1
|
Komatsu A, Fujibayashi M, Kumagai K, Suzuki H, Hata Y, Takebayashi Y, Kojima M, Sakakibara H, Kyozuka J. KAI2-dependent signaling controls vegetative reproduction in Marchantia polymorpha through activation of LOG-mediated cytokinin synthesis (14). Nat Commun 2025; 16:1263. [PMID: 39893162 PMCID: PMC11787308 DOI: 10.1038/s41467-024-55728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/21/2024] [Indexed: 02/04/2025] Open
Abstract
Marchantia polymorpha reproduces vegetatively (asexually) by producing propagules known as gemmae within gemma cups and sexually through spores. We previously reported that KARRIKIN INSENSITIVE2 (KAI2)-dependent signaling promotes gemma cup and gemma formation. KAI2A perceives unidentified endogenous ligand(s), tentatively referred to as KAI2 ligands (KL). Perception of KL by KAI2 triggers MORE AXILLARY GROWTH2 (MAX2)-dependent proteolysis of MpSUPPRESSOR of MORE AXILLALRY GROWTH2 1-LIKE (MpSMXL). In this study, we identify genes working downstream of KAI2-dependent signaling in M. polymorpha. We find that KAI2-dependent signaling positively controls the expression of MpLONELY GUY (MpLOG), encoding a cytokinin biosynthesis enzyme. Disruption of the MpLOG function decreases endogenous cytokinin levels and causes defects similar to KAI2-dependent signaling mutants. Moreover, supplying exogenous cytokinins rescues the defects of Mplog and KAI2-dependent signaling mutants, implying that cytokinins work downstream of KAI2-dependent signaling. Activation of MpLOG by KAI2-dependent signaling occurs in a highly cell-type-specific manner, leading to cell-specific induction of GEMMA CUP-ASSOCIATED MYB1 (GCAM1), the master regulator of vegetative reproduction of M. polymorpha. We propose a genetic cascade, starting from KAI2-dependent signaling, that promotes vegetative reproduction through the induction of MpLOG and GCAM1. The interaction between KAI2-dependent signaling and cytokinin in M. polymorpha provides insights into the function and evolution of KAI2-dependent signaling.
Collapse
Affiliation(s)
- Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Kazato Kumagai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hidemasa Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
2
|
Guillory A, Lopez-Obando M, Bouchenine K, Le Bris P, Lécureuil A, Pillot JP, Steinmetz V, Boyer FD, Rameau C, de Saint Germain A, Bonhomme S. SUPPRESSOR OF MAX2 1-LIKE (SMXL) homologs are MAX2-dependent repressors of Physcomitrium patens growth. THE PLANT CELL 2024; 36:1655-1672. [PMID: 38242840 PMCID: PMC11062456 DOI: 10.1093/plcell/koae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024]
Abstract
SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms. In Arabidopsis (Arabidopsis thaliana), 3 functional SMXL subclades have been identified: SMAX1/SMXL2, SMXL345, and SMXL678. Of these, 2 subclades ensure endogenous phytohormone signal transduction. SMAX1/SMXL2 proteins are involved in KAI2 ligand (KL) signaling, while SMXL678 proteins are involved in strigolactone (SL) signaling. Many questions remain regarding the mode of action of these proteins, as well as their ancestral roles. We addressed these questions by investigating the functions of the 4 SMXL genes in the moss Physcomitrium patens. We demonstrate that PpSMXL proteins are involved in the conserved ancestral MAX2-dependent KL signaling pathway and negatively regulate growth. However, PpSMXL proteins expressed in Arabidopsis cannot replace SMAX1 or SMXL2 function in KL signaling, whereas they can functionally replace SMXL4 and SMXL5 and restore root growth. Therefore, the molecular functions of SMXL proteins are conserved, but their interaction networks are not. Moreover, the PpSMXLC/D clade positively regulates SL signal transduction in P. patens. Overall, our data reveal that SMXL proteins in moss mediate crosstalk between the SL and KL signaling pathways.
Collapse
Affiliation(s)
- Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan 31326, France
| | - Mauricio Lopez-Obando
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Institut de biologie moléculaire des plantes (IBMP), CNRS, University of Strasbourg, 12 rue du Général Zimmer, 67000 Strasbourg, France
| | - Khalissa Bouchenine
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Philippe Le Bris
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alain Lécureuil
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Vincent Steinmetz
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - François-Didier Boyer
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Alexandre de Saint Germain
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
3
|
Bürger M. MAX control: SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins repress growth in Physcomitrium patens. THE PLANT CELL 2024; 36:1574-1575. [PMID: 38262158 PMCID: PMC11062416 DOI: 10.1093/plcell/koae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Affiliation(s)
- Marco Bürger
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Varshney K, Gutjahr C. KAI2 Can Do: Karrikin Receptor Function in Plant Development and Response to Abiotic and Biotic Factors. PLANT & CELL PHYSIOLOGY 2023; 64:984-995. [PMID: 37548562 PMCID: PMC10504578 DOI: 10.1093/pcp/pcad077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
The α/β hydrolase KARRIKIN INSENSITIVE 2 (KAI2) functions as a receptor for a yet undiscovered phytohormone, provisionally termed KAI2 ligand (KL). In addition, it perceives karrikin, a butenolide compound found in the smoke of burnt plant material. KAI2-mediated signaling is involved in regulating seed germination and in shaping seedling and adult plant morphology, both above and below ground. It also governs responses to various abiotic stimuli and stresses and shapes biotic interactions. KAI2-mediated signaling is being linked to an elaborate cross-talk with other phytohormone pathways such as auxin, gibberellin, abscisic acid, ethylene and salicylic acid signaling, in addition to light and nutrient starvation signaling. Further connections will likely be revealed in the future. This article summarizes recent advances in unraveling the function of KAI2-mediated signaling and its interaction with other signaling pathways.
Collapse
Affiliation(s)
- Kartikye Varshney
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Caroline Gutjahr
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| |
Collapse
|
5
|
Kodama K, Xie X, Kyozuka J. The D14 and KAI2 Orthologs of Gymnosperms Sense Strigolactones and KL Mimics, Respectively, and the Signals Are Transduced to Control Downstream Genes. PLANT & CELL PHYSIOLOGY 2023; 64:1057-1065. [PMID: 37489639 DOI: 10.1093/pcp/pcad072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
Strigolactones (SLs), lactone-containing carotenoid derivatives, function as signaling molecules in the rhizosphere, inducing symbiosis with arbuscular mycorrhizal. In addition, as a class of plant hormones, SLs control plant growth and development in flowering plants (angiosperms). Recent studies show that the ancestral function of SLs, which precede terrestrialization of plants, is as rhizosphere signaling molecules. SLs were then recruited as a class of plant hormones through the step-by-step acquisition of signaling components. The D14 gene encoding the SL receptor arose by gene duplication of KARRIKIN INSENSITIVE2 (KAI2), the receptor of karrikins and KAI2 ligand (KL), an unknown ligand, in the common ancestor of seed plants. KL signaling targets SMAX1, a repressor protein. On the other hand, the SL signaling targets SMXL78 subclade repressors, which arose by duplication of SMAX1 in angiosperms. Thus, gymnosperms contain the SL receptor D14 but not SMXL78, the SL signaling-specific repressor proteins. We studied two gymnosperm species, ginkgo (Ginkgo biloba) and Japanese umbrella pine (Sciadopitys verticillata), to clarify whether SLs are perceived and the signals are transduced in gymnosperms. We show that D14 and KAI2 of ginkgo and Japanese umbrella pine specifically perceive an SL analog and KL mimic, respectively. Furthermore, our results suggest that both SL signaling and KL signaling target SMAX1, and the specific localization of the receptor may result in the specificity of the signaling in gymnosperms.
Collapse
Affiliation(s)
- Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, 350 Minemachi, Utsunomiya, Tochigi, 321-8505 Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
6
|
Zhang R, Dong Y, Li Y, Ren G, Chen C, Jin X. SLs signal transduction gene CsMAX2 of cucumber positively regulated to salt, drought and ABA stress in Arabidopsis thaliana L. Gene 2023; 864:147282. [PMID: 36822526 DOI: 10.1016/j.gene.2023.147282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Recent studies have demonstrated that strigolactones (SLs) participate in the regulation of stress adaptation, however, the mechanisms remain elusive. MAX2 (MORE AXILLARY GROWTH2) is the key gene in the signal transduction pathway of SLs. This study aimed to clone and functionally characterize the CsMAX2 gene of cucumber in Arabidopsis. The results showed that the expression levels of the CsMAX2 gene changed significantly after salt, drought, and ABA stresses in cucumber. Moreover, the overexpression of CsMAX2 promoted stress tolerance and increased the germination rate and root length of Arabidopsis thaliana. Meanwhile, the content of chlorophyll increased and malondialdehyde decreased in CsMAX2 OE lines under salt and drought stresses. Additionally, the expression levels of stress-related marker genes, especially AREB1 and COR15A, were significantly upregulated under salt stress, while the expression levels of all genes were upregulated under drought stress, except ABI4 and ABI5 genes. The level of NCED3 continued to rise under both salt and drought stresses. In addition, D10 and D27 gene expression level also showed a continuous increase under ABA stress. The result suggested the interaction between SL and ABA in the process of adapting to stress. Overall, CsMAX2 could positively regulate salt, drought, and ABA stress resistance, and this process correlated with ABA transduction.
Collapse
Affiliation(s)
- Runming Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yanlong Dong
- College of Life Science and Technology, Harbin Normal University, Harbin, China; Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yuanyuan Li
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Guangyue Ren
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chao Chen
- College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xiaoxia Jin
- College of Life Science and Technology, Harbin Normal University, Harbin, China.
| |
Collapse
|
7
|
Bonhomme S, Guillory A. Synthesis and signalling of strigolactone and KAI2-ligand signals in bryophytes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4487-4495. [PMID: 35524989 DOI: 10.1093/jxb/erac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Strigolactones (SLs), long known as butenolide rhizospheric signals, have been recognized since 2008 as a class of hormones regulating many aspects of plant development. Many authors also anticipate 'KAI2-ligand' (KL) as a novel class of phytohormones; however, this ligand remains elusive. Core genes of SL and KL pathways, first described in angiosperms, are found in all land plants and some even in green algae. This review reports current knowledge of these pathways in bryophytes. Data on the pathways mostly come from two models: the moss Physcomitrium patens and the liverwort Marchantia. Gene targeting methods have allowed functional analyses of both models. Recent work in Marchantia suggests that SLs' ancestral role was to recruit beneficial microbes as arbuscular mycorrhizal fungi. In contrast, the hormonal role of SLs observed in P. patens is probably a result of convergent evolution. Evidence for a functional KL pathway in both bryophyte models is very recent. Nevertheless, many unknowns remain and warrant a more extensive investigation of SL and KL pathways in various land plant lineages.
Collapse
Affiliation(s)
- Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
- Laboratoire des Interactions Plantes - Microbes - Environnement (LIPME), Université de Toulouse, INRAE, CNRS, 24 Chemin de Borde Rouge, 31320 Castanet-Tolosan, France
| |
Collapse
|
8
|
Kodama K, Rich MK, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, Kameoka H, Libourel C, Keller J, Sakakibara K, Nishiyama T, Nakagawa T, Mashiguchi K, Uchida K, Yoneyama K, Tanaka Y, Yamaguchi S, Shimamura M, Delaux PM, Nomura T, Kyozuka J. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nat Commun 2022. [PMID: 35803942 DOI: 10.1101/2021.08.20.457034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
In flowering plants, strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), an SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating its origin in the common ancestor of land plants. BSB synthesis is enhanced at AM symbiosis permissive conditions and BSB deficient mutants are impaired in AM symbiosis. In contrast, the absence of BSB synthesis has little effect on the growth and gene expression. We show that the introduction of the SL receptor of Arabidopsis renders M. paleacea cells BSB-responsive. These results suggest that BSB is not perceived by M. paleacea cells due to the lack of cognate SL receptors. We propose that SLs originated as AM symbiosis-inducing rhizosphere signaling molecules and were later recruited as plant hormone.
Collapse
Affiliation(s)
- Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mélanie K Rich
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Akiyoshi Yoda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Shota Shimazaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Xiaonan Xie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yi Luo
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hidemasa Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiromu Kameoka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Cyril Libourel
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | | | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | | | | | - Kenichi Uchida
- Department of Biosciences, Teikyo University, Tochigi, Japan
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Ehime, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France.
| | - Takahito Nomura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
9
|
Kodama K, Rich MK, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, Kameoka H, Libourel C, Keller J, Sakakibara K, Nishiyama T, Nakagawa T, Mashiguchi K, Uchida K, Yoneyama K, Tanaka Y, Yamaguchi S, Shimamura M, Delaux PM, Nomura T, Kyozuka J. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nat Commun 2022; 13:3974. [PMID: 35803942 PMCID: PMC9270392 DOI: 10.1038/s41467-022-31708-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
In flowering plants, strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), an SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating its origin in the common ancestor of land plants. BSB synthesis is enhanced at AM symbiosis permissive conditions and BSB deficient mutants are impaired in AM symbiosis. In contrast, the absence of BSB synthesis has little effect on the growth and gene expression. We show that the introduction of the SL receptor of Arabidopsis renders M. paleacea cells BSB-responsive. These results suggest that BSB is not perceived by M. paleacea cells due to the lack of cognate SL receptors. We propose that SLs originated as AM symbiosis-inducing rhizosphere signaling molecules and were later recruited as plant hormone. Strigolactones (SLs) regulate angiosperm development and promote symbiosis with arbuscular mycorrhizae. Here the authors show that bryosymbiol, an SL present in bryophytes and angiosperms, promotes AM symbiosis in Marchantia paleacea suggesting an ancestral function of SLs as rhizosphere signals.
Collapse
Affiliation(s)
- Kyoichi Kodama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Mélanie K Rich
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Akiyoshi Yoda
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Shota Shimazaki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Xiaonan Xie
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yi Luo
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hidemasa Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiromu Kameoka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Cyril Libourel
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Jean Keller
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | | | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, Japan
| | | | | | - Kenichi Uchida
- Department of Biosciences, Teikyo University, Tochigi, Japan
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Ehime, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Pierre-Marc Delaux
- LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France.
| | - Takahito Nomura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan. .,Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
10
|
Sepulveda C, Guzmán MA, Li Q, Villaécija-Aguilar JA, Martinez SE, Kamran M, Khosla A, Liu W, Gendron JM, Gutjahr C, Waters MT, Nelson DC. KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2022; 119:e2112820119. [PMID: 35254909 PMCID: PMC8931227 DOI: 10.1073/pnas.2112820119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
SignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL). Karrikins likely require modification in plants to become bioactive. We identify a gene, KUF1, that appears to negatively regulate biosynthesis of KL and metabolism of a specific karrikin. KUF1 expression increases in response to karrikin or KL signaling, thus forming a negative feedback loop that limits further activation of the signaling pathway. This discovery will advance understanding of how karrikins are perceived and how smoke-activated germination evolved. It will also aid identification of the elusive KL.
Collapse
Affiliation(s)
- Claudia Sepulveda
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Michael A. Guzmán
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Qingtian Li
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | | | - Stephanie E. Martinez
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Muhammad Kamran
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Aashima Khosla
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Joshua M. Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354 Germany
| | - Mark T. Waters
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David C. Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521
| |
Collapse
|
11
|
Kyozuka J, Nomura T, Shimamura M. Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102154. [PMID: 34923261 DOI: 10.1016/j.pbi.2021.102154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Strigolactones (SLs) play roles as a class of plant hormones and rhizosphere signaling chemicals that induce hyphal branching of arbuscular mycorrhizal fungi and seed germination of parasitic plants. Therefore, SLs have dual functions. Recent progress in genome sequencing and genetic studies of bryophytes and algae has begun to shed light on the origin and evolution of these two functions of SLs.
Collapse
Affiliation(s)
- Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Temmerman A, Guillory A, Bonhomme S, Goormachtig S, Struk S. Masks Start to Drop: Suppressor of MAX2 1-Like Proteins Reveal Their Many Faces. FRONTIERS IN PLANT SCIENCE 2022; 13:887232. [PMID: 35645992 PMCID: PMC9133912 DOI: 10.3389/fpls.2022.887232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 05/11/2023]
Abstract
Although the main players of the strigolactone (SL) signaling pathway have been characterized genetically, how they regulate plant development is still poorly understood. Of central importance are the SUPPRESSOR OF MAX2 1-LIKE (SMXL) proteins that belong to a family of eight members in Arabidopsis thaliana, of which one subclade is involved in SL signaling and another one in the pathway of the chemically related karrikins. Through proteasomal degradation of these SMXLs, triggered by either DWARF14 (D14) or KARRIKIN INSENSITIVE2 (KAI2), several physiological processes are controlled, such as, among others, shoot and root architecture, seed germination, and seedling photomorphogenesis. Yet another clade has been shown to be involved in vascular development, independently of the D14 and KAI2 actions and not relying on proteasomal degradation. Despite their role in several aspects of plant development, the exact molecular mechanisms by which SMXLs regulate them are not completely unraveled. To fill the major knowledge gap in understanding D14 and KAI2 signaling, SMXLs are intensively studied, making it challenging to combine all the insights into a coherent characterization of these important proteins. To this end, this review provides an in-depth exploration of the recent data regarding their physiological function, evolution, structure, and molecular mechanism. In addition, we propose a selection of future perspectives, focusing on the apparent localization of SMXLs in subnuclear speckles, as observed in transient expression assays, which we couple to recent advances in the field of biomolecular condensates and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Sylwia Struk,
| |
Collapse
|
13
|
Bürger M. Insights into the evolution of strigolactone signaling. THE PLANT CELL 2021; 33:3389-3390. [PMID: 35233610 PMCID: PMC8566212 DOI: 10.1093/plcell/koab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 05/25/2023]
Affiliation(s)
- Marco Bürger
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
14
|
Lopez-Obando M, Guillory A, Boyer FD, Cornu D, Hoffmann B, Le Bris P, Pouvreau JB, Delavault P, Rameau C, de Saint Germain A, Bonhomme S. The Physcomitrium (Physcomitrella) patens PpKAI2L receptors for strigolactones and related compounds function via MAX2-dependent and -independent pathways. THE PLANT CELL 2021; 33:3487-3512. [PMID: 34459915 PMCID: PMC8662777 DOI: 10.1093/plcell/koab217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/24/2021] [Indexed: 05/20/2023]
Abstract
In angiosperms, the α/β hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.
Collapse
Affiliation(s)
- Mauricio Lopez-Obando
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
- Department of Plant Biology, Swedish University of Agricultural Sciences, The
Linnean Centre for Plant Biology in Uppsala, SE-750 07 Uppsala, Sweden
- VEDAS Corporación de Investigación e Innovación (VEDASCII),
050024 Medellín, Colombia
| | - Ambre Guillory
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, CNRS, Université
Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - David Cornu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université
Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Beate Hoffmann
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
| | - Philippe Le Bris
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
| | - Jean-Bernard Pouvreau
- Laboratoire de Biologie et Pathologie Végétales, LBPV, Université de
Nantes, 44000 Nantes, France
| | - Philippe Delavault
- Laboratoire de Biologie et Pathologie Végétales, LBPV, Université de
Nantes, 44000 Nantes, France
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
| | - Alexandre de Saint Germain
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
- Author for correspondence:
(S.B.),
(A.d.S.G.)
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université
Paris-Saclay, 78000 Versailles, France
- Author for correspondence:
(S.B.),
(A.d.S.G.)
| |
Collapse
|
15
|
Guillory A, Bonhomme S. Phytohormone biosynthesis and signaling pathways of mosses. PLANT MOLECULAR BIOLOGY 2021; 107:245-277. [PMID: 34245404 DOI: 10.1007/s11103-021-01172-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.
Collapse
Affiliation(s)
- Ambre Guillory
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Sandrine Bonhomme
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
16
|
Mizuno Y, Komatsu A, Shimazaki S, Naramoto S, Inoue K, Xie X, Ishizaki K, Kohchi T, Kyozuka J. Major components of the KARRIKIN INSENSITIVE2-dependent signaling pathway are conserved in the liverwort Marchantia polymorpha. THE PLANT CELL 2021; 33:2395-2411. [PMID: 33839776 PMCID: PMC8364241 DOI: 10.1093/plcell/koab106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/06/2021] [Indexed: 05/04/2023]
Abstract
KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.
Collapse
Affiliation(s)
- Yohei Mizuno
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Aino Komatsu
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Shota Shimazaki
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
- Author for correspondence:
| |
Collapse
|
17
|
Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J. GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells. FRONTIERS IN PLANT SCIENCE 2021; 12:675981. [PMID: 34305975 PMCID: PMC8293678 DOI: 10.3389/fpls.2021.675981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/06/2021] [Indexed: 06/01/2023]
Abstract
Strigolactones are plant hormones regulating cytoskeleton-mediated developmental events in roots, such as lateral root formation and elongation of root hairs and hypocotyls. The latter process was addressed herein by the exogenous application of a synthetic strigolactone, GR24, and an inhibitor of strigolactone biosynthesis, TIS108, on hypocotyls of wild-type Arabidopsis and a strigolactone signaling mutant max2-1 (more axillary growth 2-1). Owing to the interdependence between light and strigolactone signaling, the present work was extended to seedlings grown under a standard light/dark regime, or under continuous darkness. Given the essential role of the cortical microtubules in cell elongation, their organization and dynamics were characterized under the conditions of altered strigolactone signaling using fluorescence microscopy methods with different spatiotemporal capacities, such as confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM). It was found that GR24-dependent inhibition of hypocotyl elongation correlated with changes in cortical microtubule organization and dynamics, observed in living wild-type and max2-1 seedlings stably expressing genetically encoded fluorescent molecular markers for microtubules. Quantitative assessment of microscopic datasets revealed that chemical and/or genetic manipulation of strigolactone signaling affected microtubule remodeling, especially under light conditions. The application of GR24 in dark conditions partially alleviated cytoskeletal rearrangement, suggesting a new mechanistic connection between cytoskeletal behavior and the light-dependence of strigolactone signaling.
Collapse
Affiliation(s)
- Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - George Komis
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Sofiia Hlynska
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Tomáš Pospíšil
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
18
|
Nelson DC. The mechanism of host-induced germination in root parasitic plants. PLANT PHYSIOLOGY 2021; 185:1353-1373. [PMID: 33793958 PMCID: PMC8133615 DOI: 10.1093/plphys/kiab043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 05/25/2023]
Abstract
Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.
Collapse
Affiliation(s)
- David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
19
|
Aquino B, Bradley JM, Lumba S. On the outside looking in: roles of endogenous and exogenous strigolactones. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:322-334. [PMID: 33215770 DOI: 10.1111/tpj.15087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/27/2020] [Accepted: 10/21/2020] [Indexed: 05/15/2023]
Abstract
A collection of small molecules called strigolactones (SLs) act as both endogenous hormones to control plant development and as ecological communication cues between organisms. SL signalling overlaps with that of a class of smoke-derived compounds, karrikins (KARs), which have distinct yet overlapping developmental effects on plants. Although the roles of SLs in shoot and root development, in the promotion of arbuscular mycorrhizal (AM) fungal branching and in parasitic plant germination have been well characterized, recent data have illustrated broader roles for these compounds in the rhizosphere. Here, we review the known roles of SLs in development, growth of AM fungi and germination of parasitic plants to develop a framework for understanding the use of SLs as molecules of communication in the rhizosphere. It appears, for example, that there are many connections between SLs and phosphate utilization. Low phosphate levels regulate SL metabolism and, in turn, SLs sculpt root and shoot architecture to coordinate growth and optimize phosphate uptake from the environment. Plant-exuded SLs attract fungal symbionts to deliver inorganic phosphate (Pi) to the host. These and other examples suggest the boundary between exogenous and endogenous SL functions can be easily blurred and a more holistic view of these small molecules is likely to be required to fully understand SL biology. Related to this, we summarize and discuss evidence for a primitive role of SLs in moss as a quorum sensing-like molecule, providing a unifying concept of SLs as endogenous and exogenous signalling molecules.
Collapse
Affiliation(s)
- Bruno Aquino
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - James M Bradley
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
20
|
Abstract
This review focuses on the evolution of plant hormone signaling pathways. Like the chemical nature of the hormones themselves, the signaling pathways are diverse. Therefore, we focus on a group of hormones whose primary perception mechanism involves an Skp1/Cullin/F-box-type ubiquitin ligase: auxin, jasmonic acid, gibberellic acid, and strigolactone. We begin with a comparison of the core signaling pathways of these four hormones, which have been established through studies conducted in model organisms in the Angiosperms. With the advent of next-generation sequencing and advanced tools for genetic manipulation, the door to understanding the origins of hormone signaling mechanisms in plants beyond these few model systems has opened. For example, in-depth phylogenetic analyses of hormone signaling components are now being complemented by genetic studies in early diverging land plants. Here we discuss recent investigations of how basal land plants make and sense hormones. Finally, we propose connections between the emergence of hormone signaling complexity and major developmental transitions in plant evolution.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain;
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708WE Wageningen, The Netherlands;
| |
Collapse
|
21
|
Structural Basis of Karrikin and Non-natural Strigolactone Perception in Physcomitrella patens. Cell Rep 2020; 26:855-865.e5. [PMID: 30673608 DOI: 10.1016/j.celrep.2019.01.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
In plants, strigolactones are perceived by the dual receptor-hydrolase DWARF14 (D14). D14 belongs to the superfamily of α/β hydrolases and is structurally similar to the karrikin receptor KARRIKIN INSENSITIVE 2 (KAI2). The moss Physcomitrella patens is an ideal model system for studying this receptor family, because it includes 11 highly related family members with unknown ligand specificity. We present the crystal structures of three Physcomitrella D14/KAI2-like proteins and describe a loop-based mechanism that leads to a permanent widening of the hydrophobic substrate gorge. We have identified protein clades that specifically perceive the karrikin KAR1 and the non-natural strigolactone isomer (-)-5-deoxystrigol in a highly stereoselective manner.
Collapse
|
22
|
Machin DC, Hamon-Josse M, Bennett T. Fellowship of the rings: a saga of strigolactones and other small signals. THE NEW PHYTOLOGIST 2020; 225:621-636. [PMID: 31442309 DOI: 10.1111/nph.16135] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/08/2019] [Indexed: 05/25/2023]
Abstract
Strigolactones are an important class of plant signalling molecule with both external rhizospheric and internal hormonal functions in flowering plants. The past decade has seen staggering progress in strigolactone biology, permitting highly detailed understanding of their signalling, synthesis and biological roles - or so it seems. However, phylogenetic analyses show that strigolactone signalling mediated by the D14-SCFMAX2 -SMXL7 complex is only one of a number of closely related signalling pathways, and is much less ubiquitous in land plants than might be expected. The existence of closely related pathways, such as the KAI2-SMAX1 module, challenges many of our assumptions about strigolactones, and in particular emphasises how little we understand about the specificity of strigolactone signalling with respect to related signalling pathways. In this review, we examine recent advances in strigolactone signalling, taking a holistic evolutionary view to identify the ambiguities and uncertainties in our understanding. We highlight that while we now have highly detailed molecular models for the core mechanism of D14-SMXL7 signalling, we still do not understand the ligand specificity of D14, the specificity of its interaction with SMXL7, nor the specificity of SMXL7 function. Our analysis therefore identifies key areas requiring further study.
Collapse
Affiliation(s)
- Darren C Machin
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Maxime Hamon-Josse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
23
|
Mdodana NT, Jewell JF, Phiri EE, Smith ML, Oberlander K, Mahmoodi S, Kossmann J, Lloyd JR. Mutations in Glucan, Water Dikinase Affect Starch Degradation and Gametophore Development in the Moss Physcomitrella patens. Sci Rep 2019; 9:15114. [PMID: 31641159 PMCID: PMC6805951 DOI: 10.1038/s41598-019-51632-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022] Open
Abstract
The role of starch degradation in non-vascular plants is poorly understood. To expand our knowledge of this area, we have studied this process in Physcomitrella patens. This has been achieved through examination of the step known to initiate starch degradation in angiosperms, glucan phosphorylation, catalysed by glucan, water dikinase (GWD) enzymes. Phylogenetic analysis indicates that GWD isoforms can be divided into two clades, one of which contains GWD1/GWD2 and the other GWD3 isoforms. These clades split at a very early stage within plant evolution, as distinct sequences that cluster within each were identified in all major plant lineages. Of the five genes we identified within the Physcomitrella genome that encode GWD-like enzymes, two group within the GWD1/GWD2 clade and the others within the GWD3 clade. Proteins encoded by both loci in the GWD1/GWD2 clade, named PpGWDa and PpGWDb, are localised in plastids. Mutations of either PpGWDa or PpGWDb reduce starch phosphate abundance, however, a mutation at the PpGWDa locus had a much greater influence than one at PpGWDb. Only mutations affecting PpGWDa inhibited starch degradation. Mutants lacking this enzyme also failed to develop gametophores, a phenotype that could be chemically complemented using glucose supplementation within the growth medium.
Collapse
Affiliation(s)
- Ntombizanele T Mdodana
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Jonathan F Jewell
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Ethel E Phiri
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Marthinus L Smith
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Kenneth Oberlander
- Schweickerdt Herbarium, Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Saire Mahmoodi
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa.
| |
Collapse
|
24
|
Walker CH, Siu-Ting K, Taylor A, O'Connell MJ, Bennett T. Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biol 2019; 17:70. [PMID: 31488154 PMCID: PMC6728956 DOI: 10.1186/s12915-019-0689-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Strigolactones (SLs) are an important class of carotenoid-derived signalling molecule in plants, which function both as exogenous signals in the rhizosphere and as endogenous plant hormones. In flowering plants, SLs are synthesized by a core pathway of four enzymes and are perceived by the DWARF14 (D14) receptor, leading to degradation of SMAX1-LIKE7 (SMXL7) target proteins in a manner dependent on the SCFMAX2 ubiquitin ligase. The evolutionary history of SLs is poorly understood, and it is not clear whether SL synthesis and signalling are present in all land plant lineages, nor when these traits evolved. Results We have utilized recently-generated genomic and transcriptomic sequences from across the land plant clade to resolve the origin of each known component of SL synthesis and signalling. We show that all enzymes in the core SL synthesis pathway originated at or before the base of land plants, consistent with the previously observed distribution of SLs themselves in land plant lineages. We also show that the late-acting enzyme LATERAL BRANCHING OXIDOREDUCTASE (LBO) may be considerably more ancient than previously thought. We perform a detailed phylogenetic analysis of SMXL proteins and show that specific SL target proteins only arose in flowering plants. We also assess diversity and protein structure in the SMXL family, identifying several previously unknown clades. Conclusions Overall, our results suggest that SL synthesis is much more ancient than canonical SL signalling, consistent with the idea that SLs first evolved as rhizosphere signals and were only recruited much later as hormonal signals. Electronic supplementary material The online version of this article (10.1186/s12915-019-0689-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queens University, Belfast, BT7 1NN, UK.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3FD, UK
| | - Alysha Taylor
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
25
|
Barbier FF, Dun EA, Kerr SC, Chabikwa TG, Beveridge CA. An Update on the Signals Controlling Shoot Branching. TRENDS IN PLANT SCIENCE 2019; 24:220-236. [PMID: 30797425 DOI: 10.1016/j.tplants.2018.12.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Many new questions on the regulation of shoot branching have been raised in recent years, prompting a review and reassessment of the role of each signal involved. Sugars and their signaling networks have been attributed a major role in the early events of axillary bud outgrowth, whereas cytokinin appears to play a critical role in the modulation of this process in response to the environment. Perception of the recently discovered hormone strigolactone is now quite well understood, while the downstream targets remain largely unknown. Recent literature has highlighted that auxin export from a bud is important for its subsequent growth.
Collapse
Affiliation(s)
- Francois F Barbier
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Elizabeth A Dun
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Stephanie C Kerr
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia; These authors contributed equally to this publication
| | - Tinashe G Chabikwa
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- The University of Queensland, School of Biological Sciences, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
26
|
Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E. Something ancient and something neofunctionalized-evolution of land plant hormone signaling pathways. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:64-72. [PMID: 30339930 DOI: 10.1016/j.pbi.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The evolution of land plants from a charophycean algal ancestor was accompanied by an increased diversity of regulatory networks, including signaling pathways mediating cellular communication within plants and between plants and the environment. Canonical land plant hormone signaling pathways were originally identified in angiosperms, and comparative studies in basal taxa show that they have been assembled from both ancient and newly evolved components, both before and during land plant evolution. In this review we present our current understanding, and highlight several uncertainties, of the evolution of hormone signaling pathways, focusing on the biosynthetic pathways generating putative ligands and the downstream perception and signaling pathways often leading to transcriptional responses.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | | |
Collapse
|