1
|
Xiao Y, Yang D, Zhang SB, Mo YX, Dong YY, Wang KF, He LY, Dong B, Dossa GGO, Zhang JL. Nitrogen-fixing and non-nitrogen-fixing legume plants differ in leaf nutrient concentrations and relationships between photosynthetic and hydraulic traits. TREE PHYSIOLOGY 2024; 44:tpae048. [PMID: 38691446 DOI: 10.1093/treephys/tpae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex RH17 6TN, UK
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yi-Yi Dong
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Ke-Fei Wang
- School of Biological and Chemical Sciences, Puer University, Puer, Yunnan 665000, China
| | - Ling-Yun He
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bing Dong
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
2
|
Li Y, Mo YX, Cui HL, Zhang YJ, Dossa GGO, Tan ZH, Song L. Intraspecific plasticity and co-variation of leaf traits facilitate Ficus tinctoria to acclimate hemiepiphytic and terrestrial habitats. TREE PHYSIOLOGY 2024; 44:tpae007. [PMID: 38198737 DOI: 10.1093/treephys/tpae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Despite intensive studies on plant functional traits, the intraspecific variation and their co-variation at the multi-scale remains poorly studied, which holds the potential to unveil plant responses to changing environmental conditions. In this study, intraspecific variations of 16 leaf functional traits of a common fig species, Ficus tinctoria G. Frost., were investigated in relation to different scales: habitat types (hemiepiphytic and terrestrial), growth stages (small, medium and large) and tree crown positions (upper, middle and lower) in Xishuangbanna, Southwest China. Remarkable intraspecific variation was observed in leaf functional traits, which was mainly influenced by tree crown position, growth stage and their interaction. Stable nitrogen isotope (δ15N) and leaf area (LA) showed large variations, while stable carbon isotope (δ13C), stomata width and leaf water content showed relatively small variations, suggesting that light- and nitrogen-use strategies of F. tinctoria were plastic, while the water-use strategies have relatively low plasticity. The crown layers are formed with the growth of figs, and leaves in the lower crown increase their chlorophyll concentration and LA to improve the light energy conversion efficiency and the ability to capture weak light. Meanwhile, leaves in the upper crown increase the water-use efficiency to maintain their carbon assimilation. Moreover, hemiepiphytic medium (transitional stage) and large (free-standing stage) figs exhibited more significant trait differentiation (chlorophyll concentration, δ13C, stomata density, etc.) within the crown positions, and stronger trait co-variation compared with their terrestrial counterparts. This pattern demonstrates their acclimation to the changing microhabitats formed by their hemiepiphytic life history. Our study emphasizes the importance of multi-scaled intraspecific variation and co-variation in trait-based strategies of hemiepiphyte and terrestrial F. tinctoria, which facilitate them to cope with different environmental conditions.
Collapse
Affiliation(s)
- Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650504, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Li Cui
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Chinese Felid Conservation Alliance, Beijing 101121, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Zheng-Hong Tan
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan 650504, China
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- T-STAR Core Team, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|