1
|
Liefer JD, White AE, Finkel ZV, Irwin AJ, Dugenne M, Inomura K, Ribalet F, Armbrust EV, Karl DM, Fyfe MH, Brown CM, Follows MJ. Latitudinal patterns in ocean C:N:P reflect phytoplankton acclimation and macromolecular composition. Proc Natl Acad Sci U S A 2024; 121:e2404460121. [PMID: 39499637 PMCID: PMC11572967 DOI: 10.1073/pnas.2404460121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/01/2024] [Indexed: 11/07/2024] Open
Abstract
The proportions of carbon (C), nitrogen (N), and phosphorus (P) in surface ocean particulate matter deviate greatly from the canonical Redfield Ratio (C:N:P = 106:16:1) in space and time with significant implications for global carbon storage as this matter reaches the deep ocean. Recent work has revealed clear latitudinal patterns in C:N:P, yet the relative importance of ecological, physiological, or biochemical processes in creating these patterns is unclear. We present high-resolution, concurrent measurements of particulate C:N:P, macromolecular composition, environmental conditions, and plankton community composition from a transect spanning a subtropical-subpolar boundary, the North Pacific Transition Zone. We find that the summed contribution of macromolecules to particulate C, N, and P is consistent with, and provides interpretation for, particulate C:N:P patterns. A decline in particulate C:N from the subtropical to subpolar North Pacific largely reflects an increase in the relative contribution of protein compared to carbohydrate and lipid, whereas variation in C:P and N:P correspond to shifts in protein relative to polyphosphate, DNA, and RNA. Possible causes for the corresponding trends in C:N and macromolecular composition include physiological responses and changes in community structure of phytoplankton, which represented approximately 1/3rd of particulate C across the transect. Comparison with culture experiments and an allocation-based model of phytoplankton macromolecular composition suggest that physiological acclimation to changing nutrient supply is the most likely explanation for the latitudinal trend in C:N, offering both a mechanistic interpretation and biochemical basis for large-scale patterns in C:N:P.
Collapse
Affiliation(s)
- Justin D. Liefer
- Department of Biology, Mount Allison University, Sackville, NBE4L 1G7, Canada
| | - Angelicque E. White
- Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Zoe V. Finkel
- Department of Oceanography, Dalhousie University, Halifax, NSB3H 4R2, Canada
| | - Andrew J. Irwin
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NSB3H 4R2, Canada
| | - Mathilde Dugenne
- Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Kingston, RI02881
| | - François Ribalet
- School of Oceanography, University of Washington, Seattle, WA98195
| | | | - David M. Karl
- Department of Oceanography, University of Hawai’i at Mānoa, Honolulu, HI96822
| | - Matthew H. Fyfe
- Department of Geography and Environment, Mount Allison University, Sackville, NBE4L 1G7, Canada
| | - Christopher M. Brown
- Department of Geography and Environment, Mount Allison University, Sackville, NBE4L 1G7, Canada
| | - Michael J. Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
2
|
Tong BJ, Zhao QJ, Li HY, Zhou Y, Li H, Li JW. Comparative nutrient concentration and resorption dynamics in petals and leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14626. [PMID: 39545470 DOI: 10.1111/ppl.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Chemical elements support various plant functions, and their reutilization is important for plant ecological adaptation. However, there is a lack of studies comparing the elemental concentration and their reutilization in floral petals and leaves of the same plant. To address this research gap, we conducted a comparative study across 38 plant species with diverse life forms in a common garden. Our investigation focused on the nutrient concentration of 10 elements in both petals and leaves and functional traits, including flower lifespan, dry mass per unit area, water concentration, and vein density. We have found that the elements of nitrogen (N), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were more abundant in leaves. In contrast, petals contained higher concentrations of phosphorus (P) and potassium (K). N, P, K, Ca, Mg, and sodium (Na) concentrations of petals were positively related to leaves. In herbaceous plants, their petals showed significant resorption of P and K, while N, P, and K were detected with significant resorption in leaves from all life forms. A positive correlation was found between the resorption of P in leaves and petals. From the perspective of the carbon economic spectrum, N and P showed a negative correlation with dry mass per unit area in leaves. Meanwhile, petal dry mass per area and floral longevity were significantly negatively correlated with P. Our findings elucidate the nutritional basis for the functional differentiation between petals and leaves.
Collapse
Affiliation(s)
- Bao-Jie Tong
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, China
| | - Qiu-Ju Zhao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, China
| | - Hong-Yan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, China
| | - Yi Zhou
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, China
| | - Huan Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, China
| | - Jia-Wei Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, China
- Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi, Laibin, China
| |
Collapse
|
3
|
Cohen NR, Krinos AI, Kell RM, Chmiel RJ, Moran DM, McIlvin MR, Lopez PZ, Barth AJ, Stone JP, Alanis BA, Chan EW, Breier JA, Jakuba MV, Johnson R, Alexander H, Saito MA. Microeukaryote metabolism across the western North Atlantic Ocean revealed through autonomous underwater profiling. Nat Commun 2024; 15:7325. [PMID: 39183190 PMCID: PMC11345423 DOI: 10.1038/s41467-024-51583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Microeukaryotes are key contributors to marine carbon cycling. Their physiology, ecology, and interactions with the chemical environment are poorly understood in offshore ecosystems, and especially in the deep ocean. Using the Autonomous Underwater Vehicle Clio, microbial communities along a 1050 km transect in the western North Atlantic Ocean were surveyed at 10-200 m vertical depth increments to capture metabolic signatures spanning oligotrophic, continental margin, and productive coastal ecosystems. Microeukaryotes were examined using a paired metatranscriptomic and metaproteomic approach. Here we show a diverse surface assemblage consisting of stramenopiles, dinoflagellates and ciliates represented in both the transcript and protein fractions, with foraminifera, radiolaria, picozoa, and discoba proteins enriched at >200 m, and fungal proteins emerging in waters >3000 m. In the broad microeukaryote community, nitrogen stress biomarkers were found at coastal sites, with phosphorus stress biomarkers offshore. This multi-omics dataset broadens our understanding of how microeukaryotic taxa and their functional processes are structured along environmental gradients of temperature, light, and nutrients.
Collapse
Affiliation(s)
- Natalie R Cohen
- University of Georgia Skidaway Institute of Oceanography, Savannah, GA, 31411, USA.
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| | - Arianna I Krinos
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Cambridge, MA, 02543, USA
| | - Riss M Kell
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Gloucester Marine Genomics Institute, Gloucester, MA, 01930, USA
| | - Rebecca J Chmiel
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Dawn M Moran
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Matthew R McIlvin
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Paloma Z Lopez
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
| | | | | | | | - Eric W Chan
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - John A Breier
- University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Michael V Jakuba
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Rod Johnson
- Bermuda Institute of Ocean Sciences, St. George's, GE, 01, Bermuda
- Arizona State University, Tempe, AZ, USA
| | - Harriet Alexander
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA
| | - Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, Falmouth, MA, 02543, USA.
| |
Collapse
|
4
|
Liu X, Arif M, Zheng J, Wu Y, Chen Y, Gao J, Liu J, Changxiao L. Assessing leaf physiological traits in response to flooding among dominant riparian herbs along the Three Gorges Dam in China. Ecol Evol 2024; 14:e11533. [PMID: 38911496 PMCID: PMC11192621 DOI: 10.1002/ece3.11533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Dams worldwide have significantly altered the composition of riparian forests. However, research on the functional traits of dominant herbs experiencing flooding stress due to dam impoundment remains limited. Given the high plasticity of leaf traits and their susceptibility to environmental influences, this study focuses on riparian herbs along the Three Gorges Hydro-Fluctuation Zone (TGHFZ). Specifically, it investigates how six leaf physiological traits of leading herbs-carbon, nitrogen, phosphorus, and their stoichiometric ratios-adapt to periodic flooding in the TGHFZ using cluster analysis, one-way analysis of variance (ANOVA), multiple comparisons, Pearson correlation analysis, and principal component analysis (PCA). We categorized 25 dominant herb species into three plant functional types (PFTs), noting that species from the same family tended to fall into the same PFT. Notably, leaf carbon content (LCC) exhibited no significant differences across various PFTs or altitudes. Within riparian forests, different PFTs employ distinct adaptation strategies: PFT-I herbs invest in structural components to enhance stress resistance; PFT-II, mostly comprising gramineous plants, responds to prolonged flooding by rapid growth above the water; and PFT-III, encompassing nearly all Compositae and annual plants, responds to prolonged flooding with vigorous rhizome growth and seed production. Soil water content (SWC) emerges as the primary environmental factor influencing dominant herb growth in the TGHFZ. By studying the response of leaf physiological traits in dominant plants to artificial flooding, we intend to reveal the survival mechanisms of plants under adverse conditions and lay the foundation for vegetation restoration in the TGHFZ.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
| | - Muhammad Arif
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
- Biological Science Research Center, Academy for Advanced Interdisciplinary StudiesSouthwest UniversityChongqingChina
| | - Jie Zheng
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
- Biological Science Research Center, Academy for Advanced Interdisciplinary StudiesSouthwest UniversityChongqingChina
| | - Yuanyuan Wu
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
| | - Yangyi Chen
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
| | - Jie Gao
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
| | - Junchen Liu
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
| | - Li Changxiao
- Key Laboratory of Eco‐Environments in the Three Gorges Reservoir Region (Ministry of Education)College of Life Sciences, Southwest UniversityChongqingChina
- Biological Science Research Center, Academy for Advanced Interdisciplinary StudiesSouthwest UniversityChongqingChina
| |
Collapse
|
5
|
González-Olalla JM, Powell JA, Brahney J. Dust storms increase the tolerance of phytoplankton to thermal and pH changes. GLOBAL CHANGE BIOLOGY 2024; 30:e17055. [PMID: 38273543 DOI: 10.1111/gcb.17055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024]
Abstract
Aquatic communities are increasingly subjected to multiple stressors through global change, including warming, pH shifts, and elevated nutrient concentrations. These stressors often surpass species tolerance range, leading to unpredictable consequences for aquatic communities and ecosystem functioning. Phytoplankton, as the foundation of the aquatic food web, play a crucial role in controlling water quality and the transfer of nutrients and energy to higher trophic levels. Despite the significance in understanding the effect of multiple stressors, further research is required to explore the combined impact of multiple stressors on phytoplankton. In this study, we used a combination of crossed experiment and mechanistic model to analyze the ecological and biogeochemical effects of global change on aquatic ecosystems and to forecast phytoplankton dynamics. We examined the effect of dust (0-75 mg L-1 ), temperature (19-27°C), and pH (6.3-7.3) on the growth rate of the algal species Scenedesmus obliquus. Furthermore, we carried out a geospatial analysis to identify regions of the planet where aquatic systems could be most affected by atmospheric dust deposition. Our mechanistic model and our empirical data show that dust exerts a positive effect on phytoplankton growth rate, broadening its thermal and pH tolerance range. Finally, our geospatial analysis identifies several high-risk areas including the highlands of the Tibetan Plateau, western United States, South America, central and southern Africa, central Australia as well as the Mediterranean region where dust-induced changes are expected to have the greatest impacts. Overall, our study shows that increasing dust storms associated with a more arid climate and land degradation can reverse the negative effects of high temperatures and low pH on phytoplankton growth, affecting the biogeochemistry of aquatic ecosystems and their role in the cycles of the elements and tolerance to global change.
Collapse
Affiliation(s)
| | - James A Powell
- Department of Mathematics and Statistics, Utah State University, Logan, Utah, USA
| | - Janice Brahney
- Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| |
Collapse
|
6
|
Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J, Selosse MA. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC PLANT BIOLOGY 2023; 23:422. [PMID: 37700257 PMCID: PMC10496321 DOI: 10.1186/s12870-023-04436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
Collapse
Affiliation(s)
- Julita Minasiewicz
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
| | - Adrian Zwolicki
- Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| | - Alžběta Novotná
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institute of Microbiology ASCR, Vídeňská, Praha, 1083, 142 20, Czech Republic
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760, 37005, Czech Republic
| | - Marc-André Selosse
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| |
Collapse
|
7
|
Raven JA. Avoiding and allowing apatite precipitation in oxygenic photolithotrophs. THE NEW PHYTOLOGIST 2023; 238:1801-1812. [PMID: 36856343 DOI: 10.1111/nph.18849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
The essential elements Ca and P, taken up and used metabolically as Ca2+ and H2 PO4 - /HPO4 2- respectively, could precipitate as one or more of the insoluble forms calcium phosphate (mainly apatite) if the free ion concentrations and pH are high enough. In the cytosol, chloroplast stroma, and mitochondrial matrix, the very low free Ca2+ concentration avoids calcium phosphate precipitation, apart from occasionally in the mitochondrial matrix. The low free Ca2+ concentration in these compartments is commonly thought of in terms of the role of Ca2+ in signalling. However, it also helps avoids calcium phosphate precipitation, and this could be its earliest function in evolution. In vacuoles, cell walls, and xylem conduits, there can be relatively high concentrations of Ca2+ and inorganic orthophosphate, but pH and/or other ligands for Ca2+ , suggests that calcium phosphate precipitates are rare. However, apatite is precipitated under metabolic control in shoot trichomes, and by evaporative water loss in hydathodes, in some terrestrial flowering plants. In aquatic macrophytes that deposit CaCO3 on their cell walls or in their environment as a result of pH increase or removal of inhibitors of nucleation or crystal growth, phosphate is sometimes incorporated in the CaCO3 . Calcium phosphate precipitation also occurs in some stromatolites.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Climate Change Cluster, Faculty of Science, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
8
|
Abstract
Tremendous progress has been made on molecular aspects of plant phosphorus (P) nutrition, often without heeding information provided by soil scientists, ecophysiologists, and crop physiologists. This review suggests ways to integrate information from different disciplines. When soil P availability is very low, P-mobilizing strategies are more effective than mycorrhizal strategies. Soil parameters largely determine how much P roots can acquire from P-impoverished soil, and kinetic properties of P transporters are less important. Changes in the expression of P transporters avoid P toxicity. Plants vary widely in photosynthetic P-use efficiency, photosynthesis per unit leaf P. The challenge is to discover what the trade-offs are of different patterns of investment in P fractions. Less investment may save P, but are costs incurred? Are these costs acceptable for crops? These questions can be resolved only by the concerted action of scientists working at both molecular and physiological levels, rather than pursuing these problems independently.
Collapse
Affiliation(s)
- Hans Lambers
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, Western Australia, Australia;
- Department of Plant Nutrition, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|