities.
Collapse
Affiliation(s)
- Emmelien Vancaester
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Cristina Maria Osuna-Cruz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Joglar V, Álvarez-Salgado XA, Gago-Martinez A, Leao JM, Pérez-Martínez C, Pontiller B, Lundin D, Pinhassi J, Fernández E, Teira E. Cobalamin and microbial plankton dynamics along a coastal to offshore transect in the Eastern North Atlantic Ocean. Environ Microbiol 2021; 23:1559-1583. [PMID: 33346385 DOI: 10.1111/1462-2920.15367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Cobalamin (B12) is an essential cofactor that is exclusively synthesized by some prokaryotes while many prokaryotes and eukaryotes require an external supply of B12. The spatial and temporal availability of B12 is poorly understood in marine ecosystems. Field measurements of B12 along with a large set of ancillary biotic and abiotic factors were obtained during three oceanographic cruises in the NW Iberian Peninsula, covering different spatial and temporal scales. B12 concentrations were remarkably low (<1.5 pM) in all samples, being significantly higher at the subsurface Eastern North Atlantic Central Water than at shallower depths, suggesting that B12 supply in this water mass is greater than demand. Multiple regression models excluded B12 concentration as predictive variable for phytoplankton biomass or production, regardless of the presence of B12-requiring algae. Prokaryote production was the best predictor for primary production, and eukaryote community composition was better correlated with prokaryote community composition than with nutritional resources, suggesting that biotic interactions play a significant role in regulating microbial communities. Interestingly, co-occurrence network analyses based on 16S and 18S rRNA sequences allowed the identification of significant associations between potential B12 producers and consumers (e.g. Thaumarchaeota and Dynophyceae, or Amylibacter and Ostreococcus respectively), which can now be investigated using model systems in the laboratory.
Collapse
Affiliation(s)
- Vanessa Joglar
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | | | - Ana Gago-Martinez
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Jose M Leao
- Food and Analytical Chemistry Department, Chemistry Faculty, Department of Analytical and Food Chemistry, University of Vigo, Vigo, Campus Universitario de Vigo, 36310, Spain
| | - Clara Pérez-Martínez
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, Stuvaregatan 4, 39231, Sweden
| | - Emilio Fernández
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| | - Eva Teira
- Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO), Spain.,Departamento Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, 36310, Spain
| |
Collapse
|
30
|
Li L, Wang S, Wang H, Sahu SK, Marin B, Li H, Xu Y, Liang H, Li Z, Cheng S, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du H, Yang H, Wang J, Wong GKS, Xu X, Liu X, Van de Peer Y, Melkonian M, Liu H. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 2020; 4:1220-1231. [PMID: 32572216 PMCID: PMC7455551 DOI: 10.1038/s41559-020-1221-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.
Collapse
Affiliation(s)
- Linzhou Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Birger Marin
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Haoyuan Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yan Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Hongping Liang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Tanja Reder
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Zehra Çebi
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Sebastian Wittek
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Huanming Yang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gane Ka-Shu Wong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium.
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Michael Melkonian
- Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany.
- Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME JOURNAL 2020; 14:3106-3119. [PMID: 32814868 DOI: 10.1038/s41396-020-00743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/14/2023]
Abstract
A drop of seawater contains numerous microspatial niches at the scale relevant to microbial activities. Examples are abiotic niches such as detrital particles that show different sizes and organic contents, and biotic niches resulting from bacteria-phage and bacteria-phytoplankton interactions. A common practice to investigate the impact of microenvironments on bacterial evolution is to separate the microenvironments physically and compare the bacterial inhabitants from each. It remains poorly understood, however, which microenvironment primarily drives bacterioplankton evolution in the pelagic ocean. By applying a dilution cultivation approach to an undisturbed coastal water sample, we isolate a bacterial population affiliated with the globally dominant Roseobacter group. Although varying at just a few thousand nucleotide sites across the whole genomes, members of this clonal population are diverging into two genetically separated subspecies. Genes underlying speciation are not unique to subspecies but instead clustered at the shared regions that represent ~6% of the genomic DNA. They are primarily involved in vitamin synthesis, motility, oxidative defense, carbohydrate, and amino acid utilization, consistent with the known strategies that roseobacters take to interact with phytoplankton and particles. Physiological assays corroborate that one subspecies outcompetes the other in these traits. Our results indicate that the microenvironments in the pelagic ocean represented by phytoplankton and organic particles are likely important niches that drive the cryptic speciation of the Roseobacter population, though microhabitats contributed by other less abundant pelagic hosts cannot be ruled out.
Collapse
|
32
|
Mócsai R, Figl R, Sützl L, Fluch S, Altmann F. A first view on the unsuspected intragenus diversity of N-glycans in Chlorella microalgae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:184-196. [PMID: 32031706 PMCID: PMC7383745 DOI: 10.1111/tpj.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Chlorella microalgae are increasingly used for various purposes such as fatty acid production, wastewater processing, or as health-promoting food supplements. A mass spectrometry-based survey of N-glycan structures of strain collection specimens and 80 commercial Chlorella products revealed a hitherto unseen intragenus diversity of N-glycan structures. Differing numbers of methyl groups, pentoses, deoxyhexoses, and N-acetylglucosamine culminated in c. 100 different glycan masses. Thirteen clearly discernible glycan-type groups were identified. Unexpected features included the occurrence of arabinose, of different and rare types of monosaccharide methylation (e.g. 4-O-methyl-N-acetylglucosamine), and substitution of the second N-acetylglucosamine. Analysis of barcode ITS1-5.8S-ITS2 rDNA sequences established a phylogenetic tree that essentially went hand in hand with the grouping obtained by glycan patterns. This brief prelude to microalgal N-glycans revealed a fabulous wealth of undescribed structural features that finely differentiated Chlorella-like microalgae, which are notoriously poor in morphological attributes. In light of the almost identical N-glycan structural features that exist within vertebrates or land plants, the herein discovered diversity is astonishing and argues for a selection pressure only explicable by a fundamental functional role of these glycans.
Collapse
Affiliation(s)
- Réka Mócsai
- Department of ChemistryVienna (BOKU)ViennaAustria
| | - Rudolf Figl
- Department of ChemistryVienna (BOKU)ViennaAustria
| | - Leander Sützl
- Department of Food TechnologyUniversity of Natural Resources and Life SciencesVienna (BOKU)ViennaAustria
| | | | | |
Collapse
|
33
|
A streamlined and predominantly diploid genome in the tiny marine green alga Chloropicon primus. Nat Commun 2019; 10:4061. [PMID: 31492891 PMCID: PMC6731263 DOI: 10.1038/s41467-019-12014-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
Tiny marine green algae issued from two deep branches of the Chlorophyta, the Mamiellophyceae and Chloropicophyceae, dominate different regions of the oceans and play key roles in planktonic communities. Considering that the Mamiellophyceae is the sole lineage of prasinophyte algae that has been intensively investigated, the extent to which these two algal groups differ in their metabolic capacities and cellular processes is currently unknown. To address this gap of knowledge, we investigate here the nuclear genome sequence of a member of the Chloropicophyceae, Chloropicon primus. Among the main biological insights that emerge from this 17.4 Mb genome, we find an unexpected diploid structure for most chromosomes and a propionate detoxification pathway in green algae. Our results support the notion that separate events of genome minimization, which entailed differential losses of genes/pathways, have occurred in the Chloropicophyceae and Mamiellophyceae, suggesting different strategies of adaptation to oceanic environments.
Collapse
|
34
|
Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME JOURNAL 2018; 13:789-804. [PMID: 30429574 PMCID: PMC6461909 DOI: 10.1038/s41396-018-0304-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 11/08/2022]
Abstract
The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. These predictions highlight the importance of cobamide and cobamide precursor salvaging as examples of nutritional dependencies in bacteria.
Collapse
|
35
|
Cross-exchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME JOURNAL 2018; 13:334-345. [PMID: 30228381 DOI: 10.1038/s41396-018-0274-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/30/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022]
Abstract
Ostreococcus tauri, a picoeukaryotic alga that contributes significantly to primary production in oligotrophic waters, has a highly streamlined genome, lacking the genetic capacity to grow without the vitamins thiamine (B1) and cobalamin (B12). Here we demonstrate that the B12 and B1 auxotrophy of O. tauri can be alleviated by co-culturing with a heterotrophic bacterial partner Dinoroseobacter shibae, a member of the Rhodobacteraceae family of alpha-proteobacteria, genera of which are frequently found associated with marine algae. D. shibae lacks the complete pathway to synthesise three other B-vitamins: niacin (B3), biotin (B7), and p-aminobenzoic acid (a precursor for folate, B9), and the alga is in turn able to satisfy the reciprocal vitamin requirements of its bacterial partner in a stable long-term co-culture. Bioinformatics searches of 197 representative marine bacteria with sequenced genomes identified just nine species that had a similar combination of traits (ability to make vitamin B12, but missing one or more genes for niacin and biotin biosynthesis enzymes), all of which were from the Rhodobacteraceae. Further analysis of 70 species from this family revealed the majority encoded the B12 pathway, but only half were able to make niacin, and fewer than 13% biotin. These characteristics may have either contributed to or resulted from the tendency of members of this lineage to adopt lifestyles in close association with algae. This study provides a nuanced view of bacterial-phytoplankton interactions, emphasising the complexity of the sources, sinks and dynamic cycling between marine microbes of these important organic micronutrients.
Collapse
|
36
|
Impact of thiamine metabolites and spent medium from Chlorella sorokiniana on metabolism in the green algae Auxenochlorella prototheciodes. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
A Review of the Extraction and Determination Methods of Thirteen Essential Vitamins to the Human Body: An Update from 2010. Molecules 2018; 23:molecules23061484. [PMID: 29921801 PMCID: PMC6099991 DOI: 10.3390/molecules23061484] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/12/2018] [Accepted: 06/17/2018] [Indexed: 11/17/2022] Open
Abstract
Vitamins are a class of essential nutrients in the body; thus, they play important roles in human health. The chemicals are involved in many physiological functions and both their lack and excess can put health at risk. Therefore, the establishment of methods for monitoring vitamin concentrations in different matrices is necessary. In this review, an updated overview of the main pretreatments and determination methods that have been used since 2010 is given. Ultrasonic assisted extraction, liquid–liquid extraction, solid phase extraction and dispersive liquid–liquid microextraction are the most common pretreatment methods, while the determination methods involve chromatography methods, electrophoretic methods, microbiological assays, immunoassays, biosensors and several other methods. Different pretreatments and determination methods are discussed.
Collapse
|
38
|
Paerl RW, Bertrand EM, Rowland E, Schatt P, Mehiri M, Niehaus TD, Hanson AD, Riemann L, Bouget FY. Carboxythiazole is a key microbial nutrient currency and critical component of thiamin biosynthesis. Sci Rep 2018; 8:5940. [PMID: 29654239 PMCID: PMC5899164 DOI: 10.1038/s41598-018-24321-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Almost all cells require thiamin, vitamin B1 (B1), which is synthesized via the coupling of thiazole and pyrimidine precursors. Here we demonstrate that 5-(2-hydroxyethyl)-4-methyl-1,3-thiazole-2-carboxylic acid (cHET) is a useful in vivo B1 precursor for representatives of ubiquitous marine picoeukaryotic phytoplankton and Escherichia coli – drawing attention to cHET as a valuable exogenous micronutrient for microorganisms with ecological, industrial, and biomedical value. Comparative utilization experiments with the terrestrial plant Arabidopsis thaliana revealed that it can also use exogenous cHET, but notably, picoeukaryotic marine phytoplankton and E. coli were adapted to grow on low (picomolar) concentrations of exogenous cHET. Our results call for the modification of the conventional B1 biosynthesis model to incorporate cHET as a key precursor for B1 biosynthesis in two domains of life, and for consideration of cHET as a microbial micronutrient currency modulating marine primary productivity and community interactions in human gut-hosted microbiomes.
Collapse
Affiliation(s)
- Ryan W Paerl
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA 27695, USA. .,Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark.
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Elden Rowland
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Phillippe Schatt
- Sorbonne Universités, Université Pierre and Marie Curie (Paris 06), UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650, Banyuls/mer, France
| | - Mohamed Mehiri
- University Nice Côte d'Azur, CNRS, Institute of Chemistry of Nice, UMR 7272, Marine Natural Products Team, Nice, France
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA 32611, USA
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA 32611, USA
| | - Lasse Riemann
- Department of Biology, University of Copenhagen, 3000, Helsingør, Denmark
| | - Francois-Yves Bouget
- University Nice Côte d'Azur, CNRS, Institute of Chemistry of Nice, UMR 7272, Marine Natural Products Team, Nice, France
| |
Collapse
|
39
|
Helliwell KE, Pandhal J, Cooper MB, Longworth J, Kudahl UJ, Russo DA, Tomsett EV, Bunbury F, Salmon DL, Smirnoff N, Wright PC, Smith AG. Quantitative proteomics of a B 12 -dependent alga grown in coculture with bacteria reveals metabolic tradeoffs required for mutualism. THE NEW PHYTOLOGIST 2018; 217:599-612. [PMID: 29034959 PMCID: PMC5765456 DOI: 10.1111/nph.14832] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/31/2017] [Indexed: 05/02/2023]
Abstract
The unicellular green alga Lobomonas rostrata requires an external supply of vitamin B12 (cobalamin) for growth, which it can obtain in stable laboratory cultures from the soil bacterium Mesorhizobium loti in exchange for photosynthate. We investigated changes in protein expression in the alga that allow it to engage in this mutualism. We used quantitative isobaric tagging (iTRAQ) proteomics to determine the L. rostrata proteome grown axenically with B12 supplementation or in coculture with M. loti. Data are available via ProteomeXchange (PXD005046). Using the related Chlamydomonas reinhardtii as a reference genome, 588 algal proteins could be identified. Enzymes of amino acid biosynthesis were higher in coculture than in axenic culture, and this was reflected in increased amounts of total cellular protein and several free amino acids. A number of heat shock proteins were also elevated. Conversely, photosynthetic proteins and those of chloroplast protein synthesis were significantly lower in L. rostrata cells in coculture. These observations were confirmed by measurement of electron transfer rates in cells grown under the two conditions. The results indicate that, despite the stability of the mutualism, L. rostrata experiences stress in coculture with M. loti, and must adjust its metabolism accordingly.
Collapse
Affiliation(s)
| | - Jagroop Pandhal
- Department of Chemical and Biological EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDUK
| | - Matthew B. Cooper
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Joseph Longworth
- Department of Chemical and Biological EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDUK
| | | | - David A. Russo
- Department of Chemical and Biological EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDUK
| | | | - Freddy Bunbury
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| | - Deborah L. Salmon
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterEX4 4QDUK
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterEX4 4QDUK
| | - Phillip C. Wright
- Department of Chemical and Biological EngineeringUniversity of SheffieldMappin StreetSheffieldS1 3JDUK
| | - Alison G. Smith
- Department of Plant SciencesUniversity of CambridgeCambridgeCB2 3EAUK
| |
Collapse
|
40
|
Abstract
Vitamin B12 is synthesized only by certain bacteria and archaeon, but not by plants. The synthesized vitamin B12 is transferred and accumulates in animal tissues, which can occur in certain plant and mushroom species through microbial interaction. In particular, the meat and milk of herbivorous ruminant animals (e.g. cattle and sheep) are good sources of vitamin B12 for humans. Ruminants acquire vitamin B12, which is considered an essential nutrient, through a symbiotic relationship with the bacteria present in their stomachs. In aquatic environments, most phytoplankton acquire vitamin B12 through a symbiotic relationship with bacteria, and they become food for larval fish and bivalves. Edible plants and mushrooms rarely contain a considerable amount of vitamin B12, mainly due to concomitant bacteria in soil and/or their aerial surfaces. Thus, humans acquire vitamin B12 formed by microbial interaction via mainly ruminants and fish (or shellfish) as food sources. In this review, up-to-date information on vitamin B12 sources and bioavailability are also discussed. Impact statement To prevent vitamin B12 (B12) deficiency in high-risk populations such as vegetarians and elderly subjects, it is necessary to identify foods that contain high levels of B12. B12 is synthesized by only certain bacteria and archaeon, but not by plants or animals. The synthesized B12 is transferred and accumulated in animal tissues, even in certain plant tissues via microbial interaction. Meats and milks of herbivorous ruminant animals are good sources of B12 for humans. Ruminants acquire the essential B12 through a symbiotic relationship with bacteria inside the body. Thus, we also depend on B12-producing bacteria located in ruminant stomachs. While edible plants and mushrooms rarely contain a considerable amount of B12, mainly due to concomitant bacteria in soil and/or their aerial surfaces. In this mini-review, we described up-to-date information on B12 sources and bioavailability with reference to the interaction of microbes as B12-producers.
Collapse
Affiliation(s)
- Fumio Watanabe
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tomohiro Bito
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|