1
|
Yang Z, He G, Yang Q, Zhang D, Zhang Y, Wen S, Yang X, Yang L, Ji L. Nitrogen enrichment stimulates nutrient cycling genes of rhizosphere soil bacteria in the Phoebe bournei young plantations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123101. [PMID: 39486293 DOI: 10.1016/j.jenvman.2024.123101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Anthropogenic nitrogen (N) deposition is expected to increase substantially and continuously in terrestrial ecosystems, endangering the balance of N and phosphorus (P) in P-deficient subtropical forest soil. Despite the widely reported responses of the microbial community to simulated N deposition, there is limited understanding of how N deposition affects the rhizosphere soil processes by mediating functional genes and community compositions of soil bacteria. Here, five levels of simulated N deposition treatments (N0, 0 g m-2·yr-1; N1, 100 g m-2·yr-1; N2, 200 g m-2·yr-1; N3, 300 g m-2·yr-1; and N4, 400 g m-2·yr-1) were performed in a 10-year-old Phoebe bournei plantation. Quantitative microbial element cycling smart chip technology and 16S rRNA gene sequencing were employed to analyze functional gene compositions involved in carbon (C), N, and P cycling, as well as rhizosphere bacterial community composition. N deposition significantly influenced C cycling relative abundance of genes in the rhizosphere soil, especially those involved in C degradation. Low and moderate levels (100-300 g m-2·yr-1) of N deposition promoted the relative abundance of the C decomposition-related genes (e.g., amyA, abfA, pgu, chiA, cex, cdh, and glx), whereas high N deposition (400 g m-2·yr-1) suppressed enzyme (e.g., soil invertase, soil urease, and soil acid phosphatase) activities, affecting the C cycling processes in the rhizosphere. Simulated N deposition affected the functional genes associated with C, N, and P cycling by mediating soil pH and macronutrients. These findings provide new insights into the management of soil C sequestration in P. bournei young plantations as well as the regulation of C, N, and P cycling and microbial functions within ecosystems.
Collapse
Affiliation(s)
- Ziqiao Yang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Gongxiu He
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Qingsheng Yang
- Nuclear Geological Survey Institute of Hunan Province, 410007, PR China
| | - Dongdong Zhang
- Ecology Geological Survey and Monitoring Institute of Hunan Province, 410119, PR China
| | - Ying Zhang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Shizhi Wen
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xisha Yang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Lili Yang
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China; Department of Soil and Water Conservation, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Li Ji
- School of Forestry, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| |
Collapse
|
2
|
Wu H, Hao B, You Y, Zou C, Cai X, Li J, Qin H. Aquatic macrophytes mitigate the conflict between nitrogen removal and nitrous oxide emissions during tailwater treatments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122671. [PMID: 39357443 DOI: 10.1016/j.jenvman.2024.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Tailwater from wastewater treatment plants (WWTP) usually reduces the nitrogen (N) removal efficiency while simultaneously elevates nitrous oxide (N2O) emissions due to the low carbon-nitrogen (C/N) ratio. Conflicts between N removal and N2O emissions require mitigation by selecting appropriate aquatic plants for tailwater treatment. In this study, a simulated tailwater mesocosm was established using three aquatic plants including Eichhornia crassipes, Myriophyllum aquaticum and Pistia stratiotes. Results of the 15N isotope mass balance analysis revealed the considerable contributions from plant uptake and benthic retention to overall N removal. It was demonstrated that the N assimilation efficiency of aquatic plants depended more on the root-shoot ratio rather than on growth rate. Furthermore, aquatic plants indirectly influence microbial N removal and N2O emissions by altering the water quality parameters. Additionally, aquatic plants could regulate the N transformation through affecting the structure of bacterial community, including microbial abundance, diversity and association networks. Overall, the study underlined the enormous capacities of E. crassipes and P. stratiotes for N uptake and N2O mitigation in tailwater treatment. Utilizing these two aquatic plants for phytoremediation may help mitigate the conflict between tailwater purification and N2O production.
Collapse
Affiliation(s)
- Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Modern Agricultural Intelligent Equipment in South China, Ministry of Agriculture and Rural Affairs, Guangdong, 510630, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yi You
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Chunping Zou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Jianying Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Jia R, Zhou J, Yang L, Blagodatskaya E, Jones DL, Razavi BS, Yang Y, Kuzyakov Y, Zeng Z, Zang H. Trade-off between soil enzyme activities and hotspots area depends on long-term fertilization: In situ field zymography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176386. [PMID: 39304160 DOI: 10.1016/j.scitotenv.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mineral fertilizers and livestock manure have been found to impact soil enzyme activities and distributions, but their trade-off and subsequent effects on soil functioning related to nutrient cycling are rarely evaluated. Here, we investigated the long-term effects of manure and mineral fertilization on the spatial distribution of enzyme activities related to carbon, nitrogen, and phosphorus cycling under field-grown maize. We found that the legacy of mineral fertilizers increased the rhizosphere extension for β-glucosidase and N-acetylglucosaminidase by 16-170 %, and the hotspots area by 37-151 %, compared to manure. The legacy of manure, especially combined with mineral fertilizers, increased enzyme activities and formed non-rhizosphere hotspots. Furthermore, we found a trade-off between hotspots area and enzyme activities under the legacy effect of long-term fertilization. This suggested that plants and microorganisms regulate nutrient investments by altering spatial distribution of enzyme activities. The positive correlation between hotspots area and nutrient contents highlights the importance of non-rhizosphere hotspots induced by manure in maintaining soil fertility. Compared to mineral fertilization, the legacy effect of manure expanded the soil functions for nutrient cycling in both rhizosphere and non-rhizosphere by >1.7 times. In conclusion, the legacy of manure expands non-rhizosphere hotspots and enhances soil functioning, while mineral fertilization expands rhizosphere extension and intensifies hotspots area for nutrient exploitation.
Collapse
Affiliation(s)
- Rong Jia
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Centre for Sustainable Farming Systems, Food Futures Institute, 90 South St, Murdoch, WA 6150, Australia
| | - Bahar S Razavi
- Dept. Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yadong Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg August University of Göttingen, Göttingen, Germany; Peoples' Friendship University of Russia, RUDN University, 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Scientific Observing and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, China.
| |
Collapse
|
4
|
Huang L, Fu Y, Liu Y, Chen Y, Wang T, Wang M, Lin X, Feng Y. Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172231. [PMID: 38608902 DOI: 10.1016/j.scitotenv.2024.172231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yijie Chen
- IDEO Play Lab, CA 91006, United States of America
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wu X, Yang F, Zhang J, Gao F, Hu YC, Yang K, Wang P. Biochar's role in improving pakchoi quality and microbial community structure in rhizosphere soil. PeerJ 2024; 12:e16733. [PMID: 38515457 PMCID: PMC10956520 DOI: 10.7717/peerj.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/07/2023] [Indexed: 03/23/2024] Open
Abstract
Background Biochar amendments enhance crop productivity and improve agricultural quality. To date, studies on the correlation between different amounts of biochar in pakchoi (Brassica campestris L.) quality and rhizosphere soil microorganisms are limited, especially in weakly alkaline soils. The experiment was set up to explore the effect of different concentrations of biochar on vegetable quality and the correlation between the index of quality and soil bacterial community structure changes. Methods The soil was treated in the following ways via pot culture: the blank control (CK) without biochar added and with biochar at different concentrations of 1% (T1), 3% (T2), 5% (T3), and 7% (T4). Here, we investigatedthe synergistic effect of biochar on the growth and quality of pakchoi, soil enzymatic activities, and soil nutrients. Microbial communities from pakchoi rhizosphere soil were analyzed by Illumina MiSeq. Results The results revealed that adding 3% biochar significantly increased plant height, root length, and dry weight of pakchoi and increased the contents of soluble sugars, soluble proteins, Vitamin C (VC), cellulose, and reduced nitrate content in pakchoi leaves. Meanwhile, soil enzyme activities and available nutrient content in rhizosphere soil increased. This study demonstrated that the the microbial community structure of bacteria in pakchoi rhizosphere soil was changed by applying more than 3% biochar. Among the relatively abundant dominant phyla, Gemmatimonadetes, Anaerolineae, Deltaproteobacteria and Verrucomicrobiae were reduced, and Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, and Acidimicrobiia relative abundance increased. Furthermore, adding 3% biochar reduced the relative abundance of Gemmatimonas and increased the relative abundances of Ilumatobacter, Luteolibacter, Lysobacter, Arthrobacter, and Mesorhizobium. The nitrate content was positively correlated with the abundance of Gemmatimonadetes, and the nitrate content was significantly negatively correlated with the relative abundance of Ilumatobacter. Carbohydrate transport and metabolism in the rhizosphere soil of pakchoi decreased, and lipid transport and metabolism increased after biochar application. Conclusion Overall, our results indicated that applying biochar improved soil physicochemical states and plant nutrient absorption, and affected the abundance of dominant bacterial groups (e.g., Gemmatimonadetes and Ilumatobacter), these were the main factors to increase pakchoi growth and promote quality of pakchoi. Therefore, considering the growth, quality of pakchoi, and soil environment, the effect of using 3% biochar is better.
Collapse
Affiliation(s)
- Xia Wu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- Heilongjiang Bayi Agricultural University, Ministry of Agriculture and Rural Aûairs, Key Laboratory of Low-carbon Green Agriculture Carbon in Northeastrn China, Daqing, Heilongjiang, China
| | - Fengjun Yang
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jili Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Feng Gao
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yi Chen Hu
- College of Horticulture and Landscape, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Kejun Yang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Peng Wang
- Post-doctoral Workstation of Agricultural Products Processing Quality Supervision, Inspection and Testing Center (Daqing), Ministry of Agriculture, Daqing, Heilongjiang, China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
6
|
Zhang X, Wu Y, Liu S, Li J, Jiang Z, Luo H, Huang X. Plant growth and development of tropical seagrass determined rhizodeposition and its related microbial community. MARINE POLLUTION BULLETIN 2024; 199:115940. [PMID: 38150979 DOI: 10.1016/j.marpolbul.2023.115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
In the recent study, we investigated the seasonal variations in root exudation and microbial community structure in the rhizosphere of seagrass Enhalus acoroides in the South China Sea. We found that the quantity and quality of root exudates varied seasonally, with higher exudation rates and more bioavailable dissolved organic matter (DOM) during the seedling and vegetative stages in spring and summer. Using Illumina NovaSeq sequencing, we analyzed bacterial and fungal communities and discovered that microbial diversity and composition were influenced by root exudate characteristics s and seagrass biomass, which were strongly dependent on seagrass growth stages. Certain bacterial groups, such as Ruegeria, Sulfurovum, Photobacterium, and Ralstonia were closely associated with root exudation and may contribute to sulfur cycling, nitrogen fixation, and carbon remineralization, which were important for plant early development. Similarly, specific fungal taxa, including Astraeus, Alternaria, Rocella, and Tomentella, were enriched in spring and summer and showed growth-promoting abilities. Overall, our study suggests that seagrass secretes different compounds in its exudates at various developmental stages, shaping the rhizosphere microbial assemblages.
Collapse
Affiliation(s)
- Xia Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxue Luo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Shen Y, Xu L, Guo H, Ismail H, Ran X, Zhang C, Peng Y, Zhao Y, Liu W, Ding Y, Tang S. Mitigating the adverse effect of warming on rice canopy and rhizosphere microbial community by nitrogen application: An approach to counteract future climate change for rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167151. [PMID: 37730044 DOI: 10.1016/j.scitotenv.2023.167151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
The adverse impact of climate change on crop production continues to increase, necessitating the development of suitable strategies to mitigate these effects and improve food security. Several studies have revealed how global warming negatively impacts the grain-filling stage of rice and that this effect could be mitigated by nitrogen; however, the impact of nitrogen application on rice canopy and rhizosphere microbial communities remains unclear. We conducted a study using an open-field warming system. Results showed that warming influenced rice canopy by decreasing aboveground biomass and harvest index, whereas nitrogen application had positive effect on rice production under warming conditions by increasing the plant nitrogen content, biomass, harvest index and soil fertilities. Moreover, soil ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents were significantly decreased under warming, which were higher after nitrogen application. Notably, warming and nitrogen fertilizer caused 19 % (P < 0.01) and 7 % (P < 0.05) variations, respectively, in the β diversity of the microbial community, respectively. The impact of warming was significant on NH4+-N-related microorganisms; however, this impact was weakened by nitrogen application for microbes in the rhizosphere. This study demonstrated that enhanced nitrogen fertilizer can alleviate the adverse impact of warming by weakening its effects on rhizosphere microbes, improving soil fertility, promoting rice nitrogen uptake, and increasing the aboveground biomass and harvest index. These findings provide an important theoretical basis for developing practical, responsive cultivation strategies.
Collapse
Affiliation(s)
- Yingying Shen
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Lei Xu
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Hao Guo
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Hashmi Ismail
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Xuan Ran
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Chen Zhang
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yuxuan Peng
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yufei Zhao
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Wenzhe Liu
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China
| | - Yanfeng Ding
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095 Nanjing, PR China
| | - She Tang
- College of Agronomy, Nanjing Agricultural University, 210095 Nanjing, PR China; Jiangsu Collaborative Innovation Center for Modern Crop Production, 210095 Nanjing, PR China.
| |
Collapse
|
8
|
He D, Yao X, Zhang P, Liu W, Huang J, Sun H, Wang N, Zhang X, Wang H, Zhang H, Ao X, Xie F. Effects of continuous cropping on fungal community diversity and soil metabolites in soybean roots. Microbiol Spectr 2023; 11:e0178623. [PMID: 37811990 PMCID: PMC10715103 DOI: 10.1128/spectrum.01786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Soybean yield can be affected by soybean soil fungal communities in different tillage patterns. Soybean is an important food crop with great significance worldwide. Continuous cultivation resulted in soil nutrient deficiencies, disordered metabolism of root exudates, fungal pathogen accumulation, and an altered microbial community, which brought a drop in soybean output. In this study, taking the soybean agroecosystem in northeast China, we revealed the microbial ecology and soil metabolites spectrum, especially the diversity and composition of soil fungi and the correlation of pathogenic fungi, and discussed the mechanisms and the measures of alleviating the obstacles.
Collapse
Affiliation(s)
- Dexin He
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
- Postdoctoral Station of Agricultural Resources and Environment, Land and Environment College, Shenyang Agricultural University, Shenyang, China
| | - Pengyu Zhang
- Inner Mongolia Agronomy and Animal Husbandry Technology Extension Center, Hohhot, Inner Mongolia, China
| | - Wenbo Liu
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Junxia Huang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Hexiang Sun
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Nan Wang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xuejing Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiying Wang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Huijun Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xue Ao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Du C, Xu R, Zhao X, Liu Y, Zhou X, Zhang W, Zhou X, Hu N, Zhang Y, Sun Z, Wang Z. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Appl Microbiol Biotechnol 2023; 107:7347-7364. [PMID: 37747613 DOI: 10.1007/s00253-023-12787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
Plant roots and rhizosphere soils assemble diverse microbial communities, and these root-associated microbiomes profoundly influence host development. Modern wheat has given rise to numerous cultivars for its wide range of ecological adaptations and commercial uses. Variations in nitrogen uptake by different wheat cultivars are widely observed in production practices. However, little is known about the composition and structure of the root-associated microbiota in different wheat cultivars, and it is not sure whether root-associated microbial communities are relevant in host nitrogen absorption. Therefore, there is an urgent need for systematic assessment of root-associated microbial communities and their association with host nitrogen absorption in field-grown wheat. Here, we investigated the root-associated microbial community composition, structure, and keystone taxa in wheat cultivars with different nitrogen absorption characteristics at different stages and their relationships with edaphic variables and host nitrogen uptake. Our results indicated that cultivar nitrogen absorption characteristics strongly interacted with bacterial and archaeal communities in the roots and edaphic physicochemical factors. The impact of host cultivar identity, developmental stage, and spatial niche on bacterial and archaeal community structure and network complexity increased progressively from rhizosphere soils to roots. The root microbial community had a significant direct effect on plant nitrogen absorption, while plant nitrogen absorption and soil temperature also significantly influenced root microbial community structure. The cultivar with higher nitrogen absorption at the jointing stage tended to cooperate with root microbial community to facilitate their own nitrogen absorption. Our work provides important information for further wheat microbiome manipulation to influence host nitrogen absorption. KEY POINTS: • Wheat cultivar and developmental stage affected microbiome structure and network. • The root microbial community strongly interacted with plant nitrogen absorption. • High nitrogen absorption cultivar tended to cooperate with root microbiome.
Collapse
Affiliation(s)
- Chenghang Du
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Runlai Xu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xuan Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ying Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaohan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Wanqing Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Naiyue Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhencai Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Fazal A, Wen Z, Yang M, Wang C, Hao C, Lai X, Jie W, Yang L, He Z, Yang H, Cai J, Qi J, Lu G, Niu K, Sun S, Yang Y. Triple-transgenic soybean in conjunction with glyphosate drive patterns in the rhizosphere microbial community assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122337. [PMID: 37562532 DOI: 10.1016/j.envpol.2023.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyi Wang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenyu Hao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Lai
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liu Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhuoyu He
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huan Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
11
|
Li X, Zhang Y, Kong FL, Naz M, Zhou JY, Qi SS, Dai ZC, Du DL. Invasive Plant Alternanthera philoxeroides Benefits More Competition Advantage from Rhizosphere Bacteria Regardless of the Host Source. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112085. [PMID: 37299065 DOI: 10.3390/plants12112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The rhizosphere plays a vital role in the exchange of materials in the soil-plant ecosystem, and rhizosphere microorganisms are crucial for plant growth and development. In this study, we isolated two strains of Pantoea rhizosphere bacteria separately from invasive Alternanthera philoxeroides and native A. sessilis. We conducted a control experiment to test the effects of these bacteria on the growth and competition of the two plant species using sterile seedlings. Our findings showed that the rhizobacteria strain isolated from A. sessilis significantly promoted the growth of invasive A. philoxeroides in monoculture compared to native A. sessilis. Both strains significantly enhanced the growth and competitiveness of invasive A. philoxeroides under competition conditions, regardless of their host source. Our study suggests that rhizosphere bacteria, including those from different host sources, can contribute to the invasion of A. philoxeroides by significantly enhancing its competitiveness.
Collapse
Affiliation(s)
- Xu Li
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fang-Li Kong
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian-Yu Zhou
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dao-Lin Du
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Wang P, Nie J, Yang L, Zhao J, Wang X, Zhang Y, Zang H, Yang Y, Zeng Z. Plant growth stages covered the legacy effect of rotation systems on microbial community structure and function in wheat rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59632-59644. [PMID: 37012567 DOI: 10.1007/s11356-023-26703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Legume-based crop rotation is conducive to improve soil multifunctionality, but how the legacy effect of previous legumes influenced the rhizosphere microbial community of the following crops along with growth stages remains unclear. Here, the wheat rhizosphere microbial community was assessed at the regreening and filling stages with four previous legumes (mungbean, adzuki bean, soybean, and peanut), as well as cereal maize as a control. The composition and structure of both bacterial and fungal communities varied dramatically between two growth stages. The differences in fungal community structure among rotation systems were observed at both the regreening and filling stages, while the difference in bacterial community structure among rotation systems was observed only at the filling stage. The complexity and centrality of the microbial network decreased along with crop growth stages. The species associations were strengthened in legume-based rotation systems than in cereal-based rotation system at the filling stage. The abundance of KEGG orthologs (KOs) associated with carbon, nitrogen, phosphorus, and sulfur metabolism of bacterial community decreased from the regreening stage to the filling stage. However, there was no difference in the abundance of KOs among rotation systems. Together, our results showed that plant growth stages had a stronger impact than the legacy effect of rotation systems in shaping the wheat rhizosphere microbial community, and the differences among rotation systems were more obvious at the late growth stage. Such compositional, structural, and functional changes may provide predictable consequences of crop growth and soil nutrient cycling.
Collapse
Affiliation(s)
- Peixin Wang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiangwen Nie
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Lei Yang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Jie Zhao
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Xiquan Wang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Institute of Agricultural Sources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yudan Zhang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
- Jining Academy of Agricultural Sciences, Jining, 272000, China
| | - Huadong Zang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yadong Yang
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| | - Zhaohai Zeng
- College of Agronomy and Biotechnology/Key Laboratory of Farming System of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Gong X, Feng Y, Dang K, Jiang Y, Qi H, Feng B. Linkages of microbial community structure and root exudates: Evidence from microbial nitrogen limitation in soils of crop families. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163536. [PMID: 37075993 DOI: 10.1016/j.scitotenv.2023.163536] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Rhizosphere microorganisms are critical for crop nutrient cycling and soil ecological functions in agroecosystem soils; however, there is limited information regarding the role of root exudates in determining soil microbial communities and functions in plant-soil systems, especially for microbial nutrient limitations. In the present study, rhizosphere soil samples were collected from the main food crop families, including maize, soybean, potato, and buckwheat, representing the cereals, Leguminosae, Solanaceae, and Polygonaceae families, in the northern Loess Plateau, China, to investigate soil microbial co-occurrences and assembly processes and the relationship between soil microbes and root exudates. The results showed that the crop families greatly regulated the soil microbial community composition and assembly, and all microorganisms of the four species were subjected to N limitation via the vector analysis. The topological properties of the soil microbial networks varied with the crop family, demonstrating that the ecological relationships of bacterial taxa are more complex than those of fungi. Stochastic processes were more important in stimulating assembly across the four crop families; the non-dominated process governed >60 % of the critical ecological turnover in community assembly, whereas dispersal limitation was the key factor influencing fungal community assembly. Furthermore, the metabolic profiles of root exudates in response to microbial N limitation varied by family. Microbial function and metabolic limitations were strongly associated with variations in root exudates, especially amino acids and organic acids, which were directly facilitated by crop families. Our results highlight the key roles of root exudates in stimulating microbial community structure and ecological functions from the perspective of microbial nutrient limitation and improve our understanding of plant-microbe interactions in agricultural ecosystems.
Collapse
Affiliation(s)
- Xiangwei Gong
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Yu Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Ke Dang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, PR China
| | - Ying Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Hua Qi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A & F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
14
|
Huang H, Liu S, Du Y, Tang J, Hu L, Chen X. Carbon allocation mediated by arbuscular mycorrhizal fungi alters the soil microbial community under various phosphorus levels. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
15
|
Jiang D, Li Y, Wang J, Lv X, Jiang Z, Cao B, Qu J, Ma S, Zhang Y. Exogenous application of Bradyrhizobium japonicum AC20 enhances soybean tolerance to atrazine via regulating rhizosphere soil microbial community and amino acid, carbohydrate metabolism related genes expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:472-483. [PMID: 36764263 DOI: 10.1016/j.plaphy.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Atrazine is used to control broad-leaved weeds in farmland and has negative impacts on soybean growth. Legume-rhizobium symbiosis plays an important role in regulating abiotic stress tolerance of plants, however, the mechanisms of rhizobia regulate the tolerance of soybean to atrazine based on the biochemical responses of the plant-soil system are limited. In this experiment, Glycine max (L.) Merr. Dongnong 252, planted in 20 mg kg-1 of atrazine-contaminated soil, was inoculated with Bradyrhizobium japonicum AC20, and the plant growth, rhizosphere soil microbial diversity and the expression of the genes related to soybean carbon and nitrogen metabolism were assessed. The results indicated that strain AC20 inoculation alleviated atrazine-induced growth inhibition via increasing the contents of leghemoglobin and total nitrogen in soybean seedlings. The psbA gene expression level of the soybean seedlings that inoculated strain AC20 was 1.4 times than that of no rhizobium inoculating treatments. Moreover, the inoculated AC20 increased the abundance of Acidobacteria and Actinobacteria in soybean rhizosphere. Transcriptome analysis demonstrated that strain AC20 regulated the genes expression of amino acid metabolism and carbohydrate metabolism of soybean seedlings. Correlation analysis between 16S rRNA and transcriptome showed that strain AC20 reduced Planctomycetes abundance so as to down-regulated the expression of genes Glyma. 13G087800, Glyma. 12G005100 and Glyma.12G098900 involved in starch synthesis pathway of soybean leaves. These results provide available information for the rhizobia application to enhance the atrazine tolerate in soybean seedlings.
Collapse
Affiliation(s)
- Duo Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu Li
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianmin Wang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyu Lv
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
16
|
Wang M, Xu Y, Ni H, Ren S, Li N, Wu Y, Yang Y, Liu Y, Liu Z, Liu Y, Shi J, Zhang Y, Jiang L, Tu Q. Effect of fertilization combination on cucumber quality and soil microbial community. Front Microbiol 2023; 14:1122278. [PMID: 36910239 PMCID: PMC9996052 DOI: 10.3389/fmicb.2023.1122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Due to the lack of scientific guidance on the usage of fertilizer, the overuse of chemical and organic fertilizer is commonly witnessed all over the world, which causes soil degradation and leads to environmental pollution. The effect of fertilizer strategies on soil properties, cucumber nutrients, and microbial community was investigated in this study with the aim to explore an optimized and enhanced fertilizer strategy. There were five fertilizer strategies conducted including CK (no fertilizer), M (cow dung manure only), NPK (chemical fertilizer only), NPKM (chemical fertilizer combined with manure), and DNPKM (30%-reducing chemical fertilizer combined with manure). It was found that different fertilizer strategies significantly affected the soil organic matter and nutrient levels and cucumber production and nutrient contents of the experimental field. Different fertilizer strategies showed dramatic effects on the alpha- and beta-diversity of soil microbial communities. Moreover, NPKM and DNPKM groups could significantly improve the bacterial abundance and fungal diversity. In addition, the structure of microbial communities was significantly changed in the presence of manure, chemical fertilizer, and their combination. Optimized combination of NPK with M improved the abundance of aerobic, biofilm formation-related, and Gram-negative bacteria and suppressed the anaerobic and Gram-positive bacteria. The presence of saprotrophs fungi was enhanced by all fertilizer strategies, especially the plethora of Gymnoascus. The combination of manure with chemical fertilizer could improve the availability of nutrients, and therefore reduce the adverse effects and potential risks induced by excessive fertilizer application. In conclusion, the new fertilization approach can not only meet the growth requirements of cucumber after reduced fertilization, but also protect soil health, which provides a new candidate for the eco-friendly technology to satisfy the topic of carbon neutrality.
Collapse
Affiliation(s)
- Mei Wang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Xu
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Haiping Ni
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Shiai Ren
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
| | - Ni Li
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuxia Wu
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yan Yang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yumin Liu
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zongzheng Liu
- Qingdao Institute of Animal Husbandry and Veterinary Medicine, Qingdao, China
| | - Yingchun Liu
- Qingdao Institute of Animal Husbandry and Veterinary Medicine, Qingdao, China
| | - Jing Shi
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lihua Jiang
- Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Resources and Environmental Engineering, Shandong University of Agricultural Engineering, Jinan, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
17
|
Xing W, Gai X, Ju F, Chen G. Microbial communities in tree root-compartment niches under Cd and Zn pollution: Structure, assembly process and co-occurrence relationship. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160273. [PMID: 36460109 DOI: 10.1016/j.scitotenv.2022.160273] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Woody plants have showed great potential in remediating severely contaminated soils by heavy metals (HMs) due to their cost-efficient and ecologically friendly trait. It is believed the root-associated microbiota plays a vital role in phytoremediation for HMs. However, the ecological process controlling the assembly and composition of tree root-associated microbial communities under HMs stress remains poorly understood. Herein, we profiled the bulk soil, rhizosphere and endosphere microbial communities of trees growing in heavily Cd and Zn polluted soil. The microbiota was gradually filtered from bulk soil to the tree roots and was selectively enriched in roots with specific taxa, such as Proteobacteria and Ascomycota. The microbial community assembly along the soil-root continuum was mainly controlled by deterministic processes from bulk soil to the endosphere, with the normalized stochasticity ratio (NST) indices of 67.16-31.05 % and 30.37-15.02 % for bacteria and fungi, respectively. Plant selection pressure sequentially increased from bulk soil to rhizosphere to endosphere, with the reduced bacterial alpha diversity accompanying the consequently reduced complexity of the co-occurrence network. Together, the findings provide new evidence for horizontal transmission of endophytic microbiome from soil to the host, which can shed light on the future screening and application of microbial-assisted phytoremediation.
Collapse
Affiliation(s)
- Wenli Xing
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Xu Gai
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, PR China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, PR China.
| |
Collapse
|
18
|
Drinkwater LE, Snapp SS. Advancing the science and practice of ecological nutrient management for smallholder farmers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.921216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soil degradation is widespread in smallholder agrarian communities across the globe where limited resource farmers struggle to overcome poverty and malnutrition. This review lays out the scientific basis and practical management options for an ecologically based approach to sustainably managing soil fertility, with particular attention to smallholder subsistence systems. We seek to change the trajectory of development programs that continue to promote inorganic fertilizers and other high input strategies to resource constrained smallholders, despite ample evidence that this approach is falling short of food security goals and contributing to resource degradation. Ecological nutrient management (ENM) is an agroecological approach to managing the biogeochemical cycles that govern soil ecosystem services and soil fertility. The portfolio of ENM strategies extends beyond reliance on inorganic fertilizers and is guided by the following five principles: (1) Build soil organic matter and other nutrient reserves. (2) Minimize the size of N and P pools that are the most susceptible to loss. (3) Maximize agroecosystem capacity to use soluble, inorganic N and P. (4) Use functional and phylogenetic biodiversity to minimize bare fallows and maximize presence of growing plants. (5) Construct agroecosystem and field scale mass balances to track net nutrient flows over multiple growing seasons. Strategic increases in spatial and temporal plant species diversity is a core ENM tactic that expands agroecosystem multifunctionality to meet smallholder priorities beyond soil restoration and crop yields. Examples of ENM practices include the use of functionally designed polycultures, diversified rotations, reduced fallow periods, increased reliance on legumes, integrated crop-livestock production, and use of variety of soil amendments. These practices foster soil organic matter accrual and restoration of soil function, both of which underpin agroecosystem resilience. When ENM is first implemented, short-term yield outcomes are variable; however, over the long-term, management systems that employ ENM can increase yields, yield stability, profitability and food security. ENM rests on a solid foundation of ecosystem and biogeochemical science, and despite the many barriers imposed by current agricultural policies, successful ENM systems are being promoted by some development actors and used by smallholder farmers, with promising results.
Collapse
|
19
|
Wang B, Huang S, Li Z, Zhou Z, Huang J, Yu H, Peng T, Song Y, Na X. Factors driving the assembly of prokaryotic communities in bulk soil and rhizosphere of Torreya grandis along a 900-year age gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155573. [PMID: 35504392 DOI: 10.1016/j.scitotenv.2022.155573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Excessive nutrient inputs imperil the stability of forest ecosystems via modifying the interactions among soil properties, microbes, and plants, particularly in forests composed of cash crops that are under intensive disturbances of agricultural activities, such as Torreya grandis. Understanding the potential drivers of soil microbial community helps scientists develop effective strategies for balancing the protection and productivity of the ancient Torreya forest. Here, we assayed the link between plant and soil parameters and prokaryote communities in bulk soil and T. grandis rhizosphere in 900-year-old stands by detecting plant and soil properties in two independent sites in southeastern China. Our results showed no apparent influence of stand age on the compositions of prokaryote communities in bulk soil and T. grandis rhizosphere. In contrast, soil abiotic factors (i.e., soil pH) overwhelm plant characteristics (i.e., height, plant tissue carbon, nitrogen, and phosphorus content) and contribute most to the shift in prokaryote communities in bulk soil and T. grandis rhizosphere. Soil pH leads to an increase in microbiota alpha diversity in both compartments. With the help of a random forest, we found a critical transition point of pH (pH = 4.9) for the dominance of acidic and near-neutral bacterial groups. Co-occurrence network analysis further revealed a substantially simplified network in plots with a pH of <4.9 versus samples with a pH of ≥4.9, indicating that soil acidification induces biodiversity loss and disrupts potential interactions among soil microbes. Our findings provide empirical evidence that soil abiotic properties nearly completely offset the roles of host plants in the assembly and potential interactions of rhizosphere microorganisms. Hence, reduction in inorganic fertilization and proper liming protocols should be seriously considered by local farmers to protect ancient Torreya forests.
Collapse
Affiliation(s)
- Bin Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Shengyi Huang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Zhengcai Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang 311400, China
| | - Juying Huang
- School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Hailong Yu
- School of Life Science, Ningxia University, Yinchuan 750021, China
| | - Tong Peng
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou 730000, China
| | - Yanfang Song
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou 730000, China
| | - Xiaofan Na
- School of Life Science, Lanzhou University, Lanzhou 730000, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou 730000, China.
| |
Collapse
|
20
|
Abstract
The soil fungal community plays pivotal roles in soil nutrient cycling and plant health and productivity in agricultural ecosystems. However, the differential adaptability of soil fungi to different microenvironments (niches) is a bottleneck limiting their application in agriculture. Hence, the understanding of ecological processes that drive fungal microbiome assembly along the soil-root continuum is fundamental to harnessing the plant-associated microbiome for sustainable agriculture. Here, we investigated the factors that shape fungal community structure and assembly in three compartment niches (the bulk soil, rhizosphere, and rhizoplane) associated with tobacco (Nicotiana tabacum L.), with four soil types tested under controlled greenhouse conditions. Our results demonstrate that fungal community assembly along the soil-root continuum is governed by host plant rather than soil type and that soil chemical properties exert a negligible effect on the fungal community assembly in the rhizoplane. Fungal diversity and network complexity decreased in the order bulk soil > rhizosphere > rhizoplane, with a dramatic decrease in Ascomycota species number and abundance along the soil-root continuum. However, facilitations (positive interactions) were enhanced among fungal taxa in the rhizoplane niche. The rhizoplane supported species specialization with enrichment of some rare species, contributing to assimilative community assembly in the rhizoplane in all soil types. Mortierella and Pyrenochaetopsis were identified as important indicator genera of the soil-root microbiome continuum and good predictors of plant agronomic traits. The findings provide empirical evidence for host plant selection and enrichment/depletion processes of fungal microbiome assembly along the soil-root continuum. IMPORTANCE Fungal community assembly along the soil-root continuum is shaped largely by the host plant rather than the soil type. This finding facilitates the implementations of fungi-associated biocontrol and growth-promoting for specific plants in agriculture practice, regardless of the impacts from variations in geographical environments. Furthermore, the depletion of complex ecological associations in the fungal community along the soil-root continuum and the enhancement of facilitations among rhizoplane-associated fungal taxa provide empirical evidence for the potential of community simplification as an approach to target the plant rhizoplane for specific applications. The identified indicators Mortierella and Pyrenochaetopsis along the soil-root microbiome continuum are good predictors of tobacco plant agronomic traits, which should be given attention when manipulating the root-associated microbiome.
Collapse
|
21
|
Zhao YH, Wang N, Yu MK, Yu JG, Xue LH. Rhizosphere and Straw Return Interactively Shape Rhizosphere Bacterial Community Composition and Nitrogen Cycling in Paddy Soil. Front Microbiol 2022; 13:945927. [PMID: 35875526 PMCID: PMC9301285 DOI: 10.3389/fmicb.2022.945927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Currently, how rice roots interact with straw return in structuring rhizosphere communities and nitrogen (N) cycling functions is relatively unexplored. In this study, paddy soil was amended with wheat straw at 1 and 2% w/w and used for rice growth. The effects of the rhizosphere, straw, and their interaction on soil bacterial community composition and N-cycling gene abundances were assessed at the rice maturity stage. For the soil without straw addition, rice growth, i.e., the rhizosphere effect, significantly altered the bacterial community composition and abundances of N-cycling genes, such as archaeal and bacterial amoA (AOA and AOB), nirK, and nosZ. The comparison of bulk soils between control and straw treatments showed a shift in bacterial community composition and decreased abundance of AOA, AOB, nirS, and nosZ, which were attributed to sole straw effects. The comparison of rhizosphere soils between control and straw treatments showed an increase in the nifH gene and a decrease in the nirK gene, which were attributed to the interaction of straw and the rhizosphere. The number of differentially abundant genera in bulk soils between control and straw treatments was 13-23, similar to the number of 16-22 genera in rhizosphere soil between control and straw treatment. However, the number of genera affected by the rhizosphere effect was much lower in soil amended with straw (3-4) than in soil without straw addition (9). Results suggest possibly more pronounced impacts of straw amendments in shaping soil bacterial community composition.
Collapse
Affiliation(s)
- Ya-Hui Zhao
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, P.R. China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ning Wang
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, P.R. China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Meng-Kang Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, P.R. China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Henan Institute of Science and Technology, Xinxiang, China
| | - Jian-Guang Yu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, P.R. China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Li-Hong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture, P.R. China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
22
|
Liu J, Wang X, Liu L, Wu X, Xia Z, Guo Q. Rhizosphere soil bacterial communities and nitrogen cycling affected by deciduous and evergreen tree species. Ecol Evol 2022; 12:e9103. [PMID: 35845380 PMCID: PMC9277416 DOI: 10.1002/ece3.9103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022] Open
Abstract
Deciduous and evergreen trees differ in their responses to drought and nitrogen (N) demand. Whether or not these functional types affect the role of the bacterial community in the N cycle during drought remains uncertain. Two deciduous tree species (Alnus cremastogyne, an N2-fixing species, and Liquidambar formosana) and two evergreen trees (Cunninghamia lanceolata and Pinus massoniana) were used to assess factors in controlling rhizosphere soil bacterial community and N cycling functions. Photosynthetic rates and biomass production of plants, 16S rRNA sequencing and N-cycling-related genes of rhizosphere soil were measured. The relative abundance of the phyla Actinobacteria and Firmicutes was higher, and that of Proteobacteria, Acidobacteria, and Gemmatimondaetes was lower in rhizosphere soil of deciduous trees than that of evergreen. Beta-diversity of bacterial community also significantly differed between the two types of trees. Deciduous trees showed significantly higher net photosynthetic rates and biomass production than evergreen species both at well water condition and short-term drought. Root biomass was the most important factor in driving soil bacterial community and N-cycling functions than total biomass and aboveground biomass. Furthermore, 44 bacteria genera with a decreasing response and 46 taxa showed an increased response along the root biomass gradient. Regarding N-cycle-related functional genes, copy numbers of ammonia-oxidizing bacteria (AOB) and autotrophic ammonia-oxidizing archaea (AOA), N2 fixation gene (nifH), and denitrification genes (nirK, nirS) were significantly higher in the soil of deciduous trees than in that of the evergreen. Structural equation models explained 50.2%, 47.6%, 48.6%, 49.4%, and 37.3% of the variability in copy numbers of nifH, AOB, AOA, nirK, and nirS, respectively, and revealed that root biomass had significant positive effects on copy numbers of all N-cycle functional genes. In conclusion, root biomass played key roles in affecting bacterial community structure and soil N cycling. Our findings have important implications for our understanding of plants control over bacterial community and N-cycling function in artificial forest ecosystems.
Collapse
Affiliation(s)
- Jiantong Liu
- Department of Ecology, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Xinyu Wang
- Department of Ecology, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Lin Liu
- Department of Ecology, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Xuefeng Wu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research StationNortheast Normal UniversityChangchunChina
| | - Zhichao Xia
- Department of Ecology, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Qingxue Guo
- Department of Ecology, College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
23
|
Microbial Turnover and Dispersal Events Occur in Synchrony with Plant Phenology in the Perennial Evergreen Tree Crop Citrus sinensis. mBio 2022; 13:e0034322. [PMID: 35642946 PMCID: PMC9239260 DOI: 10.1128/mbio.00343-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging research indicates that plant-associated microbes can alter plant developmental timing. However, it is unclear if host phenology affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants face challenges in separating effects of tissue age from phenological driven effects on the microbiome. In contrast, evergreen perennial trees, like Citrus sinensis, retain leaves for years, allowing for uniform sampling of similarly aged leaves from the same developmental cohort. This aids in separating phenological effects on the microbiome from impacts due to annual leaf maturation/senescence. Here, we used this system to test the hypothesis that host phenology acts as a driver of microbiome composition. Citrus sinensis leaves and roots were sampled during seven phenological stages. Using amplicon-based sequencing, followed by diversity, phylogenetic, differential abundance, and network analyses, we examined changes in bacterial and fungal communities. Host phenological stage is the main determinant of microbiome composition, particularly within the foliar bacteriome. Microbial enrichment/depletion patterns suggest that microbial turnover and dispersal were driving these shifts. Moreover, a subset of community shifts were phylogenetically conserved across bacterial clades, suggesting that inherited traits contribute to microbe-microbe and/or plant-microbe interactions during specific phenophases. Plant phenology influences microbial community composition. These findings enhance understanding of microbiome assembly and identify microbes that potentially influence plant development and reproduction. IMPORTANCE Research at the forefront of plant microbiome studies indicates that plant-associated microbes can alter the timing of plant development (phenology). However, it is unclear if host phenological stage affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants can face difficulty in separating effects of tissue age from phenological driven effects on the microbiome. Evergreen perennial plants, like sweet orange, maintain mature leaves for multiple years, allowing for uniform sampling of similarly aged tissue across host reproductive stages. Using this system, multiyear sampling, and high-throughput sequencing, we identified plant phenology as a major driver of microbiome composition, particularly within the leaf-associated bacterial communities. Distinct changes in microbial patterns suggest that microbial turnover and dispersal are mechanisms driving these community shifts. Additionally, closely related bacteria have similar abundance patterns across plant stages, indicating that inherited microbial traits may influence how bacteria respond to host developmental changes. Overall, this study illustrates that plant phenology does indeed govern microbiome seasonal shifts and identifies microbial candidates that may affect plant reproduction and development.
Collapse
|
24
|
Relationship between nitrifying microorganisms and other microorganisms residing in the maize rhizosphere. Arch Microbiol 2022; 204:246. [PMID: 35394234 DOI: 10.1007/s00203-022-02857-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
The microbial network of rhizosphere is unique as a result of root exudate. Insights into the relationship that exists with the energy metabolic functional groups will help in biofertilizer production. We hypothesize that there exists a relationship between nitrifying microorganisms and other energy metabolic functional microbial groups in the maize rhizosphere across different growth stages. Nucleospin soil DNA extraction kit was used to extract DNA from soil samples collected from maize rhizosphere. The 16S metagenomics sequencing was carried out on Illumina Miseq. The sequence obtained was analyzed on MG-RAST. Nitrospira genera were the most abundant in the nitrifying community. Nitrifying microorganisms were more than each of the studied functional groups except for nitrogen-fixing bacteria. Also, majority of the microorganisms were noticed at the fruiting stage and there was variation in the microbial structure across different growth stages. The result showed that there exists a substantial amount of both negative and positive correlation within the nitrifying microorganisms, and between them and other energy metabolic functional groups. The knowledge obtained from this study will help improve the growth and development of maize through modification of the rhizosphere microbial community structure.
Collapse
|
25
|
Kataoka R, Yamamura H, Hayakawa M. Characterization of the Non-rhizobial Bacterial Community in the Nodule-Associated Soils of Akebono Soybeans and Isolation of Antibiotic Producing Amycolatopsis spp. Indian J Microbiol 2022; 62:242-248. [DOI: 10.1007/s12088-022-00999-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023] Open
|
26
|
Schwabe R, Dittrich C, Kadner J, Rudi Senges CH, Bandow JE, Tischler D, Schlömann M, Levicán G, Wiche O. Secondary metabolites released by the rhizosphere bacteria Arthrobacter oxydans and Kocuria rosea enhance plant availability and soil-plant transfer of germanium (Ge) and rare earth elements (REEs). CHEMOSPHERE 2021; 285:131466. [PMID: 34271468 DOI: 10.1016/j.chemosphere.2021.131466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 05/02/2023]
Abstract
Here, we explore effects of metallophore-producing rhizobacteria on the plant availability of germanium (Ge) and rare earth elements (REEs). Five isolates of the four species Rhodococcus erythropolis, Arthrobacter oxydans, Kocuria rosea and Chryseobacterium koreense were characterized regarding their production of element-chelators using genome-mining, LC-MS/MS analysis and solid CAS-assay. Additionally, a soil elution experiment was conducted in order to identify isolates that increase solubility of Ge and REEs in soil solution. A. oxydans ATW2 and K. rosea ATW4 released desferrioxamine-, bacillibactin- and surfactin-like compounds that mobilized Ge and REEs as well as P, Fe, Si and Ca in soil. Subsequently, oat, rapeseed and reed canary grass were cultivated on soil and sand and treated with cells and iron depleted culture supernatants of A. oxydans ATW2 and K. rosea ATW4. Inoculation increased plant yield and shoot phosphorus (P), manganese (Mn), Ge and REE concentrations. However, effects of the inoculation varied substantially between the growth substrates and plant species. On sand, A. oxydans ATW2 increased accumulation of REEs in all plant species and root-shoot translocation in rapeseed, while K. rosea ATW4 enhanced REE accumulation in rapeseed only, without effects on other plant species. Sand-cultured oat plants showed increased Ge accumulation and root-shoot translocation in presence of A. oxydans ATW2 cells and K. rosea ATW4 supernatant; however, there was no effect on other plant species, irrespective the growth substrate used. In contrast, soil-cultured rapeseed showed enhanced REE accumulation in presence of cells of A. oxydans ATW2 while there were no effects on other plant species and Ge. The processes involved are not yet fully understood. Nevertheless, we demonstrated that chemical microbe-soil-plant relationships influence plant availability of nutrients together with Ge and REEs, which has major implications on our understanding of biogeochemical element cycling and development of sustainable bioremediation and biomining technologies.
Collapse
Affiliation(s)
- Ringo Schwabe
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany; Laboratorio de Microbiología Básica y Aplicada, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo ÒHiggins, 3363, Santiago, Chile
| | - Christine Dittrich
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Julian Kadner
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | | | - Julia Elisabeth Bandow
- Applied Microbiology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Michael Schlömann
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany
| | - Gloria Levicán
- Laboratorio de Microbiología Básica y Aplicada, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo ÒHiggins, 3363, Santiago, Chile
| | - Oliver Wiche
- Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Straße 29, 09599, Freiberg, Germany.
| |
Collapse
|
27
|
Lewin S, Francioli D, Ulrich A, Kolb S. Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. ENVIRONMENTAL MICROBIOME 2021; 16:18. [PMID: 34641981 PMCID: PMC8513244 DOI: 10.1186/s40793-021-00387-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/28/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The native crop bacterial microbiota of the rhizosphere is envisioned to be engineered for sustainable agriculture. This requires the identification of keystone rhizosphere Bacteria and an understanding on how these govern crop-specific microbiome assembly from soils. We identified the metabolically active bacterial microbiota (SSU RNA) inhabiting two compartments of the rhizosphere of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rye (Secale cereale), and oilseed rape (Brassica napus L.) at different growth stages. RESULTS Based on metabarcoding analysis the bacterial microbiota was shaped by the two rhizosphere compartments, i.e. close and distant. Thereby implying a different spatial extent of bacterial microbiota acquirement by the cereals species versus oilseed rape. We derived core microbiota of each crop species. Massilia (barley and wheat) and unclassified Chloroflexi of group 'KD4-96' (oilseed rape) were identified as keystone Bacteria by combining LEfSe biomarker and network analyses. Subsequently, differential associations between networks of each crop species' core microbiota revealed host plant-specific interconnections for specific genera, such as the unclassified Tepidisphaeraceae 'WD2101 soil group'. CONCLUSIONS Our results provide keystone rhizosphere Bacteria derived from for crop hosts and revealed that cohort subnetworks and differential associations elucidated host species effect that was not evident from differential abundance of single bacterial genera enriched or unique to a specific plant host. Thus, we underline the importance of co-occurrence patterns within the rhizosphere microbiota that emerge in crop-specific microbiomes, which will be essential to modify native crop microbiomes for future agriculture and to develop effective bio-fertilizers.
Collapse
Affiliation(s)
- Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Andreas Ulrich
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany.
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Das S, Kim GW, Lee JG, Bhuiyan MSI, Kim PJ. Silicate fertilization improves microbial functional potentials for stress tolerance in arsenic-enriched rice cropping systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125953. [PMID: 33984783 DOI: 10.1016/j.jhazmat.2021.125953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The host plant and its rhizosphere microbiome are similarly exposed to abiotic stresses under arsenic (As)-enriched cropping systems. Since silicon (Si) fertilization is effective in alleviating As-induced stresses in plants, and plant-microbe interactions are tightly coupled, we hypothesized that Si-fertilization would improve soil microbial functional potentials to environmental stress tolerance, which was not yet studied. With the help of high throughput metagenome, microarray and analyzing plant impacts on soil microbiome and the environment, we tested the hypothesis in two geographically different rice (i.e., Japonica and Indica) grown on As-enriched soils. Silicate fertilization in rice grown on As-enriched soils altered rhizosphere bacterial communities and increased several commensal microorganisms and their genetic potential to tolerate oxidative stress, osmotic stress, oxygen limitation, nitrogen and phosphate limitation, heat and cold shock, and radiation stress. The stress resistant microbial communities shifted with the changes in rhizosphere nutrient flows and cumulative plant impacts on the soil environment. The study highlights a thus-far unexplored behavior of Si-fertilization to improve microbial stress resilience under As-laden cropping systems and opens up a promising avenue to further study how commonalities in plant-microbe signaling in response to Si-fertilization alleviates As-induced stresses in agro-systems.
Collapse
Affiliation(s)
- Suvendu Das
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea
| | - Gil Won Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea
| | - Jeong Gu Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| | | | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea; Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
29
|
Li Y, Li T, Zhao D, Wang Z, Liao Y. Different tillage practices change assembly, composition, and co-occurrence patterns of wheat rhizosphere diazotrophs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144252. [PMID: 33429279 DOI: 10.1016/j.scitotenv.2020.144252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Tillage has a considerable effect on the soil ecosystem and its services, including microbial communities. Harnessing beneficial microbes is a sustainable way to optimizing crop management and agricultural production. Although diazotrophs play a major role in global biological nitrogen fixation, the effects of tillage on diazotrophic communities in the rhizosphere are not fully understood. In the present study, we investigated the diazotrophic community in wheat rhizosphere soil under different tillage treatments in a long-term experiment, i.e., plow tillage (considered as conventional tillage), chisel plow tillage (considered as conservation tillage), and zero tillage (considered as conservation tillage). Tillage led to a divergent distribution in the rhizosphere diazotrophic community and significant changes in community structure. Tillage caused specific responses from members/modules of the rhizosphere diazotrophic community co-occurrence network, and the relative abundance of keystone taxa was higher under conservation tillage than under conventional tillage. The increased abundance of tillage-sensitive modules under conservation tillage had a broad and significant positive correlation with rhizosphere nutrient availability, whereas the opposite was true for conventional tillage. Differences in nutrients under different tillage practices may lead to different assembly processes of diazotrophs. Overall, our findings indicate that tillage significantly affects the assembly and composition of the rhizosphere diazotrophic community, emphasizing the importance of improved substrate availability for rhizosphere diazotrophic modules under conservation tillage. This knowledge could deepen our understanding of the rhizosphere functional microbial community (e.g., biological nitrogen fixation).
Collapse
Affiliation(s)
- Yüze Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tong Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Deqiang Zhao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ziting Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, Guangxi 530004, PR China; College of Agronomy, Guangxi University, Nanning, Guangxi 530004, PR China.
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
30
|
Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ. Host selection shapes crop microbiome assembly and network complexity. THE NEW PHYTOLOGIST 2021; 229:1091-1104. [PMID: 32852792 DOI: 10.1111/nph.16890] [Citation(s) in RCA: 250] [Impact Index Per Article: 83.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/13/2020] [Indexed: 05/20/2023]
Abstract
Plant microbiomes are essential to host health and productivity but the ecological processes that govern crop microbiome assembly are not fully known. Here we examined bacterial communities across 684 samples from soils (rhizosphere and bulk soil) and multiple compartment niches (rhizoplane, root endosphere, phylloplane, and leaf endosphere) in maize (Zea mays)-wheat (Triticum aestivum)/barley (Hordeum vulgare) rotation system under different fertilization practices at two contrasting sites. Our results demonstrate that microbiome assembly along the soil-plant continuum is shaped predominantly by compartment niche and host species rather than by site or fertilization practice. From soils to epiphytes to endophytes, host selection pressure sequentially increased and bacterial diversity and network complexity consequently reduced, with the strongest host effect in leaf endosphere. Source tracking indicates that crop microbiome is mainly derived from soils and gradually enriched and filtered at different plant compartment niches. Moreover, crop microbiomes were dominated by a few dominant taxa (c. 0.5% of bacterial phylotypes), with bacilli identified as the important biomarker taxa for wheat and barley and Methylobacteriaceae for maize. Our work provides comprehensive empirical evidence on host selection, potential sources and enrichment processes for crop microbiome assembly, and has important implications for future crop management and manipulation of crop microbiome for sustainable agriculture.
Collapse
Affiliation(s)
- Chao Xiong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jun-Tao Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Brajesh Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ju-Pei Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei-Pei Li
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Gui-Bao Wang
- Soil and Fertilizer Station of Qilin District, Qujing, Yunnan Province, 655000, China
| | - Chuan-Fa Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resource and Environmental Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - An-Hui Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Chai X, Yang Y, Wang X, Hao P, Wang L, Wu T, Zhang X, Xu X, Han Z, Wang Y. Spatial variation of the soil bacterial community in major apple producing regions of China. J Appl Microbiol 2020; 130:1294-1306. [PMID: 33012070 DOI: 10.1111/jam.14878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 11/26/2022]
Abstract
AIMS In China, apple production areas are largely from the coastal to inland areas and across varied climate zones. However, the relationship among soil micro-organisms, environmental factors and fruit quality has not been clearly confirmed in orchards. Here we attempted to identify the variation of soil bacteria in the main apple producing regions and reveal the relationship among climatic factor, soil properties, soil bacterial community and fruit quality. METHODS AND RESULTS Sixty soil samples were collected from six main apple producing areas in China. We examined the soil bacteria using bacterial 16S rRNA gene amplicon profiling. The results show that the soil bacterial diversity of apple orchards varied from the Bohai Bay Region to the Loess Plateau Region. Proteobacteria, Acidobacteria and Actinobacteria were the predominant taxa at the phylum level for all six areas. In the Bohai Bay and the Loess Plateau region, which are the two largest apple producing areas, Proteobacteria and Actinobacteria had the highest relative abundance, respectively. Furthermore, soil bacterial diversity showed positive correlation with the mean annual temperature (MAT), soil organic matter (SOM) and pH. Excluding a direct effect on the apple fruit quality, MAT exerted an indirect influence through soil SOM and pH to alter the relative abundance of dominant taxa and shift the bacterial diversity, which affects the apple fruit titratable acids and soluble solids. CONCLUSIONS Geographic variables underlie apple orchard soil bacterial communities vary according to spatial scale. Environmental factors exert an indirect effect on apple fruit quality via shaping soil bacterial community. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides a list of bacteria associated with environmental factors and the ecological attributes of their interactions in apple orchards, which will improve our ability to promote soil bacterial functional capabilities in order to reduce the fertilizer input and enhance the fruit quality.
Collapse
Affiliation(s)
- X Chai
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Y Yang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - X Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - P Hao
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - L Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - T Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - X Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - X Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Z Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Y Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China.,Key Laboratory of Biology and Genetic Improvement of Horticultural (Nutrition and Physiology), the Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
32
|
Structure of Bacterial Communities in Phosphorus-Enriched Rhizosphere Soils. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although phytoremediation is the main method for P-removal and maintaining ecosystem balance in geological phosphorus-enriched soils (PES), little is known about the structure and function of microbial communities in PES. Interactions between plants and soil microorganisms mainly occur in the rhizosphere. The aim of this work was to investigate the composition and diversity of bacterial communities found in rhizosphere soils associated with the following three dominant plant species: Erianthus rufipilus, Coriaria nepalensis, and Pinus yunnanensis. In addition, we compared these rhizosphere bacterial communities with those derived from bulk soils and grassland plots in PES from the Dianchi Lake basin of southwestern China. The Illumina MiSeq platform for high-throughput sequencing of 16S rRNA was used for the taxonomy and the analysis of soil bacterial communities. The results showed higher bacterial diversity and nutrient content in rhizosphere soils as compared with bulk soils. Rhizosphere bacteria were predominantly comprised of Proteobacteria (24.43%) and Acidobacteria (21.09%), followed by Verrucomicrobia (19.48%) and Planctomycetes (9.20%). A comparison of rhizosphere soils of the selected plant species in our study and the grassland plots showed that Acidobacteria were the most abundant in the rhizosphere soil of E. rufipilus; Bradyrhizobiaceae and Rhizobiaceae in the order Rhizobiales from C. nepalensis were found to have the greatest abundance; and Verrucomicrobia and Planctomycetes were in higher abundance in P. yunnanensis rhizosphere soils and in grassland plots. A redundancy analysis revealed that bacterial abundance and diversity were mainly influenced by soil water content, soil organic matter, and total nitrogen.
Collapse
|
33
|
Das S, Gwon HS, Khan MI, Jeong ST, Kim PJ. Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Sci Rep 2020; 10:6746. [PMID: 32317769 PMCID: PMC7174330 DOI: 10.1038/s41598-020-63783-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/26/2020] [Indexed: 11/26/2022] Open
Abstract
With the increase in iron/steel production, the higher volume of by-products (slag) generated necessitates its efficient recycling. Because the Linz-Donawitz (LD) slag is rich in silicon (Si) and other fertilizer components, we aim to evaluate the impact of the LD slag amendment on soil quality (by measuring soil physicochemical and biological properties), plant nutrient uptake, and strengthens correlations between nutrient uptake and soil bacterial communities. We used 16 S rRNA illumine sequencing to study soil bacterial community and APIZYM assay to study soil enzymes involved in C, N, and P cycling. The LD slag was applied at 2 Mg ha−1 to Japonica and Indica rice cultivated under flooded conditions. The LD slag amendment significantly improved soil pH, plant photosynthesis, soil nutrient availability, and the crop yield, irrespective of cultivars. It significantly increased N, P, and Si uptake of rice straw. The slag amendment enhanced soil microbial biomass, soil enzyme activities and enriched certain bacterial taxa featuring copiotrophic lifestyles and having the potential role for ecosystem services provided to the benefit of the plant. The study evidenced that the short-term LD slag amendment in rice cropping systems is useful to improve soil physicochemical and biological status, and the crop yield.
Collapse
Affiliation(s)
- Suvendu Das
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Hyo Suk Gwon
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Muhammad Israr Khan
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Seung Tak Jeong
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea. .,Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|