1
|
Bosch M, Franklin-Tong V. Regulating programmed cell death in plant cells: Intracellular acidification plays a pivotal role together with calcium signaling. THE PLANT CELL 2024; 36:4692-4702. [PMID: 39197046 DOI: 10.1093/plcell/koae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.
Collapse
Affiliation(s)
- Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Vernonica Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Liu J, Chustecki JM, Lim BL. Dynamic motion of mitochondria, plastids, and NAD(P)H zoning in Arabidopsis pollen tubes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109132. [PMID: 39316923 DOI: 10.1016/j.plaphy.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Pollen tubes consume a tremendous amount of energy and are the fastest-growing cells known in plants. Mitochondria are key organelles that supply energy and play important roles in modulating cellular redox homeostasis. Here, we found that endogenous NAD(P)H in Arabidopsis pollen tubes was spatially highly correlated with the distribution of mitochondria, both peaking in the subapex region. A weak association was also observed between the NAD(P)H levels and pollen plastids. Further studies using Class XI myosin mutants confirmed that altered mitochondrial distribution and trafficking concomitantly affected intracellular NAD(P)H zoning in pollen tubes. By targeting the NADPH- and NADH/NAD+-specific biosensors to the pollen tube cytosol of the myo11c1/myo11c2 double mutants, we showed that the growing pollen tubes in the double mutants possessed a lower level of cytosolic NADPH but a higher cytosolic NADH/NAD+ ratio than the WT. We also found that the knockout of Myo11C1 and Myo11C2 led to fragmented mitochondria with reduced motility. Therefore, altered cytosolic NAD(P)H levels may be secondary to changes in mitochondrial mobility, positioning, or morphology. Our results suggest that the spatial distribution and movement of mitochondria and plastids affect NAD(P)H zoning in Arabidopsis growing pollen tubes and that their movements depend on Class XI myosins.
Collapse
Affiliation(s)
- Jinhong Liu
- School of Biological Sciences, University of Hong Kong, Hong Kong China
| | - Joanna M Chustecki
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Boon Leong Lim
- School of Biological Sciences, University of Hong Kong, Hong Kong China; HKU Shenzhen Institute of Research and Innovation, Shenzhen, China; State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong China.
| |
Collapse
|
3
|
Wang G, Huang L, Zhuang S, Han F, Huang Q, Hao M, Lin G, Chen L, Shen B, Li F, Li X, Chen C, Gao Y, Mock T, Liang J. Resting cell formation in the marine diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2024; 243:1347-1360. [PMID: 38402560 DOI: 10.1111/nph.19646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.
Collapse
Affiliation(s)
- Guangning Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lu Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shanshan Zhuang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fang Han
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qianqian Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengyuan Hao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guifang Lin
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Longnan Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Biying Shen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feng Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xuesong Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changping Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yahui Gao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia (UEA), Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Junrong Liang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
4
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
Tang C, Wang P, Zhu X, Qi K, Xie Z, Zhang H, Li X, Gao H, Gu T, Gu C, Li S, de Graaf BHJ, Zhang S, Wu J. Acetylation of inorganic pyrophosphatase by S-RNase signaling induces pollen tube tip swelling by repressing pectin methylesterase. THE PLANT CELL 2023; 35:3544-3565. [PMID: 37306489 PMCID: PMC10473231 DOI: 10.1093/plcell/koad162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.
Collapse
Affiliation(s)
- Chao Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Peng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaoxuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Hao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Xiaoqiang Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Hongru Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Engineering Research Center for Pear, Nanjing Agricultural University, Nanjing 210014, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
6
|
Goring DR, Bosch M, Franklin-Tong VE. Contrasting self-recognition rejection systems for self-incompatibility in Brassica and Papaver. Curr Biol 2023; 33:R530-R542. [PMID: 37279687 DOI: 10.1016/j.cub.2023.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-incompatibility (SI) plays a pivotal role in whether self-pollen is accepted or rejected. Most SI systems employ two tightly linked loci encoding highly polymorphic pollen (male) and pistil (female) S-determinants that control whether self-pollination is successful or not. In recent years our knowledge of the signalling networks and cellular mechanisms involved has improved considerably, providing an important contribution to our understanding of the diverse mechanisms used by plant cells to recognise each other and elicit responses. Here, we compare and contrast two important SI systems employed in the Brassicaceae and Papaveraceae. Both use 'self-recognition' systems, but their genetic control and S-determinants are quite different. We describe the current knowledge about the receptors and ligands, and the downstream signals and responses utilized to prevent self-seed set. What emerges is a common theme involving the initiation of destructive pathways that block the key processes that are required for compatible pollen-pistil interactions.
Collapse
Affiliation(s)
- Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, Wales, UK
| | | |
Collapse
|
7
|
Matthus E, Ning Y, Shafiq F, Davies JM. Phosphate-deprivation and damage signalling by extracellular ATP. FRONTIERS IN PLANT SCIENCE 2023; 13:1098146. [PMID: 36714742 PMCID: PMC9879614 DOI: 10.3389/fpls.2022.1098146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Phosphate deprivation compromises plant productivity and modulates immunity. DAMP signalling by extracellular ATP (eATP) could be compromised under phosphate deprivation by the lowered production of cytosolic ATP and the need to salvage eATP as a nutritional phosphate source. Phosphate-starved roots of Arabidopsis can still sense eATP, indicating robustness in receptor function. However, the resultant cytosolic free Ca2+ signature is impaired, indicating modulation of downstream components. This perspective on DAMP signalling by extracellular ATP (eATP) addresses the salvage of eATP under phosphate deprivation and its promotion of immunity, how Ca2+ signals are generated and how the Ca2+ signalling pathway could be overcome to allow beneficial fungal root colonization to fulfill phosphate demands. Safe passage for an endophytic fungus allowing root colonization could be achieved by its down-regulation of the Ca2+ channels that act downstream of the eATP receptors and by also preventing ROS accumulation, thus further impairing DAMP signalling.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Youzheng Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Fahad Shafiq
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Punjab, Pakistan
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Cheung AY. Self-incompatibility in Papaver rhoeas: a role for ATP. THE NEW PHYTOLOGIST 2022; 236:1625-1628. [PMID: 36256463 DOI: 10.1111/nph.18505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cell Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|