1
|
Li F, Cui C, Li C, Yu Y, Zeng Q, Li X, Zhao W, Dong J, Gao X, Xiang J, Zhang D, Wen S, Yang M. Cytology, metabolomics, and proteomics reveal the grain filling process and quality difference of wheat. Food Chem 2024; 457:140130. [PMID: 38943917 DOI: 10.1016/j.foodchem.2024.140130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Comparative proteomics and non-target metabolomics, together with physiological and microstructural analyses of wheat grains (at 15, 20, 25, and 30 days after anthesis) from two different quality wheat varieties (Gaoyou 5766 (strong-gluten) and Zhoumai 18) were performed to illustrate the grain filling material dynamics and to search for quality control genes. The differential expressions of 1541 proteins and 406 metabolites were found. They were mostly engaged in protein metabolism, stress/defense, energy metabolism, and amino acid metabolism, and the metabolism of stored proteins and carbohydrates was the major focus of the latter stages. The core proteins and metabolites in the growth process were identified, and the candidate genes for quality differences were screened. In conclusion, this study offers a molecular explanation for the establishment of wheat quality, and it aids in our understanding of the intricate metabolic network between different qualities of wheat at the filling stage.
Collapse
Affiliation(s)
- Fang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chao Cui
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Chenyang Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Yan Yu
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Quan Zeng
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiaoyan Li
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Wanchun Zhao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China
| | - Jishan Xiang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Dingguo Zhang
- Yili Normal University/Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili 830500, Xinjiang, China
| | - Shanshan Wen
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, China; Wheat Engineering Research Center of Shaanxi Province, Yangling 712100, China.
| |
Collapse
|
2
|
Tiwari VK, Saripalli G, Sharma PK, Poland J. Wheat genomics: genomes, pangenomes, and beyond. Trends Genet 2024; 40:982-992. [PMID: 39191555 DOI: 10.1016/j.tig.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
There is an urgent need to improve wheat for upcoming challenges, including biotic and abiotic stresses. Sustainable wheat improvement requires the introduction of new genes and alleles in high-yielding wheat cultivars. Using new approaches, tools, and technologies to identify and introduce new genes in wheat cultivars is critical. High-quality genomes, transcriptomes, and pangenomes provide essential resources and tools to examine wheat closely to identify and manipulate new and targeted genes and alleles. Wheat genomics has improved excellently in the past 5 years, generating multiple genomes, pangenomes, and transcriptomes. Leveraging these resources allows us to accelerate our crop improvement pipelines. This review summarizes the progress made in wheat genomics and trait discovery in the past 5 years.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| | - Gautam Saripalli
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Zhang Z, Liu D, Li B, Wang W, Zhang J, Xin M, Hu Z, Liu J, Du J, Peng H, Hao C, Zhang X, Ni Z, Sun Q, Guo W, Yao Y. A k-mer-based pangenome approach for cataloging seed-storage-protein genes in wheat to facilitate genotype-to-phenotype prediction and improvement of end-use quality. MOLECULAR PLANT 2024; 17:1038-1053. [PMID: 38796709 DOI: 10.1016/j.molp.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Wheat is a staple food for more than 35% of the world's population, with wheat flour used to make hundreds of baked goods. Superior end-use quality is a major breeding target; however, improving it is especially time-consuming and expensive. Furthermore, genes encoding seed-storage proteins (SSPs) form multi-gene families and are repetitive, with gaps commonplace in several genome assemblies. To overcome these barriers and efficiently identify superior wheat SSP alleles, we developed "PanSK" (Pan-SSP k-mer) for genotype-to-phenotype prediction based on an SSP-based pangenome resource. PanSK uses 29-mer sequences that represent each SSP gene at the pangenomic level to reveal untapped diversity across landraces and modern cultivars. Genome-wide association studies with k-mers identified 23 SSP genes associated with end-use quality that represent novel targets for improvement. We evaluated the effect of rye secalin genes on end-use quality and found that removal of ω-secalins from 1BL/1RS wheat translocation lines is associated with enhanced end-use quality. Finally, using machine-learning-based prediction inspired by PanSK, we predicted the quality phenotypes with high accuracy from genotypes alone. This study provides an effective approach for genome design based on SSP genes, enabling the breeding of wheat varieties with superior processing capabilities and improved end-use quality.
Collapse
Affiliation(s)
- Zhaoheng Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Dan Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Binyong Li
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wenxi Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jize Zhang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinkun Du
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Yu Z, Yunusbaev U, Fritz A, Tilley M, Akhunova A, Trick H, Akhunov E. CRISPR-based editing of the ω- and γ-gliadin gene clusters reduces wheat immunoreactivity without affecting grain protein quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:892-903. [PMID: 37975410 PMCID: PMC10955484 DOI: 10.1111/pbi.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Wheat immunotoxicity is associated with abnormal reaction to gluten-derived peptides. Attempts to reduce immunotoxicity using breeding and biotechnology often affect dough quality. Here, the multiplexed CRISPR-Cas9 editing of cultivar Fielder was used to modify gluten-encoding genes, specifically focusing on ω- and γ-gliadin gene copies, which were identified to be abundant in immunoreactive peptides based on the analysis of wheat genomes assembled using the long-read sequencing technologies. The whole-genome sequencing of an edited line showed mutation or deletion of nearly all ω-gliadin and half of the γ-gliadin gene copies and confirmed the lack of editing in the α/β-gliadin genes. The estimated 75% and 64% reduction in ω- and γ-gliadin content, respectively, had no negative impact on the end-use quality characteristics of grain protein and dough. A 47-fold immunoreactivity reduction compared to a non-edited line was demonstrated using antibodies against immunotoxic peptides. Our results indicate that the targeted CRISPR-based modification of the ω- and γ-gliadin gene copies determined to be abundant in immunoreactive peptides by analysing high-quality genome assemblies is an effective mean for reducing immunotoxicity of wheat cultivars while minimizing the impact of editing on protein quality.
Collapse
Affiliation(s)
- Zitong Yu
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Ural Yunusbaev
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Allan Fritz
- Department of AgronomyKansas State UniversityManhattanKSUSA
| | - Michael Tilley
- USDA‐ARSGrain Quality and Structure Research UnitManhattanKSUSA
| | - Alina Akhunova
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
- Integrated Genomic FacilityKansas State UniversityManhattanKSUSA
| | - Harold Trick
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| | - Eduard Akhunov
- Wheat Genetic Resources CenterKansas State UniversityManhattanKSUSA
- Department of Plant PathologyKansas State UniversityManhattanKSUSA
| |
Collapse
|
5
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Pan Z, Bai Y, Xu L, Zhang Y, Lei M, Huang Z. The Effect of Freeze-Thaw Cycles on the Microscopic Properties of Dumpling Wrappers. Foods 2023; 12:3388. [PMID: 37761097 PMCID: PMC10527871 DOI: 10.3390/foods12183388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Dumplings are a traditional Chinese food welcomed by Chinese people. Research has indicated that process of quick-frozen wheat cultivars and their gliadins are all related to the quality and shelf-life of dumplings. Therefore, the effect of freeze-thaw cycles on the textural properties and microscopic characteristics of two types of quick-frozen dumpling wrappers (Zhaomai and Wenmai 19) and conformation of their gliadins were investigated. Scanning electron microscopy showed that Wenmai 19 dumpling wrappers had apparent damage after the first cycle, but Zhaomai wrappers did not reveal significant changes until the fourth cycle. The particle size distribution in the starch granules of Wenmai 19 wrappers varied in terms of mechanical damage, but Zhaomai delayed or avoided such effects. FT-IR found a loose protein structure of the gliadins. Differential scanning calorimetry showed that gliadins of Wenmai 19 degenerated more than those of Zhaomai. The crosslinking of gliadin and glutenin maintained a high-quality gluten network, thus protecting the gliadin stability from ice crystals. In turn, the gliadin maintained the strength of the gluten network. Therefore, raw flours with high-quality protein networks are more suitable for frozen dumplings. Freeze-thaw cycles dramatically decreased the textural characteristics of dumpling wrappers and the microscopic characteristics of their gliadin proteins. Concerning wheat cultivars with weak gluten, flours with high-quality protein networks are more suitable as raw materials for frozen dumplings.
Collapse
Affiliation(s)
- Zhili Pan
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Z.P.); (Y.B.); (L.X.); (Y.Z.); (M.L.)
- National R & D Center for Frozen Rice & Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Yibo Bai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Z.P.); (Y.B.); (L.X.); (Y.Z.); (M.L.)
| | - Lina Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Z.P.); (Y.B.); (L.X.); (Y.Z.); (M.L.)
| | - Yanjie Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Z.P.); (Y.B.); (L.X.); (Y.Z.); (M.L.)
| | - Mengmeng Lei
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Z.P.); (Y.B.); (L.X.); (Y.Z.); (M.L.)
| | - Zhongmin Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (Z.P.); (Y.B.); (L.X.); (Y.Z.); (M.L.)
- National R & D Center for Frozen Rice & Wheat Products Processing Technology, Zhengzhou 450002, China
| |
Collapse
|
7
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
8
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
9
|
Guo L, Chen H, Zhang Y, Yan S, Chen X, Gao X. Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Comput Struct Biotechnol J 2023; 21:4172-4186. [PMID: 37675285 PMCID: PMC10477758 DOI: 10.1016/j.csbj.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Starch is a vital component of wheat grain and flour, characterized by two distinct granule types: A-type starch (AS) with granules larger than 10 µm in diameter, and B-type starch (BS) with granules measuring no more than 10 µm in diameter. This review comprehensively evaluates the isolation, purification, and biosynthesis processes of these types of granules. In addition, a comparative analysis of the structure and properties of AS and BS is presented, encompassing chemical composition, molecular, crystalline and morphological structures, gelatinization, pasting and digestive properties. The variation in size distribution of granules leads to differences in physicochemical properties of starch, influencing the formation of polymeric proteins, secondary and micro-structures of gluten, chemical and physical interactions between gluten and starch, and water absorption and water status in dough system. Thus, starch size distribution affects the quality of dough and final products. In this review, we summarize the up-to-date knowledge of AS and BS, and propose the possible strategies to enhance wheat yield and quality through coordinated breeding efforts. This review serves as a valuable reference for future advancements in wheat breeding.
Collapse
Affiliation(s)
- Lei Guo
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Chen
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Yan
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueyan Chen
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
| | - Xin Gao
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
| |
Collapse
|
10
|
Elsharawy H, Refat M. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Funct Integr Genomics 2023; 23:265. [PMID: 37541970 DOI: 10.1007/s10142-023-01190-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop that is grown all over the world for food and industrial purposes. Wheat is essential to the human diet due to its rich content of necessary amino acids, minerals, vitamins, and calories. Various wheat breeding techniques have been utilized to improve its quality, productivity, and resistance to biotic and abiotic stress impairing production. However, these techniques are expensive, demanding, and time-consuming. Additionally, these techniques need multiple generations to provide the desired results, and the improved traits could be lost over time. To overcome these challenges, researchers have developed various genome editing tools to improve the quality and quantity of cereal crops, including wheat. Genome editing technologies evolve quickly. Nowadays, single or multiple mutations can be enabled and targeted at specific loci in the plant genome, allowing controlled removal of undesirable features or insertion of advantageous ones. Clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) is a powerful genome editing tool that can be effectively used for precise genome editing of wheat and other crops. This review aims to provide a comprehensive understanding of this technology's potential applications to enhance wheat's quality and productivity. It will first explore the function of CRISPR/Cas9 in preserving the adaptive immunity of prokaryotic organisms, followed by a discussion of its current applications in wheat breeding.
Collapse
Affiliation(s)
- Hany Elsharawy
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong, University, Xi'an, 710061, China
| |
Collapse
|
11
|
Yigider E, Taspinar MS, Agar G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. PLANTA 2023; 258:55. [PMID: 37522927 DOI: 10.1007/s00425-023-04199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
MAIN CONCLUSION This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.
Collapse
Affiliation(s)
- Esma Yigider
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
12
|
Gao Y, Liu Q. A new target for improving wheat end-use quality. THE NEW PHYTOLOGIST 2023. [PMID: 37182221 DOI: 10.1111/nph.18889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Yujiao Gao
- Jiangsu Key Lab of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Lab of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| |
Collapse
|