1
|
Lin RC, Ferreira BT, Yuan YW. The molecular basis of phenotypic evolution: beyond the usual suspects. Trends Genet 2024; 40:668-680. [PMID: 38704304 PMCID: PMC11303103 DOI: 10.1016/j.tig.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Bianca T Ferreira
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Yao-Wu Yuan
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
2
|
Potente G, Yousefi N, Keller B, Mora-Carrera E, Szövényi P, Conti E. The Primula edelbergii S-locus is an example of a jumping supergene. Mol Ecol Resour 2024; 24:e13988. [PMID: 38946153 DOI: 10.1111/1755-0998.13988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Research on supergenes, non-recombining genomic regions housing tightly linked genes that control complex phenotypes, has recently gained prominence in genomics. Heterostyly, a floral heteromorphism promoting outcrossing in several angiosperm families, is controlled by the S-locus supergene. The S-locus has been studied primarily in closely related Primula species and, more recently, in other groups that independently evolved heterostyly. However, it remains unknown whether genetic architecture and composition of the S-locus are maintained among species that share a common origin of heterostyly and subsequently diverged across larger time scales. To address this research gap, we present a chromosome-scale genome assembly of Primula edelbergii, a species that shares the same origin of heterostyly with Primula veris (whose S-locus has been characterized) but diverged from it 18 million years ago. Comparative genomic analyses between these two species allowed us to show, for the first time, that the S-locus can 'jump' (i.e. translocate) between chromosomes maintaining its function in controlling heterostyly. Additionally, we found that four S-locus genes were conserved but reshuffled within the supergene, seemingly without affecting their expression, thus we could not detect changes explaining the lack of self-incompatibility in P. edelbergii. Furthermore, we confirmed that the S-locus is not undergoing genetic degeneration. Finally, we investigated P. edelbergii evolutionary history within Ericales in terms of whole genome duplications and transposable element accumulation. In summary, our work provides a valuable resource for comparative analyses aimed at investigating the genetics of heterostyly and the pivotal role of supergenes in shaping the evolution of complex phenotypes.
Collapse
Affiliation(s)
- Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Narjes Yousefi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Barbara Keller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Emiliano Mora-Carrera
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Elena Conti
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Raimondeau P, Ksouda S, Marande W, Fuchs AL, Gryta H, Theron A, Puyoou A, Dupin J, Cheptou PO, Vautrin S, Valière S, Manzi S, Baali-Cherif D, Chave J, Christin PA, Besnard G. A hemizygous supergene controls homomorphic and heteromorphic self-incompatibility systems in Oleaceae. Curr Biol 2024; 34:1977-1986.e8. [PMID: 38626764 DOI: 10.1016/j.cub.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/18/2024]
Abstract
Self-incompatibility (SI) has evolved independently multiple times and prevents self-fertilization in hermaphrodite angiosperms. Several groups of Oleaceae such as jasmines exhibit distylous flowers, with two compatibility groups each associated with a specific floral morph.1 Other Oleaceae species in the olive tribe have two compatibility groups without associated morphological variation.2,3,4,5 The genetic basis of both homomorphic and dimorphic SI systems in Oleaceae is unknown. By comparing genomic sequences of three olive subspecies (Olea europaea) belonging to the two compatibility groups, we first locate the genetic determinants of SI within a 700-kb hemizygous region present only in one compatibility group. We then demonstrate that the homologous hemizygous region also controls distyly in jasmine. Phylogenetic analyses support a common origin of both systems, following a segmental genomic duplication in a common ancestor. Examination of the gene content of the hemizygous region in different jasmine and olive species suggests that the mechanisms determining compatibility groups and floral phenotypes (whether homomorphic or dimorphic) in Oleaceae rely on the presence/absence of two genes involved in gibberellin and brassinosteroid regulation.
Collapse
Affiliation(s)
- Pauline Raimondeau
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France; Yale Institute of Biospheric Studies, New Haven, CT 06520, USA
| | - Sayam Ksouda
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Anne-Laure Fuchs
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Hervé Gryta
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Anthony Theron
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Aurore Puyoou
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Julia Dupin
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pierre-Olivier Cheptou
- CEFE (Centre d'Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul Valéry, EPHE, IRD, 34293 Montpellier, France
| | - Sonia Vautrin
- INRAE, Centre National de Ressources Génomiques Végétales, 31326 Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France
| | - Sophie Manzi
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Djamel Baali-Cherif
- Laboratoire de Recherche sur les Zones Arides, USTHB/ENSA, 16000 Alger, Algeria
| | - Jérôme Chave
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascal-Antoine Christin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Guillaume Besnard
- CRBE (Centre de Recherche sur la Biodiversité et l'Environnement), UMR 5300, CNRS, Université Paul Sabatier, IRD, INP Toulouse, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
4
|
Castric V, Batista RA, Carré A, Mousavi S, Mazoyer C, Godé C, Gallina S, Ponitzki C, Theron A, Bellec A, Marande W, Santoni S, Mariotti R, Rubini A, Legrand S, Billiard S, Vekemans X, Vernet P, Saumitou-Laprade P. The homomorphic self-incompatibility system in Oleaceae is controlled by a hemizygous genomic region expressing a gibberellin pathway gene. Curr Biol 2024; 34:1967-1976.e6. [PMID: 38626763 DOI: 10.1016/j.cub.2024.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
In flowering plants, outcrossing is commonly ensured by self-incompatibility (SI) systems. These can be homomorphic (typically with many different allelic specificities) or can accompany flower heteromorphism (mostly with just two specificities and corresponding floral types). The SI system of the Oleaceae family is unusual, with the long-term maintenance of only two specificities but often without flower morphology differences. To elucidate the genomic architecture and molecular basis of this SI system, we obtained chromosome-scale genome assemblies of Phillyrea angustifolia individuals and related them to a genetic map. The S-locus region proved to have a segregating 543-kb indel unique to one specificity, suggesting a hemizygous region, as observed in all distylous systems so far studied at the genomic level. Only one of the predicted genes in this indel region is found in the olive tree, Olea europaea, genome, also within a segregating indel. We describe complete association between the presence/absence of this gene and the SI types determined for individuals of seven distantly related Oleaceae species. This gene is predicted to be involved in catabolism of the gibberellic acid (GA) hormone, and experimental manipulation of GA levels in developing buds modified the male and female SI responses of the two specificities in different ways. Our results provide a unique example of a homomorphic SI system, where a single conserved gibberellin-related gene in a hemizygous indel underlies the long-term maintenance of two groups of reproductive compatibility.
Collapse
Affiliation(s)
- Vincent Castric
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Rita A Batista
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Amélie Carré
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Soraya Mousavi
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Clément Mazoyer
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Cécile Godé
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Chloé Ponitzki
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Anthony Theron
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Arnaud Bellec
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, F-31326 Castanet Tolosan, France
| | - Sylvain Santoni
- UMR DIAPC Diversité et adaptation des plantes cultivées, F-34398 Montpellier, France
| | - Roberto Mariotti
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Andrea Rubini
- CNR, Institute of Biosciences and Bioresources (IBBR), 06128 Perugia, Italy
| | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Sylvain Billiard
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | - Philippe Vernet
- Univ. Lille, CNRS, UMR 8198, Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
5
|
Gutiérrez-Valencia J, Zervakis PI, Postel Z, Fracassetti M, Losvik A, Mehrabi S, Bunikis I, Soler L, Hughes PW, Désamoré A, Laenen B, Abdelaziz M, Pettersson OV, Arroyo J, Slotte T. Genetic Causes and Genomic Consequences of Breakdown of Distyly in Linum trigynum. Mol Biol Evol 2024; 41:msae087. [PMID: 38709782 PMCID: PMC11114476 DOI: 10.1093/molbev/msae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Distyly is an iconic floral polymorphism governed by a supergene, which promotes efficient pollen transfer and outcrossing through reciprocal differences in the position of sexual organs in flowers, often coupled with heteromorphic self-incompatibility. Distyly has evolved convergently in multiple flowering plant lineages, but has also broken down repeatedly, often resulting in homostylous, self-compatible populations with elevated rates of self-fertilization. Here, we aimed to study the genetic causes and genomic consequences of the shift to homostyly in Linum trigynum, which is closely related to distylous Linum tenue. Building on a high-quality genome assembly, we show that L. trigynum harbors a genomic region homologous to the dominant haplotype of the distyly supergene conferring long stamens and short styles in L. tenue, suggesting that loss of distyly first occurred in a short-styled individual. In contrast to homostylous Primula and Fagopyrum, L. trigynum harbors no fixed loss-of-function mutations in coding sequences of S-linked distyly candidate genes. Instead, floral gene expression analyses and controlled crosses suggest that mutations downregulating the S-linked LtWDR-44 candidate gene for male self-incompatibility and/or anther height could underlie homostyly and self-compatibility in L. trigynum. Population genomic analyses of 224 whole-genome sequences further demonstrate that L. trigynum is highly self-fertilizing, exhibits significantly lower genetic diversity genome-wide, and is experiencing relaxed purifying selection and less frequent positive selection on nonsynonymous mutations relative to L. tenue. Our analyses shed light on the loss of distyly in L. trigynum, and advance our understanding of a common evolutionary transition in flowering plants.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Panagiotis-Ioannis Zervakis
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Zoé Postel
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aleksandra Losvik
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Sara Mehrabi
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucile Soler
- Department of Medical Biochemistry and Microbiology, Uppsala University, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Olga Vinnere Pettersson
- Department of Immunology, Genetics and Pathology, Uppsala Genome Center, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Arroyo
- Department of Plant Biology and Ecology, University of Seville, Seville, Spain
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Liu Y, Si W, Fu S, Wang J, Cheng T, Zhang Q, Pan H. PfPIN5 promotes style elongation by regulating cell length in Primula forbesii Franch. ANNALS OF BOTANY 2024; 133:473-482. [PMID: 38190350 PMCID: PMC11006536 DOI: 10.1093/aob/mcae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND AND AIMS Style dimorphism is one of the polymorphic characteristics of flowers in heterostylous plants, which have two types of flowers: the pin morph, with long styles and shorter anthers, and the thrum morph, with short styles and longer anthers. The formation of dimorphic styles has received attention in the plant world. Previous studies showed that CYP734A50 in Primula determined style length and limited style elongation and that the brassinosteroid metabolic pathway was involved in regulation of style length. However, it is unknown whether there are other factors affecting the style length of Primula. METHODS Differentially expressed genes highly expressed in pin morph styles were screened based on Primula forbesii transcriptome data. Virus-induced gene silencing was used to silence these genes, and the style length and anatomical changes were observed 20 days after injection. KEY RESULTS PfPIN5 was highly expressed in pin morph styles. When PfPIN5 was silenced, the style length was shortened in pin and long-homostyle plants by shortening the length of style cells. Moreover, silencing CYP734A50 in thrum morph plants increased the expression level of PfPIN5 significantly, and the style length increased. The results indicated that PfPIN5, an auxin efflux transporter gene, contributed to regulation of style elongation in P. forbesii. CONCLUSIONS The results implied that the auxin pathway might also be involved in the formation of styles of P. forbesii, providing a new pathway for elucidating the molecular mechanism of style elongation in P. forbesii.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Weijia Si
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Sitong Fu
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jia Wang
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture; College of Landscape Architecture, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
7
|
Boucher JJ, Ireland HS, Wang R, David KM, Schaffer RJ. The genetic control of herkogamy. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23315. [PMID: 38687848 DOI: 10.1071/fp23315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.
Collapse
Affiliation(s)
- Jacques-Joseph Boucher
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand; and School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Scharman M, Lenhard M. Heterostyly. Curr Biol 2024; 34:R181-R183. [PMID: 38471441 DOI: 10.1016/j.cub.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Scharman and Lenhard introduce heterostyly, a phenomenon where individuals in a plant population produce flowers with more than one morphologically distinct form.
Collapse
Affiliation(s)
- Mathias Scharman
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
9
|
Mora‐Carrera E, Stubbs RL, Potente G, Yousefi N, Keller B, de Vos JM, Szövényi P, Conti E. Genomic analyses elucidate S-locus evolution in response to intra-specific losses of distyly in Primula vulgaris. Ecol Evol 2024; 14:e10940. [PMID: 38516570 PMCID: PMC10955462 DOI: 10.1002/ece3.10940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 01/03/2024] [Indexed: 03/23/2024] Open
Abstract
Distyly, a floral dimorphism that promotes outcrossing, is controlled by a hemizygous genomic region known as the S-locus. Disruptions of genes within the S-locus are responsible for the loss of distyly and the emergence of homostyly, a floral monomorphism that favors selfing. Using whole-genome resequencing data of distylous and homostylous individuals from populations of Primula vulgaris and leveraging high-quality reference genomes of Primula we tested, for the first time, predictions about the evolutionary consequences of transitions to selfing on S-genes. Our results reveal a previously undetected structural rearrangement in CYPᵀ associated with the shift to homostyly and confirm previously reported, homostyle-specific, loss-of-function mutations in the exons of the S-gene CYPᵀ. We also discovered that the promoter and intronic regions of CYPᵀ in distylous and homostylous individuals are conserved, suggesting that down-regulation of CYPᵀ via mutations in its promoter and intronic regions is not a cause of the shift to homostyly. Furthermore, we found that hemizygosity is associated with reduced genetic diversity in S-genes compared with their paralogs outside the S-locus. Additionally, the shift to homostyly lowers genetic diversity in both the S-genes and their paralogs, as expected in primarily selfing plants. Finally, we tested, for the first time, long-standing theoretical models of changes in S-locus genotypes during early stages of the transition to homostyly, supporting the assumption that two copies of the S-locus might reduce homostyle fitness.
Collapse
Affiliation(s)
- E. Mora‐Carrera
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - R. L. Stubbs
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - G. Potente
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - N. Yousefi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - B. Keller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - J. M. de Vos
- Department of Environmental Sciences – BotanyUniversity of BaselBaselSwitzerland
| | - P. Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| | - E. Conti
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
10
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Yang J, Xue H, Li Z, Zhang Y, Shi T, He X, Barrett SCH, Wang Q, Chen J. Haplotype-resolved genome assembly provides insights into the evolution of S-locus supergene in distylous Nymphoides indica. THE NEW PHYTOLOGIST 2023; 240:2058-2071. [PMID: 37717220 DOI: 10.1111/nph.19264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Distyly has evolved independently in numerous animal-pollinated angiosperm lineages. Understanding of its molecular basis has been restricted to a few species, primarily Primula. Here, we investigate the genetic architecture of the single diallelic locus (S-locus) supergene, a linkage group of functionally associated genes, and explore how it may have evolved in distylous Nymphoides indica, a lineage of flowering plants not previously investigated. We assembled haplotype-resolved genomes, used read-coverage-based genome-wide association study (rb-GWAS) to locate the S-locus supergene, co-expression network analysis to explore gene networks underpinning the development of distyly, and comparative genomic analyses to investigate the origins of the S-locus supergene. We identified three linked candidate S-locus genes - NinBAS1, NinKHZ2, and NinS1 - that were only evident in the short-styled morph and were hemizygous. Co-expression network analysis suggested that brassinosteroids contribute to dimorphic sex organs in the short-styled morph. Comparative genomic analyses indicated that the S-locus supergene likely evolved via stepwise duplications and has been affected by transposable element activities. Our study provides novel insight into the structure, regulation, and evolution of the supergene governing distyly in N. indica. It also provides high-quality genomic resources for future research on the molecular mechanisms underlying the striking evolutionary convergence in form and function across heterostylous taxa.
Collapse
Affiliation(s)
- Jingshan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haoran Xue
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Zhizhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yue Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiangyan He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON, M5S 3B2, Canada
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
12
|
Zhang L, Li P, Zhang X, Li J. Two floral forms in the same species-distyly. PLANTA 2023; 258:72. [PMID: 37656285 DOI: 10.1007/s00425-023-04229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
MAIN CONCLUSION This paper reviews the progress of research on the morphology, physiology and molecular biology of distyly in plants. It will help to elucidate the mysteries of distyly in plants. Distyly is a unique representative type of heterostyly in plants, primarily characterized by the presence of long style and short style within the flowers of the same species. This interesting trait has always fascinated researchers. With the rapid development of molecular biology, the molecular mechanism for the production of dimorphic styles in plants is also gaining ground. Researchers have been studying plant dimorphic styles from various perspectives. The researchers are gradually unravelling the mechanisms by which plants produce distyly traits. This paper reviews advances in the study of plant dimorphic style characteristics, mainly in terms of the morphology, physiology and molecular biology of plants with dimorphic styles. The aim is to provide a theoretical basis for the study of the mechanism of distyly formation in plants.
Collapse
Affiliation(s)
- Lu Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| | - Ping Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Xiaoman Zhang
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China.
| | - Jinfeng Li
- College of Landscape and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, P. O. Box 28, Baoding, 071000, Hebei, China
| |
Collapse
|
13
|
Fawcett JA, Takeshima R, Kikuchi S, Yazaki E, Katsube-Tanaka T, Dong Y, Li M, Hunt HV, Jones MK, Lister DL, Ohsako T, Ogiso-Tanaka E, Fujii K, Hara T, Matsui K, Mizuno N, Nishimura K, Nakazaki T, Saito H, Takeuchi N, Ueno M, Matsumoto D, Norizuki M, Shirasawa K, Li C, Hirakawa H, Ota T, Yasui Y. Genome sequencing reveals the genetic architecture of heterostyly and domestication history of common buckwheat. NATURE PLANTS 2023; 9:1236-1251. [PMID: 37563460 DOI: 10.1038/s41477-023-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Common buckwheat, Fagopyrum esculentum, is an orphan crop domesticated in southwest China that exhibits heterostylous self-incompatibility. Here we present chromosome-scale assemblies of a self-compatible F. esculentum accession and a self-compatible wild relative, Fagopyrum homotropicum, together with the resequencing of 104 wild and cultivated F. esculentum accessions. Using these genomic data, we report the roles of transposable elements and whole-genome duplications in the evolution of Fagopyrum. In addition, we show that (1) the breakdown of heterostyly occurs through the disruption of a hemizygous gene jointly regulating the style length and female compatibility and (2) southeast Tibet was involved in common buckwheat domestication. Moreover, we obtained mutants conferring the waxy phenotype for the first time in buckwheat. These findings demonstrate the utility of our F. esculentum assembly as a reference genome and promise to accelerate buckwheat research and breeding.
Collapse
Affiliation(s)
| | - Ryoma Takeshima
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | | | | | - Yumei Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Meifang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Harriet V Hunt
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Royal Botanic Gardens Kew, Richmond, UK
| | - Martin K Jones
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Diane L Lister
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
- Conservation Research Institute, University of Cambridge, Cambridge, UK
| | - Takanori Ohsako
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Eri Ogiso-Tanaka
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Japan
| | - Kenichiro Fujii
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Takashi Hara
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Kasai, Japan
| | - Katsuhiro Matsui
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Mizuno
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | - Hiroki Saito
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Ishigaki, Japan
| | - Naoko Takeuchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mariko Ueno
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daiki Matsumoto
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Miyu Norizuki
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | | | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | | | - Tatsuya Ota
- Department of Evolutionary Studies of Biosystems, SOKENDAI, Hayama, Japan.
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Japan.
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Jia Y, Liu C, Li Y, Xiang Y, Pan Y, Liu Q, Gao S, Yin X, Wang Z. Inheritance of distyly and homostyly in self-incompatible Primula forbesii. Heredity (Edinb) 2023; 130:259-268. [PMID: 36788365 PMCID: PMC10076296 DOI: 10.1038/s41437-023-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The evolutionary transition from self-incompatible distyly to self-compatible homostyly frequently occurs in heterostylous taxa. Although the inheritance of distyly and homostyly has been deeply studied, our understanding on modifications of the classical simple Mendelian model is still lacking. Primula forbesii, a biennial herb native to southwest China, is a typical distylous species, but after about 20 years of cultivation with open pollination, self-compatible homostyly appeared, providing ideal material for the study of the inheritance of distyly and homostyly. In this study, exogenous homobrassinolide was used to break the heteromorphic incompatibility of P. forbesii. Furthermore, we performed artificial pollination and open-pollination experiments to observe the distribution of floral morphs in progeny produced by different crosses. The viability of seeds from self-pollination was always the lowest among all crosses, and the homozygous S-morph plants (S/S) occurred in artificial pollination experiments but may experience viability selection. The distyly of P. forbesii is governed by a single S-locus, with S-morph dominant hemizygotes (S/-) and L-morph recessive homozygotes (-/-). Homostylous plants have a genotype similar to L-morph plants, and homostyly may be caused by one or more unlinked modifier genes outside the S-locus. Open pollinations confirm that autonomous self-pollination occurs frequently in L-morphs and homostylous plants. This study deepens the understanding of the inheritance of distyly and details a case of homostyly that likely originated from one or more modifier genes.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| | - Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanfen Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zexun Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Luo Z, Zhao Z, Xu Y, Shi M, Tu T, Pei N, Zhang D. Comprehensive transcriptomic profiling reveals complex molecular mechanisms in the regulation of style-length dimorphism in Guettarda speciosa (Rubiaceae), a species with "anomalous" distyly. FRONTIERS IN PLANT SCIENCE 2023; 14:1116078. [PMID: 37008460 PMCID: PMC10060554 DOI: 10.3389/fpls.2023.1116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The evolution of heterostyly, a genetically controlled floral polymorphism, has been a hotspot of research since the 19th century. In recent years, studies on the molecular mechanism of distyly (the most common form of heterostyly) revealed an evolutionary convergence in genes for brassinosteroids (BR) degradation in different angiosperm groups. This floral polymorphism often exhibits considerable variability that some taxa have significant stylar dimorphism, but anther height differs less. This phenomenon has been termed "anomalous" distyly, which is usually regarded as a transitional stage in evolution. Compared to "typical" distyly, the genetic regulation of "anomalous" distyly is almost unknown, leaving a big gap in our understanding of this special floral adaptation strategy. METHODS Here we performed the first molecular-level study focusing on this floral polymorphism in Guettarda speciosa (Rubiaceae), a tropical tree with "anomalous" distyly. Comprehensive transcriptomic profiling was conducted to examine which genes and metabolic pathways were involved in the genetic control of style dimorphism and if they exhibit similar convergence with "typical" distylous species. RESULTS "Brassinosteroid homeostasis" and "plant hormone signal transduction" was the most significantly enriched GO term and KEGG pathway in the comparisons between L- and S-morph styles, respectively. Interestingly, homologs of all the reported S-locus genes either showed very similar expressions between L- and S-morph styles or no hits were found in G. speciosa. BKI1, a negative regulator of brassinosteroid signaling directly repressing BRI1 signal transduction, was identified as a potential gene regulating style length, which significantly up-regulated in the styles of S-morph. DISCUSSION These findings supported the hypothesis that style length in G. speciosa was regulated through a BR-related signaling network in which BKI1 may be one key gene. Our data suggested, in species with "anomalous" distyly, style length was regulated by gene differential expressions, instead of the "hemizygous" S-locus genes in "typical" distylous flowers such as Primula and Gelsemium, representing an "intermediate" stage in the evolution of distyly. Genome-level analysis and functional studies in more species with "typical" and "anomalous" distyly would further decipher this "most complex marriage arrangement" in angiosperms and improve our knowledge of floral evolution.
Collapse
Affiliation(s)
- Zhonglai Luo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanqing Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
16
|
Henning PM, Roalson EH, Mir W, McCubbin AG, Shore JS. Annotation of the Turnera subulata (Passifloraceae) Draft Genome Reveals the S-Locus Evolved after the Divergence of Turneroideae from Passifloroideae in a Stepwise Manner. PLANTS (BASEL, SWITZERLAND) 2023; 12:286. [PMID: 36679000 PMCID: PMC9862265 DOI: 10.3390/plants12020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three S-genes. How supergenes and distyly evolved in Turnera, and the other Angiosperm families exhibiting distyly remain largely unknown. Unraveling the evolutionary origins in Turnera requires the generation of genomic resources and extensive phylogenetic analyses. Here, we present the annotated draft genome of the S-morph of distylous Turnera subulata. Our annotation allowed for phylogenetic analyses of the three S-genes' families across 56 plant species ranging from non-seed plants to eudicots. In addition to the phylogenetic analysis, we identified the three S-genes' closest paralogs in two species of Passiflora. Our analyses suggest that the S-locus evolved after the divergence of Passiflora and Turnera. Finally, to provide insights into the neofunctionalization of the S-genes, we compared expression patterns of the S-genes with close paralogs in Arabidopsis and Populus trichocarpa. The annotation of the T. subulata genome will provide a useful resource for future comparative work. Additionally, this work has provided insights into the convergent nature of distyly and the origin of supergenes.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Center for Genomic Science Innovation, University of Wisconsin Madison, 425 Henry Mall, Madison, WI 53706-1577, USA
| | - Eric H. Roalson
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Wali Mir
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
17
|
Zhao Z, Zhang Y, Shi M, Liu Z, Xu Y, Luo Z, Yuan S, Tu T, Sun Z, Zhang D, Barrett SCH. Genomic evidence supports the genetic convergence of a supergene controlling the distylous floral syndrome. THE NEW PHYTOLOGIST 2023; 237:601-614. [PMID: 36239093 DOI: 10.1111/nph.18540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Heterostyly, a plant sexual polymorphism controlled by the S-locus supergene, has evolved numerous times among angiosperm lineages and represents a classic example of convergent evolution in form and function. Determining whether underlying molecular convergence occurs could provide insights on constraints to floral evolution. Here, we investigated S-locus genes in distylous Gelsemium (Gelsemiaceae) to determine whether there is evidence of molecular convergence with unrelated distylous species. We used several approaches, including anatomical measurements of sex-organ development and transcriptome and whole-genome sequencing, to identify components of the S-locus supergene. We also performed evolutionary analysis with candidate S-locus genes and compared them with those reported in Primula and Turnera. The candidate S-locus supergene of Gelsemium contained four genes, of which three appear to have originated from gene duplication events within Gelsemiaceae. The style-length genes GeCYP in Gelsemium and CYP734A50 in Primula likely arose from duplication of the same gene, CYP734A1. Three out of four S-locus genes in Gelsemium elegans were hemizygous, as previously reported in Primula and Turnera. We provide genomic evidence on the genetic convergence of the supergene underlying distyly among distantly related angiosperm lineages and help to illuminate the genetic architecture involved in the evolution of heterostyly.
Collapse
Affiliation(s)
- Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 34100, China
| | - Yu Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhaoying Liu
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanqing Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhonglai Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shuai Yuan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiliang Sun
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, Gannan Normal University, Ganzhou, 34100, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
18
|
Comparative transcriptomics reveals commonalities and differences in the genetic underpinnings of a floral dimorphism. Sci Rep 2022; 12:20771. [PMID: 36456708 PMCID: PMC9715534 DOI: 10.1038/s41598-022-25132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Distyly, a floral dimorphism associated with heteromorphic self-incompatibility and controlled by the S-locus supergene, evolved independently multiple times. Comparative analyses of the first transcriptome atlas for the main distyly model, Primula veris, with other distylous species produced the following findings. A set of 53 constitutively expressed genes in P. veris did not include any of the housekeeping genes commonly used to normalize gene expression in qPCR experiments. The S-locus gene CYPT acquired its role in controlling style elongation via a change in expression profile. Comparison of genes differentially expressed between floral morphs revealed that brassinosteroids and auxin are the main hormones controlling style elongation in P. veris and Fagopyrum esculentum, respectively. Furthermore, shared biochemical pathways might underlie the expression of distyly in the distantly related P. veris, F. esculentum and Turnera subulata, suggesting a degree of correspondence between evolutionary convergence at phenotypic and molecular levels. Finally, we provide the first evidence supporting the previously proposed hypothesis that distyly supergenes of distantly related species evolved via the recruitment of genes related to the phytochrome-interacting factor (PIF) signaling network. To conclude, this is the first study that discovered homologous genes involved in the control of distyly in distantly related taxa.
Collapse
|
19
|
Henning PM, Shore JS, McCubbin AG. The S-Gene YUC6 Pleiotropically Determines Male Mating Type and Pollen Size in Heterostylous Turnera (Passifloraceae): A Novel Neofunctionalization of the YUCCA Gene Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:2640. [PMID: 36235506 PMCID: PMC9572539 DOI: 10.3390/plants11192640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
In heterostylous, self-incompatible Turnera species, a member of the YUCCA gene family, YUC6, resides at the S-locus and has been hypothesized to determine the male mating type. YUCCA gene family members synthesize the auxin, indole-3-acetic acid, via a two-step process involving the TAA gene family. Consequently, it has been speculated that differences in auxin concentration in developing anthers are the biochemical basis underlying the male mating type. Here, we provide empirical evidence that supports this hypothesis. Using a transgenic knockdown approach, we show that YUC6 acts pleiotropically to control both the male physiological mating type and pollen size, but not the filament length dimorphism associated with heterostyly in Turnera. Using qPCR to assess YUC6 expression in different transgenic lines, we demonstrate that the level of YUC6 knockdown correlates with the degree of change observed in the male mating type. Further assessment of YUC6 expression through anther development, in the knockdown lines, suggests that the male mating type is irreversibly determined during a specific developmental window prior to microsporogenesis, which is consistent with the genetically sporophytic nature of this self-incompatibility system. These results represent the first gene controlling male mating type to be characterized in any species with heterostyly.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Joel S. Shore
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
20
|
Genomic analyses of the Linum distyly supergene reveal convergent evolution at the molecular level. Curr Biol 2022; 32:4360-4371.e6. [PMID: 36087578 DOI: 10.1016/j.cub.2022.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
Abstract
Supergenes govern multi-trait-balanced polymorphisms in a wide range of systems; however, our understanding of their origins and evolution remains incomplete. The reciprocal placement of stigmas and anthers in pin and thrum floral morphs of distylous species constitutes an iconic example of a balanced polymorphism governed by a supergene, the distyly S-locus. Recent studies have shown that the Primula and Turnera distyly supergenes are both hemizygous in thrums, but it remains unknown whether hemizygosity is pervasive among distyly S-loci. As hemizygosity has major consequences for supergene evolution and loss, clarifying whether this genetic architecture is shared among distylous species is critical. Here, we have characterized the genetic architecture and evolution of the distyly supergene in Linum by generating a chromosome-level genome assembly of Linum tenue, followed by the identification of the S-locus using population genomic data. We show that hemizygosity and thrum-specific expression of S-linked genes, including a pistil-expressed candidate gene for style length, are major features of the Linum S-locus. Structural variation is likely instrumental for recombination suppression, and although the non-recombining dominant haplotype has accumulated transposable elements, S-linked genes are not under relaxed purifying selection. Our findings reveal remarkable convergence in the genetic architecture and evolution of independently derived distyly supergenes, provide a counterexample to classic inversion-based supergenes, and shed new light on the origin and maintenance of an iconic floral polymorphism.
Collapse
|
21
|
You W, Chen X, Zeng L, Ma Z, Liu Z. Characterization of PISTILLATA-like Genes and Their Promoters from the Distyly Fagopyrum esculentum. PLANTS (BASEL, SWITZERLAND) 2022; 11:1047. [PMID: 35448776 PMCID: PMC9032694 DOI: 10.3390/plants11081047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis PISTILLATA (PI) encodes B-class MADS-box transcription factor (TF), and works together with APETALA3 (AP3) to specify petal and stamen identity. However, a small-scale gene duplication event of PI ortholog was observed in common buckwheat and resulted in FaesPI_1 and FaesPI_2. FaesPI_1 and FaesPI_2 were expressed only in the stamen of dimorphic flower (thrum and pin) of Fagopyrum esculentum. Moreover, intense beta-glucuronidase (GUS) staining was found in the entire stamen (filament and anther) in pFaesPI_1::GUS transgenic Arabidopsis, while GUS was expressed only in the filament of pFaesPI_2::GUS transgenic Arabidopsis. In addition, phenotype complementation analysis suggested that pFaesPI_1::FaesPI_1/pFaesPI_2::FaesPI_2 transgenic pi-1 Arabidopsis showed similar a flower structure with stamen-like organs or filament-like organs in the third whorl. This suggested that FaesPI_2 only specified filament development, but FaesPI_1 specified stamen development. Meanwhile, FaesPI_1 and FaesPI_2 were shown to function redundantly in regulating filament development, and both genes work together to require a proper stamen identity. The data also provide a clue to understanding the roles of PI-like genes involved in floral organ development during the early evolution of core eudicots and also suggested that FaesPI_1 and FaesPI_2 hold the potential application in bioengineering to develop a common buckwheat male sterile line.
Collapse
|
22
|
Hickerson NM, Samuel MA. Stylar steroids: Brassinosteroids regulate pistil development and self-incompatibility in Primula. Curr Biol 2022; 32:R135-R137. [DOI: 10.1016/j.cub.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Pistil Mating Type and Morphology Are Mediated by the Brassinosteroid Inactivating Activity of the S-Locus Gene BAHD in Heterostylous Turnera Species. Int J Mol Sci 2021; 22:ijms221910603. [PMID: 34638969 PMCID: PMC8509066 DOI: 10.3390/ijms221910603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/05/2023] Open
Abstract
Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is mutated and encodes a severely truncated protein in a self-compatible long homostyle species. Further, a self-compatible long homostyle mutant possesses a T. krapovickasii BAHD allele with a point mutation in a highly conserved domain of BAHD acyl transferases. Wild type and mutant TkBAHD alleles were expressed in Arabidopsis to assay for brassinosteroid (BR) inactivating activity. The wild type but not mutant allele caused dwarfism, consistent with the wild type possessing, but the mutant allele having lost, BR inactivating activity. To investigate whether BRs act directly in self-incompatibility, BRs were added to in vitro pollen cultures of the two mating types. A small morph specific stimulatory effect on pollen tube growth was found with 5 µM brassinolide, but no genotype specific inhibition was observed. These results suggest that BAHD acts pleiotropically to mediate pistil length and physiological mating type through BR inactivation, and that in regard to self-incompatibility, BR acts by differentially regulating gene expression in pistils, rather than directly on pollen.
Collapse
|
24
|
Ranavat S, Becher H, Newman MF, Gowda V, Twyford AD. A Draft Genome of the Ginger Species Alpinia nigra and New Insights into the Genetic Basis of Flexistyly. Genes (Basel) 2021; 12:1297. [PMID: 34573279 PMCID: PMC8468202 DOI: 10.3390/genes12091297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Angiosperms possess various strategies to ensure reproductive success, such as stylar polymorphisms that encourage outcrossing. Here, we investigate the genetic basis of one such dimorphism that combines both temporal and spatial separation of sexual function, termed flexistyly. It is a floral strategy characterised by the presence of two morphs that differ in the timing of stylar movement. We performed a de novo assembly of the genome of Alpinia nigra using high-depth genomic sequencing. We then used Pool-seq to identify candidate regions for flexistyly based on allele frequency or coverage differences between pools of anaflexistylous and cataflexistylous morphs. The final genome assembly size was 2 Gb, and showed no evidence of recent polyploidy. The Pool-seq did not reveal large regions with high FST values, suggesting large structural chromosomal polymorphisms are unlikely to underlie differences between morphs. Similarly, no region had a 1:2 mapping depth ratio which would be indicative of hemizygosity. We propose that flexistyly is governed by a small genomic region that might be difficult to detect with Pool-seq, or a complex genomic region that proved difficult to assemble. Our genome will be a valuable resource for future studies of gingers, and provides the first steps towards characterising this complex floral phenotype.
Collapse
Affiliation(s)
- Surabhi Ranavat
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Hannes Becher
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
| | - Mark F. Newman
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| | - Vinita Gowda
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India;
| | - Alex D. Twyford
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; (H.B.); (A.D.T.)
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK;
| |
Collapse
|
25
|
Gutiérrez-Valencia J, Hughes PW, Berdan EL, Slotte T. The Genomic Architecture and Evolutionary Fates of Supergenes. Genome Biol Evol 2021; 13:6178796. [PMID: 33739390 PMCID: PMC8160319 DOI: 10.1093/gbe/evab057] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
Supergenes are genomic regions containing sets of tightly linked loci that control multi-trait phenotypic polymorphisms under balancing selection. Recent advances in genomics have uncovered significant variation in both the genomic architecture as well as the mode of origin of supergenes across diverse organismal systems. Although the role of genomic architecture for the origin of supergenes has been much discussed, differences in the genomic architecture also subsequently affect the evolutionary trajectory of supergenes and the rate of degeneration of supergene haplotypes. In this review, we synthesize recent genomic work and historical models of supergene evolution, highlighting how the genomic architecture of supergenes affects their evolutionary fate. We discuss how recent findings on classic supergenes involved in governing ant colony social form, mimicry in butterflies, and heterostyly in flowering plants relate to theoretical expectations. Furthermore, we use forward simulations to demonstrate that differences in genomic architecture affect the degeneration of supergenes. Finally, we discuss implications of the evolution of supergene haplotypes for the long-term fate of balanced polymorphisms governed by supergenes.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - P William Hughes
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Emma L Berdan
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Sweden
| |
Collapse
|
26
|
Xue L, Wu H, Chen Y, Li X, Hou J, Lu J, Wei S, Dai X, Olson MS, Liu J, Wang M, Charlesworth D, Yin T. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nat Commun 2020; 11:5893. [PMID: 33208755 PMCID: PMC7674411 DOI: 10.1038/s41467-020-19559-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/16/2020] [Indexed: 01/04/2023] Open
Abstract
Almost all plants in the genus Populus are dioecious (i.e. trees are either male or female), but it is unknown whether dioecy evolved in a common ancestor or independently in different subgenera. Here, we sequence the small peritelomeric X- and Y-linked regions of P. deltoides chromosome XIX. Two genes are present only in the Y-linked region. One is a duplication of a non-Y-linked, female-specifically expressed response regulator, which produces siRNAs that block this gene's expression, repressing femaleness. The other is an LTR/Gypsy transposable element family member, which generates long non-coding RNAs. Overexpression of this gene in A. thaliana promotes androecium development. We also find both genes in the sex-determining region of P. simonii, a different poplar subgenus, which suggests that they are both stable components of poplar sex-determining systems. By contrast, only the duplicated response regulator gene is present in the sex-linked regions of P. davidiana and P. tremula. Therefore, findings in our study suggest dioecy may have evolved independently in different poplar subgenera.
Collapse
Affiliation(s)
- Liangjiao Xue
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Huaitong Wu
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Yingnan Chen
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Xiaoping Li
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Jing Hou
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Jing Lu
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Suyun Wei
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Xiaogang Dai
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Mingxiu Wang
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
| | - Tongming Yin
- The Key Laboratory of Tree Genetic Improvement and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, 200137, Nanjing, China.
| |
Collapse
|
27
|
Matzke CM, Shore JS, Neff MM, McCubbin AG. The Turnera Style S-Locus Gene TsBAHD Possesses Brassinosteroid-Inactivating Activity When Expressed in Arabidopsis thaliana. PLANTS 2020; 9:plants9111566. [PMID: 33202834 PMCID: PMC7697239 DOI: 10.3390/plants9111566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022]
Abstract
Heterostyly distinct hermaphroditic floral morphs enforce outbreeding. Morphs differ structurally, promote cross-pollination, and physiologically block self-fertilization. In Turnera the self-incompatibility (S)-locus controlling heterostyly possesses three genes specific to short-styled morph genomes. Only one gene, TsBAHD, is expressed in pistils and this has been hypothesized to possess brassinosteroid (BR)-inactivating activity. We tested this hypothesis using heterologous expression in Arabidopsis thaliana as a bioassay, thereby assessing growth phenotype, and the impacts on the expression of endogenous genes involved in BR homeostasis and seedling photomorphogenesis. Transgenic A. thaliana expressing TsBAHD displayed phenotypes typical of BR-deficient mutants, with phenotype severity dependent on TsBAHD expression level. BAS1, which encodes an enzyme involved in BR inactivation, was downregulated in TsBAHD-expressing lines. CPD and DWF, which encode enzymes involved in BR biosynthesis, were upregulated. Hypocotyl growth of TsBAHD dwarfs responded to application of brassinolide in light and dark in a manner typical of plants over-expressing genes encoding BR-inactivating activity. These results provide empirical support for the hypothesis that TsBAHD possesses BR-inactivating activity. Further this suggests that style length in Turnera is controlled by the same mechanism (BR inactivation) as that reported for Primula, but using a different class of enzyme. This reveals interesting convergent evolution in a biochemical mechanism to regulate floral form in heterostyly.
Collapse
Affiliation(s)
- Courtney M. Matzke
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada;
| | - Michael M. Neff
- Department of Crops and Soils, Washington State University, PO Box 644236, Pullman, WA 99164, USA;
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
- Correspondence:
| |
Collapse
|
28
|
Wessinger CA, Hileman LC. Parallelism in Flower Evolution and Development. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Flower evolution is characterized by widespread repetition, with adaptations to pollinator environment evolving in parallel. Recent studies have expanded our understanding of the developmental basis of adaptive floral novelties—petal fusion, bilateral symmetry, heterostyly, and floral dimensions. In this article, we describe patterns of trait evolution and review developmental genetic mechanisms underlying floral novelties. We discuss the diversity of mechanisms for parallel adaptation, the evidence for constraints on these mechanisms, and how constraints help explain observed macroevolutionary patterns. We describe parallel evolution resulting from similarities at multiple hierarchical levels—genetic, developmental, morphological, functional—which indicate general principles in floral evolution, including the central role of hormone signaling. An emerging pattern is mutational bias that may contribute to rapid patterns of parallel evolution, especially if the derived trait can result from simple degenerative mutations. We argue that such mutational bias may be less likely to govern the evolution of novelties patterned by complex developmental pathways.
Collapse
Affiliation(s)
- Carolyn A. Wessinger
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Lena C. Hileman
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
29
|
Henning PM, Shore JS, McCubbin AG. Transcriptome and Network Analyses of Heterostyly in Turnera subulata Provide Mechanistic Insights: Are S-Loci a Red-Light for Pistil Elongation? PLANTS 2020; 9:plants9060713. [PMID: 32503265 PMCID: PMC7356734 DOI: 10.3390/plants9060713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility (S)-locus of a small number of linked S-genes specific to short-styled morph genomes. Turnera possesses three S-genes, namely TsBAHD (controlling pistil characters), TsYUC6, and TsSPH1 (controlling stamen characters). Here, we compare pistil and stamen transcriptomes of floral morphs of T. subulata to investigate hypothesized S-gene function(s) and whether hormonal differences might contribute to physiological incompatibility. We then use network analyses to identify genetic networks underpinning heterostyly. We found a depletion of brassinosteroid-regulated genes in short styled (S)-morph pistils, consistent with hypothesized brassinosteroid-inactivating activity of TsBAHD. In S-morph anthers, auxin-regulated genes were enriched, consistent with hypothesized auxin biosynthesis activity of TsYUC6. Evidence was found for auxin elevation and brassinosteroid reduction in both pistils and stamens of S- relative to long styled (L)-morph flowers, consistent with reciprocal hormonal differences contributing to physiological incompatibility. Additional hormone pathways were also affected, however, suggesting S-gene activities intersect with a signaling hub. Interestingly, distinct S-genes controlling pistil length, from three species with independently evolved heterostyly, potentially intersect with phytochrome interacting factor (PIF) network hubs which mediate red/far-red light signaling. We propose that modification of the activities of PIF hubs by the S-locus could be a common theme in the evolution of heterostyly.
Collapse
Affiliation(s)
- Paige M. Henning
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
| | - Joel S. Shore
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J1P3, Canada;
| | - Andrew G. McCubbin
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA;
- Correspondence:
| |
Collapse
|
30
|
Schoen DJ, Johnson MTJ, Wright SI. The ecology, evolution, and genetics of plant reproductive systems. THE NEW PHYTOLOGIST 2019; 224:999-1004. [PMID: 31631365 DOI: 10.1111/nph.16222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Daniel J Schoen
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
31
|
Barrett SCH. 'A most complex marriage arrangement': recent advances on heterostyly and unresolved questions. THE NEW PHYTOLOGIST 2019; 224:1051-1067. [PMID: 31631362 DOI: 10.1111/nph.16026] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/23/2019] [Indexed: 05/09/2023]
Abstract
Heterostylous genetic polymorphisms provide paradigmatic systems for investigating adaptation and natural selection. Populations are usually comprised of two (distyly) or three (tristyly) mating types, maintained by negative frequency-dependent selection resulting from disassortative mating. Theory predicts this mating system should result in equal style-morph ratios (isoplethy) at equilibrium. Here, I review recent advances on heterostyly, focusing on examples challenging stereotypical depictions of the polymorphism and unresolved questions. Comparative analyses indicate multiple origins of heterostyly, often within lineages. Ecological studies demonstrate that structural components of heterostyly are adaptations improving the proficiency of animal-mediated cross-pollination and reducing pollen wastage. Both neutral and selective processes cause deviations from isoplethy in heterostylous populations, and, under some ecological and demographic conditions, cause breakdown of the polymorphism, resulting in either the evolution of autogamy and mixed mating, or transitions to alternative outcrossing systems, including dioecy. Earlier ideas on the genetic architecture of the S-locus supergene governing distyly have recently been overturned by discovery that the dominant S-haplotype is a hemizygous region absent from the s-haplotype. Ecological, phylogenetic and molecular genetic data have validated some features of theoretical models on the selection of the polymorphism. Although heterostyly is the best-understood floral polymorphism in angiosperms, many unanswered questions remain.
Collapse
Affiliation(s)
- Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, M5S 3B2, Canada
| |
Collapse
|