1
|
Shelepova OV, Tkacheva EV, Ivanovskii AA, Ozerova LV, Vinogradova YK. Leaf Extracts of Invasive Woody Species Demonstrate Allelopathic Effects on the Growth of a Lawn Grass Mixture. PLANTS (BASEL, SWITZERLAND) 2023; 12:4084. [PMID: 38140411 PMCID: PMC10747084 DOI: 10.3390/plants12244084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Biochemical composition was studied in the leaf litter of alien woody species included in the 100 most aggressive invasive species of Europe: Ailanthus altissima, Quercus rubra, Acer negundo, Robinia pseudoacacia, and Elaeagnus angustifolia. Using GC-MS, we detected 187 metabolites in the leaf litter, which are phenolic acids and their derivatives, carbohydrates and their derivatives, polyphenolic compounds, cyclic esters, glycosides, and amino acids and their derivatives. Species-specific metabolites were identified for each species. The main allelochemicals in the leaf litter extract of Q. rubra are determined mainly by the relative abundance of phenolic and fatty acids and their esters, whereas those in the leaf litter extract of R. pseudoacacia are determined by carbohydrates and their derivatives and ester of fatty acid, and those in the leaf litter extract of A. altissima are determined by glycosides. Profiles of macro- and microelements were characterized. It was found that aqueous extracts of leaf litter from all the invasive woody plants under study have a negative effect on the seed germination and initial growth of Vicia cracca and Avena strigosa used for the reclamation of disturbed urban and industrial lands. At the same time, V. cracca is potentially more sensitive.
Collapse
Affiliation(s)
- Olga V. Shelepova
- Plant Physiology and Immunity Laboratory, N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276, Russia;
| | - Ekaterina V. Tkacheva
- Faculty of Biology, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 517182, China;
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksandr A. Ivanovskii
- Faculty of Biology, Shenzhen MSU-BIT University, International University Park Road 1, Dayun New Town, Longgang District, Shenzhen 517182, China;
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ludmila V. Ozerova
- Plant Tropical Laboratory, N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276, Russia;
| | - Yulia K. Vinogradova
- Laboratory of Natural Flora, N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, Moscow 127276, Russia;
| |
Collapse
|
2
|
Sun X, Sun Y, Cao X, Zhai X, Callaway RM, Wan J, Flory SL, Huang W, Ding J. Trade-offs in non-native plant herbivore defences enhance performance. Ecol Lett 2023; 26:1584-1596. [PMID: 37387416 DOI: 10.1111/ele.14283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
Non-native plants are typically released from specialist enemies but continue to be attacked by generalists, albeit at lower intensities. This reduced herbivory may lead to less investment in constitutive defences and greater investment in induced defences, potentially reducing defence costs. We compared herbivory on 27 non-native and 59 native species in the field and conducted bioassays and chemical analyses on 12 pairs of non-native and native congeners. Non-natives suffered less damage and had weaker constitutive defences, but stronger induced defences than natives. For non-natives, the strength of constitutive defences was correlated with the intensity of herbivory experienced, whereas induced defences showed the reverse. Investment in induced defences correlated positively with growth, suggesting a novel mechanism for the evolution of increased competitive ability. To our knowledge, these are the first linkages reported among trade-offs in plant defences related to the intensity of herbivory, allocation to constitutive versus induced defences, and growth.
Collapse
Affiliation(s)
- Xiao Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yumei Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xueyao Cao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xincong Zhai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ragan M Callaway
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jinlong Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | - Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
3
|
Shapter FM, Granados-Soler JL, Stewart AJ, Bertin FR, Allavena R. Equine Crofton Weed ( Ageratina spp.) Pneumotoxicity: What Do We Know and What Do We Need to Know? Animals (Basel) 2023; 13:2082. [PMID: 37443880 DOI: 10.3390/ani13132082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Crofton weed (Ageratina adenophora) is a global and highly invasive weed, with ingestion causing severe respiratory disease in horses, leading to irreversible and untreatable pulmonary fibrosis and oedema. While reports of equine pneumotoxicity remain common in Australia and New Zealand, equine pneumotoxicity may be underdiagnosed in other countries where Crofton weed is endemic but poorly differentiated. The pathogenesis of Crofton weed toxicity following ingestion has been well described in a number of different animal models, including rodents, rabbits, and goats. However, induced toxicity is organ-selective across different animal species, and these vastly differ from the pathogenesis described in horses, both clinically and after experimental exposure. Sources of variation may include species-specific susceptibility to different toxins present in the plant, different mechanistic processes of toxicity, and species differences in toxin biotransformation and bioactivation across different organs. Considering disease severity and Crofton weed's invasiveness globally, assessing published toxicological and exposure data is necessary to advance research, identify specific toxins for horses, and possible prophylactic and therapeutic strategies. This review presents an overview of the available literature on equine toxicity, parallels between toxicity in horses and other animal species, and important aspects to be included in the future research agenda.
Collapse
Affiliation(s)
- Frances Marie Shapter
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - José Luis Granados-Soler
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - Allison J Stewart
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - Francois Rene Bertin
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| | - Rachel Allavena
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Chen L, Wang M, Shi Y, Ma P, Xiao Y, Yu H, Ding J. Soil phosphorus form affects the advantages that arbuscular mycorrhizal fungi confer on the invasive plant species, Solidago canadensis, over its congener. Front Microbiol 2023; 14:1160631. [PMID: 37125154 PMCID: PMC10140316 DOI: 10.3389/fmicb.2023.1160631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Interactions between plants and arbuscular mycorrhizal fungi (AMF) are strongly affected by soil phosphorus (P) availability. However, how P forms impact rhizosphere AMF diversity, community composition, and the co-occurrence network associated with native and invasive plants, and whether these changes in turn influence the invasiveness of alien species remain unclear. In this work, we performed a greenhouse experiment with the invasive species Solidago canadensis and its native congener S. decurrens to investigate how different forms of P altered the AMF community and evaluate how these changes were linked with the growth advantage of S. canadensis relative to S. decurrens. Plants were subjected to five different P treatments: no P addition (control), simple inorganic P (sodium dihydrogen phosphate, NaP), complex inorganic P (hydroxyapatite, CaP), simple organic P (adenosine monophosphate, AMP) and complex organic P (myo-inositol hexakisphosphate, PA). Overall, invasive S. canadensis grew larger than native S. decurrens across all P treatments, and this growth advantage was strengthened when these species were grown in CaP and AMP treatments. The two Solidago species harbored divergent AMF communities, and soil P treatments significantly shifted AMF community composition. In particular, the differences in AMF diversity, community composition, topological features and keystone taxa of the co-occurrence networks between S. canadensis and S. decurrens were amplified when the dominant form of soil P was altered. Despite significant correlations between AMF alpha diversity, community structure, co-occurrence network composition and plant performance, we found that alpha diversity and keystone taxa of the AMF co-occurrence networks were the primary factors influencing plant growth and the growth advantage of invasive S. canadensis between soil P treatments. These results suggest that AMF could confer invasive plants with greater advantages over native congeners, depending on the forms of P in the soil, and emphasize the important roles of multiple AMF traits in plant invasion.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengqi Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pinpin Ma
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yali Xiao
- School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Hongwei Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jianqing Ding
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
5
|
Yu J, Niu Y, You Y, Cox CJ, Barrett RL, Trias-Blasi A, Guo J, Wen J, Lu L, Chen Z. Integrated phylogenomic analyses unveil reticulate evolution in Parthenocissus (Vitaceae), highlighting speciation dynamics in the Himalayan-Hengduan Mountains. THE NEW PHYTOLOGIST 2023; 236:1140-1153. [PMID: 36305244 DOI: 10.1111/nph.18289] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/22/2022] [Indexed: 05/20/2023]
Abstract
Hybridization caused by frequent environmental changes can lead both to species diversification (speciation) and to speciation reversal (despeciation), but the latter has rarely been demonstrated. Parthenocissus, a genus with its trifoliolate lineage in the Himalayan-Hengduan Mountains (HHM) region showing perplexing phylogenetic relationships, provides an opportunity for investigating speciation dynamics based on integrated evidence. We investigated phylogenetic discordance and reticulate evolution in Parthenocissus based on rigorous analyses of plastome and transcriptome data. We focused on reticulations in the trifoliolate lineage in the HHM region using a population-level genome resequencing dataset, incorporating evidence from morphology, distribution, and elevation. Comprehensive analyses confirmed multiple introgressions within Parthenocissus in a robust temporal-spatial framework. Around the HHM region, at least three hybridization hot spots were identified, one of which showed evidence of ongoing speciation reversal. We present a solid case study using an integrative methodological approach to investigate reticulate evolutionary history and its underlying mechanisms in plants. It demonstrates an example of speciation reversal through frequent hybridizations in the HHM region, which provides new perspectives on speciation dynamics in mountainous areas with strong topographic and environmental heterogeneity.
Collapse
Affiliation(s)
- Jinren Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanting Niu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yichen You
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-319, Portugal
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Botanic Garden, Locked Bag 6002, Mount Annan, 2567, NSW, Australia
| | | | - Jing Guo
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC, 20013-7012, USA
| | - Limin Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhiduan Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
6
|
Yuan L, Li J, van Kleunen M. Competition induces negative conspecific allelopathic effects on seedling recruitment. ANNALS OF BOTANY 2022; 130:917-926. [PMID: 36227858 PMCID: PMC9758299 DOI: 10.1093/aob/mcac127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND AIMS Some plant species suppress competitors through release of chemical compounds into the environment. As the production of allelochemicals may be costly, it would be beneficial if their production would only be induced when plants experience competition. We tested whether two plant species that frequently co-occur show evidence for induced allelopathy in response to intra- and interspecific competition. METHODS We used the annual forb Crepidiastrum sonchifolium and the perennial forb Achyranthes bidentata, which are native to China and predominantly occur in ruderal communities, as focal species. We first grew the species without competition, with intraspecific competition and in competition with each other. We chemically analysed aqueous extracts made from these plants to test for evidence that the competition treatments affected the metabolomic profiles of the species. We then tested the effects of the aqueous extracts on seed germination and seedling growth of both plant species. KEY RESULTS Metabolomic analysis revealed that competition treatments modified the chemical profiles of the two study species. The root lengths of A. bidentata and C. sonchifolium seedlings were reduced by the aqueous plant extracts. For seedling root length of A. bidentata, heterospecific allelopathy was more negative than conspecific allelopathy, but for germination of C. sonchifolium seeds, the reverse was true. Moreover, conspecific allelopathic effects on germination of A. bidentata seeds and on seedling root length of both species were most negative when the aqueous extracts were made from plants that had experienced competition. In the case of seedling root length of A. bidentata, this effect was most negative when the plants had experienced interspecific instead of intraspecific competition. CONCLUSIONS We showed that plants change their metabolomic profiles in response to competition, and that this correlated with allelopathic inhibition of conspecific seed germination and seedling growth. We suggest that autoallelopathy for seed germination could function as a mechanism to avoid strong competition by keeping the seeds in a dormant state.
Collapse
Affiliation(s)
- Ling Yuan
- School of Advanced Study, Taizhou University, Taizhou 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- School of Advanced Study, Taizhou University, Taizhou 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Mark van Kleunen
- School of Advanced Study, Taizhou University, Taizhou 318000, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Ecology, Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
7
|
Lekberg Y, Callaway RM. New support for the Enhanced Mutualism Hypothesis for invasion. THE NEW PHYTOLOGIST 2022; 236:797-799. [PMID: 35899610 DOI: 10.1111/nph.18377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Ylva Lekberg
- MPG Ranch, Missoula, MT, 59801, USA
- W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, 59812, USA
| | - Ragan M Callaway
- Division of Biological Sciences and Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
8
|
Contrasting effects of extracts from invasive Reynoutria japonica on soil microbial biomass, activity, and community structure. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02812-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|