1
|
Sharma R, Yadav J, Bhat SA, Musayev A, Myrzagulova S, Sharma D, Padha N, Saini M, Tuli HS, Singh T. Emerging Trends in Neuroblastoma Diagnosis, Therapeutics, and Research. Mol Neurobiol 2025; 62:6423-6466. [PMID: 39804528 DOI: 10.1007/s12035-024-04680-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/20/2024] [Indexed: 03/29/2025]
Abstract
This review explores the current understanding and recent advancements in neuroblastoma, one of the most common extracranial solid pediatric cancers, accounting for ~ 15% of childhood cancer-related mortality. The hallmarks of NBL, including angiogenesis, metastasis, apoptosis resistance, cell cycle dysregulation, drug resistance, and responses to hypoxia and ROS, underscore its complex biology. The tumor microenvironment's significance in disease progression is acknowledged in this study, along with the pivotal role of cancer stem cells in sustaining tumor growth and heterogeneity. A number of molecular signatures are being studied in order to better understand the disease, with many of them serving as targets for the development of new therapeutics. This includes inhibitor therapies for NBL patients, which notably concentrate on ALK signaling, MDM2, PI3K/Akt/mTOR, Wnt, and RAS-MAPK pathways, along with regulators of epigenetic mechanisms. Additionally, this study offers an extensive understanding of the molecular therapies used, such as monoclonal antibodies and CAR-T therapy, focused on both preclinical and clinical studies. Radiation therapy's evolving role and the promise of stem cell transplantation-mediated interventions underscore the dynamic landscape of NBL treatment. This study has also emphasized the recent progress in the field of diagnosis, encompassing the adoption of artificial intelligence and liquid biopsy as a non-intrusive approach for early detection and ongoing monitoring of NBL. Furthermore, the integration of innovative treatment approaches such as CRISPR-Cas9, and cancer stem cell therapy has also been emphasized in this review.
Collapse
Affiliation(s)
- Rishabh Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
- Amity Stem Cell Institute, Amity Medical School, Amity University, Haryana, 122412, India
| | - Jaya Yadav
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
- Amity Stem Cell Institute, Amity Medical School, Amity University, Haryana, 122412, India
| | - Sajad Ahmad Bhat
- Asfendiyarov Kazakh National Medical University, Almaty, 050000, Kazakhstan
- Department of Biochemistry, NIMS University, Rajasthan, Jaipur, 303121, India
| | - Abdugani Musayev
- Asfendiyarov Kazakh National Medical University, Almaty, 050000, Kazakhstan
| | | | - Deepika Sharma
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Nipun Padha
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
- Department of Zoology, Cluster University of Jammu, Jammu, 180001, India
| | - Manju Saini
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
- Amity Stem Cell Institute, Amity Medical School, Amity University, Haryana, 122412, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India.
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, (INMAS-DRDO), New Delhi, Delhi, 110054, India.
| |
Collapse
|
2
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
3
|
Hua Z, Chen B, Gong B, Lin M, Ma Y, Li Z. SESN1 functions as a new tumor suppressor gene via Toll-like receptor signaling pathway in neuroblastoma. CNS Neurosci Ther 2024; 30:e14664. [PMID: 38516781 PMCID: PMC10958400 DOI: 10.1111/cns.14664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
AIMS Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.
Collapse
Affiliation(s)
- Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Bo Chen
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Baocheng Gong
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Meizhen Lin
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Yifan Ma
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangChina
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research CenterShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
4
|
Jahangiri L. Metastasis in Neuroblastoma and Its Link to Autophagy. Life (Basel) 2023; 13:life13030818. [PMID: 36983973 PMCID: PMC10056181 DOI: 10.3390/life13030818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroblastoma is a paediatric malignancy originating from the neural crest that commonly occurs in the abdomen and adrenal gland, leading to cancer-related deaths in children. Distant metastasis can be encountered at diagnosis in greater than half of these neuroblastoma patients. Autophagy, a self-degradative process, plays a key role in stress-related responses and the survival of cells and has been studied in neuroblastoma. Accordingly, in the early stages of metastasis, autophagy may suppress cancer cell invasion and migration, while its role may be reversed in later stages, and it may facilitate metastasis by enhancing cancer cell survival. To that end, a body of literature has revealed the mechanistic link between autophagy and metastasis in neuroblastoma in multiple steps of the metastatic cascade, including cancer cell invasion and migration, anoikis resistance, cancer cell dormancy, micrometastasis, and metastatic outbreak. This review aims to take a step forward and discuss the significance of multiple molecular players and compounds that may link autophagy to metastasis and map their function to various metastatic steps in neuroblastoma.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK
- Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
5
|
Yue ZX, Xing TY, Zhao W, Zhao Q, Wang XS, Su Y, Gao C, Liu SG, Ma XL. MYCN amplification plus 1p36 loss of heterozygosity predicts ultra high risk in bone marrow metastatic neuroblastoma. Cancer Med 2022; 11:1837-1849. [PMID: 35137546 PMCID: PMC9041068 DOI: 10.1002/cam4.4583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023] Open
Abstract
Background This study aimed to better understand the prognostic effect of multiple genetic markers and identify more subpopulations at ultra high risk of poor outcome in bone marrow (BM) metastatic neuroblastoma (NB). Methods We screened the MYCN, 1p36 and 11q23 loss of heterozygosity (LOH) statuses of 154 patients by interphase fluorescence in situ hybridization of BM cells. The clinical characteristics of patients with the three markers and their associations with prognosis were analysed. Results MYCN amplification and LOH at 1p36 and 11q23 were identified in 16.2%, 33.1% and 30.5% of patients, respectively. There were strong associations between MYCN amplification and 1p36 LOH as well as 11q23 LOH. Both MYCN amplification and 1p36 LOH were strongly associated with high levels of lactate dehydrogenase (LDH) and neuron‐specific enolase, more than 3 metastatic organs, and more events. 11q23 LOH occurred mainly in patients older than 18 months, and those who had high LDH levels. In univariate analysis, patients with MYCN amplification had poorer prognosis than those without. Patients with 1p36 LOH had a 3‐year event‐free survival (EFS) and overall survival lower than those without. 11q23 LOH was associated with poorer EFS only for patients without MYCN amplification. In a multivariate model, MYCN amplification was independently associated with decreased EFS in all cohorts. 11q23 LOH was an independent prognostic factor for patients without MYCN amplification, whereas 1p36 LOH was not an independent marker regardless of MYCN amplification. Compared with all cohorts, patients with both MYCN amplification and 1p36 LOH had the worst outcome and clinical features. Conclusions Patients with both MYCN amplification and 1p36LOH had the worst survival rate, indicating an ultra high‐risk group. Our results may be applied in clinical practice for accurate risk stratification in future studies.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tian-Yu Xing
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Wen Zhao
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Qian Zhao
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Xi-Si Wang
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Yan Su
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Chao Gao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shu-Guang Liu
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiao-Li Ma
- Medical Oncology Department, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Beijing Key Laboratory of Pediatric Hematology Ocology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Schriegel F, Taschner-Mandl S, Bernkopf M, Grunwald U, Siebert N, Ambros PF, Ambros I, Lode HN, Henze G, Ehlert K. Comparison of three different methods to detect bone marrow involvement in patients with neuroblastoma. J Cancer Res Clin Oncol 2021; 148:2581-2588. [PMID: 34623519 PMCID: PMC9470647 DOI: 10.1007/s00432-021-03780-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Purpose Neuroblastoma (NB) is the most frequent extracranial tumor in children. The detection of bone marrow (BM) involvement is crucial for correct staging and risk-adapted treatment. We compared three methods regarding the detection of NB involvement in BM. Methods Eighty-one patients with NB were included in this retrospective study. BM samples were obtained at designated time points at study entry and during treatment or follow-up. The diagnostic tools for BM analysis included cytomorphology (CM), flow cytometry (FCM) and automatic immunofluorescence plus fluorescence in situ hybridization (AIPF). Results We analyzed 369 aspirates in 81 patients in whom AIPF, CM, and FCM were simultaneously available. During the observation period, NB cells were detected in 86/369 (23.3%) cases, by CM in 32/369 (8.7%), by FCM in 52 (14.1%), and by AIPF in 72 (19.5%) samples. AIPF and/or FCM confirmed all positive results obtained in CM and detected 11 additional positive BM aspirates in 294 CM negative samples (p < 0,001). Survival of patients with BM involvement at study entry identified solely by FCM/AIPF was 17.4% versus 0% for patients in whom BM involvement was already identified by CM. Conclusion The combination of AIPF/FCM yielded the highest detection rate of NB cells in BM. AIPF was the single, most sensitive method in detecting these cells. Although CM did not provide any additional positive results, it is still a useful, readily available and cost-effective tool. The prognostic significance of FCM and AIPF should be confirmed in a prospective study with a larger number of patients.
Collapse
Affiliation(s)
- Felix Schriegel
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475, Greifswald, Germany
| | | | - Marie Bernkopf
- CCRI, St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Uwe Grunwald
- Department of Medicine C, Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475, Greifswald, Germany
| | - Peter F Ambros
- CCRI, St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Inge Ambros
- CCRI, St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Holger N Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475, Greifswald, Germany
| | - Guenter Henze
- Department of Pediatric Oncology and Hematology, Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Karoline Ehlert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse, D-17475, Greifswald, Germany.
| |
Collapse
|
7
|
Furlanetto G, Spagnol F, Alegretti AP, Farias MG, Soares VJ, Daudt LE, Loss JF, Scroferneker ML, Michalowski MB. Flow cytometry as a diagnostic tool in neuroblastoma. J Immunol Methods 2021; 498:113135. [PMID: 34478717 DOI: 10.1016/j.jim.2021.113135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
In recent years, there has been an expansion in the use of flow cytometry (FC) immunophenotyping in the diagnosis and monitoring of childhood solid neoplasms. Neuroblastoma (NB), in turn, is the most common extracranial solid tumor in childhood. In the present study, we sought to compare FC and anatomopathological examination (PA) / immunohistochemistry (IHC) of children diagnosed or suspected with NB. The median age was 59 months (minimum 0; maximum 325 months), of these 12 were male (57.1%, 12/21). Forty-eight samples (27 bone marrow (BM), 10 peripheral blood (PB), 8 primary tumors (PT) and 2 liver nodules (HN) and 1 rib fragment (RF)) from 21 patients were evaluated. Twenty-nine samples were from patients with clinical suspicion while 19 samples were from patients with previously confirmed diagnosis. Thirteen samples (7 BM, 5 PT and 1 HN) presented NB when analyzed in FC while 8 (3 BM and 5 PT) samples were positive for NB in the PA/IHC. They were concordant in 88.9% of the cases. No NB cells were identified in any PB. Considering the PA as the gold standard, the FC obtained a sensitivity of 100%, a specificity of 86%, a positive predictive value of 67% and a negative predictive value of 100%. This study demonstrates that FC can be used as a methodology for diagnosis and assessment of NB involvement. In addition, FC has the advantage of allowing a quick diagnosis and accurate classification of the disease, and can also assist in monitoring the treatment.
Collapse
Affiliation(s)
- Gislaine Furlanetto
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Fabiane Spagnol
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula Alegretti
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Liane Esteves Daudt
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jiseh Fagundes Loss
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Mariana Bohns Michalowski
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
The Role of Extracellular Vesicles in the Progression of Human Neuroblastoma. Int J Mol Sci 2021; 22:ijms22083964. [PMID: 33921337 PMCID: PMC8069919 DOI: 10.3390/ijms22083964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long-underestimated role of extracellular vesicles in cancer is now reconsidered worldwide by basic and clinical scientists, who recently highlighted novel and crucial activities of these moieties. Extracellular vesicles are now considered as king transporters of specific cargoes, including molecular components of parent cells, thus mediating a wide variety of cellular activities both in normal and neoplastic tissues. Here, we discuss the multifunctional activities and underlying mechanisms of extracellular vesicles in neuroblastoma, the most frequent common extra-cranial tumor in childhood. The ability of extracellular vesicles to cross-talk with different cells in the tumor microenvironment and to modulate an anti-tumor immune response, tumorigenesis, tumor growth, metastasis and drug resistance will be pinpointed in detail. The results obtained on the role of extracellular vesicles may represent a panel of suggestions potentially useful in practice, due to their involvement in the response to chemotherapy, and, moreover, their ability to predict resistance to standard therapies—all issues of clinical relevance.
Collapse
|
9
|
Yu X, Fan H, Jiang X, Zheng W, Yang Y, Jin M, Ma X, Jiang W. Apatinib induces apoptosis and autophagy via the PI3K/AKT/mTOR and MAPK/ERK signaling pathways in neuroblastoma. Oncol Lett 2020; 20:52. [PMID: 32788939 PMCID: PMC7416412 DOI: 10.3892/ol.2020.11913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical outcome of neuroblastoma (NB) has significantly improved in the last 30 years for patients with localized disease; however, the overall survival (OS) for patients with metastasis remains poor. Apatinib, a selective inhibitor of the vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase, which was discovered to be highly associated with metastasis, has been reported to exert antitumor effects in numerous types of cancer. However, the effect of apatinib in NB remains relatively unknown. The present study aimed to investigate the antitumor effects of apatinib in NB cells in vitro. The results revealed that apatinib inhibited cell viability and colony formation, whilst inducing cell cycle arrest and the apoptosis of NB cells. Additionally, apatinib inhibited the migration and invasion of NB cells, in addition to promoting the autophagy of NB cells. Western blotting demonstrated that the protein expression levels of phosphorylated (p)-AKT, p-mTOR and p-P70S6K, and downstream molecules associated with the cell cycle and apoptosis, such as cyclin D1 and the Bcl-2/Bax ratio of NB cells, were significantly decreased following treatment with apatinib. In addition, western blotting and immunofluorescence assays identified that the expression level of microtubule-associated protein 1A/1B-light chain 3-II, which is expressed in autophagosomes, was upregulated following apatinib treatment. In conclusion, the findings of the present study suggested that apatinib may induce apoptosis and autophagy via the PI3K/AKT/mTOR and mitogen-activated protein kinase/ERK signaling pathways in NB cells. Thus, apatinib may be a potential antitumor agent for the clinical treatment of NB.
Collapse
Affiliation(s)
- Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Hongjun Fan
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Xingran Jiang
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Wei Zheng
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yanan Yang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Mei Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Xiaoli Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Wei Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
10
|
Yue ZX, Xing TY, Gao C, Liu SG, Zhao W, Zhao Q, Wang XS, Jin M, Ma XL. Chromosome band 11q23 deletion predicts poor prognosis in bone marrow metastatic neuroblastoma patients without MYCN amplification. Cancer Commun (Lond) 2019; 39:68. [PMID: 31685009 PMCID: PMC6829843 DOI: 10.1186/s40880-019-0409-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/16/2019] [Indexed: 12/16/2022] Open
Abstract
Background Interphase fluorescence in situ hybridization (FISH) of bone marrow cells has been confirmed to be a direct and valid method to assess the v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN) amplification in patients with bone marrow metastatic neuroblastoma. MYCN amplification alone, however, is insufficient for pretreatment risk stratification. Chromosome band 11q23 deletion has recently been included in the risk stratification of neuroblastoma. In the present study, we aimed to evaluate the biological characteristics and prognostic impact of 11q23 deletion and MYCN amplification in patients with bone marrow metastatic neuroblastoma. Methods We analyzed the MYCN and 11q23 statuses of 101 patients with bone marrow metastatic neuroblastoma using interphase FISH of bone marrow cells. We specifically compared the biological characteristics and prognostic impact of both aberrations. Results MYCN amplification and 11q23 deletion were seen in 12 (11.9%) and 40 (39.6%) patients. The two markers were mutually exclusive. MYCN amplification occurred mainly in patients with high lactate dehydrogenase (LDH) and high neuron-specific enolase (NSE) levels (both P < 0.001), and MYCN-amplified patients had more events (tumor relapse, progression, or death) than MYCN-normal patients (P = 0.004). 11q23 deletion was associated only with age (P = 0.001). Patients with MYCN amplification had poorer outcomes than those with normal MYCN (3-year event-free survival [EFS] rate: 8.3 ± 8.0% vs. 43.8 ± 8.5%, P < 0.001; 3-year overall survival [OS] rate: 10.4 ± 9.7% vs. 63.5% ± 5.7%, P < 0.001). 11q23 deletion reflected a poor prognosis only for patients with normal MYCN (3-year EFS rate: 34.3 ± 9.5% vs. 53.4 ± 10.3%, P = 0.037; 3-year OS rate: 42.9 ± 10.4% vs. 75.9 ± 6.1%, P = 0.048). Those with both MYCN amplification and 11q23 deletion had the worst outcome (P < 0.001). Conclusions Chromosome band 11q23 deletion predicts poor prognosis only in bone marrow metastatic neuroblastoma patients without MYCN amplification. Combined assessment of the two markers was much superior to single-marker assessment in recognizing the patients at a high risk of disease progression.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Wen Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Qian Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Xi-Si Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Mei Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China
| | - Xiao-Li Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, 100045, People's Republic of China.
| |
Collapse
|
11
|
Zhang L, Sun W, Cao Y, Hou L, Ju C, Wang X. Isatin inhibits the invasion of human neuroblastoma SH‑SY5Y cells, based on microarray analysis. Mol Med Rep 2019; 20:1700-1706. [PMID: 31257543 PMCID: PMC6625403 DOI: 10.3892/mmr.2019.10378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the fourth most common type of extracranial malignant solid tumor in children. Isatin had been demonstrated to have inhibitory effects on neuroblastoma tumors in vivo and in vitro. The aim of the present study was to investigate the molecular mechanism related to the anti-invasion effect of isatin on SH-SY5Y cells using microarray analysis. The microarray data identified a number of genes to be differentially upregulated or downregulated between isatin-treated cells and untreated controls. A large number of these genes were associated with the mTOR signaling pathway. The differentially expressed genes involved in the mTOR signaling pathway were verified further, as well as their downstream genes associated with autophagy. The results of the present study provided an insight into the potential inhibitory mechanism of isatin on neuroblastoma metastasis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Wenyan Sun
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Yi Cao
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Chuanxia Ju
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xuefeng Wang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, Shandong 266021, P.R. China
| |
Collapse
|
12
|
Lin MC, Lee YW, Tseng YY, Lin YW, Chen JT, Liu SH, Chen RM. Honokiol Induces Autophagic Apoptosis in Neuroblastoma Cells through a P53-Dependent Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:895-912. [DOI: 10.1142/s0192415x19500472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In children, neuroblastomas are the most common and deadly solid tumor. Our previous studies showed that honokiol can cross the blood–brain barrier and kill neuroblastoma cells. In this study, we further evaluated if exposure to honokiol for short periods could induce autophagy and subsequent apoptosis of neuroblastoma cells and possible mechanisms. Exposure of neuroblastoma neuro-2a cells to honokiol for 24[Formula: see text]h induced morphological shrinkage and cell death. As to the mechanisms, honokiol consecutively induced cytochrome c release from mitochondria, caspase-3 activation, DNA fragmentation and cell apoptosis. Separately, honokiol time-dependently augmented the proportion of autophagic cells and the ratio of light chain 3 (LC3)-II/LC3-I. Pretreatment of neuro-2a cells with 3-methyladenine, an inhibitor of autophagy, attenuated honokiol-induced cell autophagy, caspase-3 activation, DNA damage and cell apoptosis. In contrast, stimulation of autophagy by rapamycin, an inducer of autophagy, significantly enhanced honokiol-induced cell apoptosis. Furthermore, honokiol-induced autophagic apoptosis was confirmed in neuroblastoma NB41A3 cells. Knocking down translation of p53 using RNA interference attenuated honokiol-induced autophagy and apoptosis in neuro-2a and NB41A3 cells. Taken together, this study showed that at early periods, honokiol can induce autophagic apoptosis of neuroblastoma cells through activating a p53-dependent mechanism. Consequently, honokiol has the potential to be a therapeutic option for neuroblastomas.
Collapse
Affiliation(s)
- Ming-Chung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuan-Wen Lee
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yuan-Yun Tseng
- Department of Neurosurgery, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Wei Lin
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Biology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jui-Tai Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Biology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Biology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan
| |
Collapse
|
13
|
Uemura S, Ishida T, Thwin KKM, Yamamoto N, Tamura A, Kishimoto K, Hasegawa D, Kosaka Y, Nino N, Lin KS, Takafuji S, Mori T, Iijima K, Nishimura N. Dynamics of Minimal Residual Disease in Neuroblastoma Patients. Front Oncol 2019; 9:455. [PMID: 31214500 PMCID: PMC6558004 DOI: 10.3389/fonc.2019.00455] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is a common extracranial solid tumor of neural crest (NC) origin that accounts for up to 15% of all pediatric cancer deaths. The disease arises from a transient population of NC cells that undergo an epithelial-mesenchymal transition (EMT) and generate diverse cell-types and tissues. Patients with neuroblastoma are characterized by their extreme heterogeneity ranging from spontaneous regression to malignant progression. More than half of newly diagnosed patients present highly metastatic tumors and are stratified into a high-risk group with dismal outcome. As many as 20% of high-risk patients have residual disease that is refractory or progressive during induction chemotherapy. Although a majority of high-risk patients achieve remission, larger part of those patients has minimal residual disease (MRD) that causes relapse even after additional consolidation therapy. MRD is composed of drug-resistant tumor cells and dynamically presented as cancer stem cells (CSCs) in residual tumors, circulating tumor cells (CTCs) in peripheral blood (PB), and disseminated tumor cells (DTCs) in bone marrow (BM) and other metastatic sites. EMT appears to be a key mechanism for cancer cells to acquire MRD phenotypes and malignant aggressiveness. Due to the restricted availability of residual tumors, PB and BM have been used to isolate and analyze CTCs and DTCs to evaluate MRD in cancer patients. In addition, recent technical advances make it possible to use circulating tumor DNA (ctDNA) shed from tumor cells into PB for MRD evaluation. Because MRD can be detected by tumor-specific antigens, genetic or epigenetic changes, and mRNAs, numerous assays using different methods and samples have been reported to detect MRD in cancer patients. In contrast to the tumor-specific gene-rearrangement-positive acute lymphoblastic leukemia (ALL) and the oncogenic fusion-gene-positive chronic myelogenous leukemia (CML) and several solid tumors, the clinical significance of MRD remains to be established in neuroblastoma. Given the extreme heterogeneity of neuroblastoma, dynamics of MRD in neuroblastoma patients will hold a key to the clinical validation. In this review, we summarize the biology and detection methods of cancer MRD in general and evaluate the available assays and clinical significance of neuroblastoma MRD to clarify its dynamics in neuroblastoma patients.
Collapse
Affiliation(s)
- Suguru Uemura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Ishida
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Khin Kyae Mon Thwin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kenji Kishimoto
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyaw San Lin
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoru Takafuji
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noriyuki Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Morandi F, Marimpietri D, Horenstein AL, Corrias MV, Malavasi F. Microvesicles expressing adenosinergic ectoenzymes and their potential role in modulating bone marrow infiltration by neuroblastoma cells. Oncoimmunology 2019; 8:e1574198. [PMID: 31069133 PMCID: PMC6492972 DOI: 10.1080/2162402x.2019.1574198] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
Metastatic diffusion of Neuroblastoma (NB) cells in the bone marrow (BM) represents the most negative prognostic factors for NB patients. Multiple immune escape mechanisms are postulated as responsible. Our working hypothesis is that adenosine (ADO), an immunosuppressive molecule along with the ectoenzymatic pathways (CD39-CD73 and CD38-CD203a/PC-1-CD73) controlling its production, are involved in the dynamics of NB cells in the BM. The results indicate that ectonucleotidases are expressed by i) NB cell lines, ii) metastatic NB cells isolated from NB patients' BM, iii) microvesicles (MV) derived from both NB cell types and iv) resident BM cell populations. BM infiltration by NB cells increased CD203a/PC-1 and CD73 expression on lymphoid and myeloid cells, respectively. Expressions of ectoenzymes and GD2 (NB-associated marker) were higher on MV from NB patients' BM than in controls. Moreover, CD203a/PC-1 expression on BM-derived MV provide a basis for distinguishing NB patients with high or low BM infiltration. ADO production and consumption of related by-products were significantly higher when assessed on NB patients' MV than those from controls. MV isolated from NB patients' BM significantly downregulated in vitro T cell proliferation. Lastly, NB patients with worse prognosis are identified by a high percentage of CD38+ or CD73+ MV in the BM. In conclusion, ectonucleotidases are present and functional on NB cells, as well as in NB-infiltrated BM and in MV derived from BM. It is reasonable that MV are involved in BM infiltration by NB cells. Therefore, targeting these molecules may widen the therapeutic armamentarium for metastatic NB patients.
Collapse
Affiliation(s)
- Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Danilo Marimpietri
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alberto L Horenstein
- Department of Medical Sciences, Laboratory of Immunogenetics, University of Torino, Torino, Italy.,CeRMS, University of Torino, Torino, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fabio Malavasi
- Department of Medical Sciences, Laboratory of Immunogenetics, University of Torino, Torino, Italy.,CeRMS, University of Torino, Torino, Italy.,Fondazione Ricerca Molinette, Torino, Italy
| |
Collapse
|
15
|
Colletti M, Petretto A, Galardi A, Di Paolo V, Tomao L, Lavarello C, Inglese E, Bruschi M, Lopez AA, Pascucci L, Geoerger B, Peinado H, Locatelli F, Di Giannatale A. Proteomic Analysis of Neuroblastoma-Derived Exosomes: New Insights into a Metastatic Signature. Proteomics 2017; 17. [PMID: 28722341 DOI: 10.1002/pmic.201600430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/05/2017] [Indexed: 12/11/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor. Around 70% of patients with metastatic disease at diagnosis present bone-marrow infiltration, which is considered a marker of poor outcome; however, the mechanism underlying this specific tropism has to be elucidated. Tumor-derived exosomes may support metastatic progression in several tumors by interacting with the microenvironment, and may serve as tumor biomarkers. The main objective of this study is to identify an exosomal signature associated with NB metastatic bone-marrow dissemination. Therefore, the proteomic cargo of exosomes isolated from NB cell lines derived from primary tumor and bone-marrow metastasis is characterized. The comparison among exosomal proteins show 15 proteins exclusively present in primary tumor-derived exosomes, mainly involved in neuronal development, and 6 proteins in metastasis-derived exosomes related to cancer progression. Significant proteins obtain with statistical analysis performed between the two groups, reveal that primary tumor exosomes contain a higher level of proteins involved in extra-cellular matrix (ECM) assembly and adhesion, as well as in neuronal development. Exosomes isolated from bone-marrow metastasis exhibit proteins involved in ameboidal cell migration and mitochondrial activity. This work suggests that proteomic profiling of NB-derived exosomes reflects the tumor stage and may be considered as potential tumor biomarker.
Collapse
Affiliation(s)
- Marta Colletti
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Angela Galardi
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Virginia Di Paolo
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luigi Tomao
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Lavarello
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Laboratory on Physiopathology of Uremia, Istituto Giannina Gaslini, Genoa, Italy
| | - Ana Amor Lopez
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Birgit Geoerger
- Pediatric and Adolescent Oncology, Gustave Roussy, CNRS UMR8203, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Hector Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Franco Locatelli
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Angela Di Giannatale
- Department of Hematology/Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, Zhao Q, Wang XS, Zhao W, Jin M, Ma XL. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int 2017; 17:43. [PMID: 28367105 PMCID: PMC5374581 DOI: 10.1186/s12935-017-0412-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MYCN gene amplification is related to risk stratification. Therefore it is important to identify accurately the level of the MYCN gene as early as possible in neuroblastoma (NB); however, for patients with bone marrow (BM) metastasis who need chemotherapy before surgery, timely detection of the MYCN gene is not possible due to the unavailability of primary tumors. METHODS MYCN gene status was evaluated in 81 BM metastases of NB by interphase fluorescence in situ hybridization (FISH) analysis of BM cells. The clinicobiological characteristics and prognostic impact of MYCN amplification in NB metastatic to BM were analyzed. RESULTS MYCN amplification was found in 16% of patients with metastases, and the results were consistent with the primary tumors detected by pathological tissue FISH. MYCN amplification was associated with age, lactate dehydrogenase (LDH) levels and prognosis (P = 0.038, P < 0.001, P = 0.026). Clinical outcome was poorer in patients with MYCN amplification than in those without amplification (3-year EFS 28.8 ± 13.1 vs. 69.7 ± 5.7%, P = 0.005; 3-year OS 41.5 ± 14.7 vs. 76.7 ± 5.5%, P = 0.005). CONCLUSIONS MYCN amplification predicts a poor outcome in NB metastatic to BM, and interphase FISH of bone marrow cells provides a timely direct and valid method to evaluate the MYCN gene status.
Collapse
Affiliation(s)
- Zhi-Xia Yue
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Cheng Huang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Chao Gao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Tian-Yu Xing
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Shu-Guang Liu
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xing-Jun Li
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Qian Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xi-Si Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Wen Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Mei Jin
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| | - Xiao-Li Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics, Ministry of Education, MOE Key Laboratory of Major Diseases in Children, Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, 100045 China
| |
Collapse
|
17
|
|
18
|
Morandi F, Pozzi S, Barco S, Cangemi G, Amoroso L, Carlini B, Pistoia V, Corrias MV. CD4 +CD25 hiCD127 - Treg and CD4 +CD45R0 +CD49b +LAG3 + Tr1 cells in bone marrow and peripheral blood samples from children with neuroblastoma. Oncoimmunology 2016; 5:e1249553. [PMID: 28123887 DOI: 10.1080/2162402x.2016.1249553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022] Open
Abstract
Metastatic spread in the bone marrow (BM) at diagnosis is the worst prognostic factor for neuroblastoma (NB) patients. Here, we analyzed the presence of two immunosuppressive cell subsets, CD4+CD25hiCD127- regulatory T (Treg) cells and CD4+CD45R0+CD49b+LAG3+ type 1 regulatory (Tr1) cells, in BM and peripheral blood (PB) samples from NB patients and controls. Frequency of both regulatory cell subsets was lower in BM and PB samples from NB patients than in respective healthy controls. No correlation was found between the frequency of Treg and Tr1 cells and prognostic factors at diagnosis, such as age and stage. Only MYCN amplification correlated to a higher number of Treg in BM and of Tr1 in PB. These findings suggested an altered trafficking of regulatory T cells in NB, but delineated a limited role of these subsets in BM microenvironment and/or periphery in NB. These observations should be considered designing immunotherapeutic approaches for metastatic NB.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genoa, Italy
| | - Sarah Pozzi
- Centro Cellule Staminali, IRCCS AOU San Martino-IST , Genoa, Italy
| | - Sebastiano Barco
- Laboratorio Centrale di Analisi, Istituto Giannina Gaslini , Genoa, Italy
| | - Giuliana Cangemi
- Laboratorio Centrale di Analisi, Istituto Giannina Gaslini , Genoa, Italy
| | | | - Barbara Carlini
- Laboratorio di Oncologia, Istituto Giannina Gaslini , Genoa, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Genoa, Italy; Immunology Area, Ospedale Pediatrico Bambino Gesú, Rome, Italy
| | | |
Collapse
|
19
|
BLM germline and somatic PKMYT1 and AHCY mutations: Genetic variations beyond MYCN and prognosis in neuroblastoma. Med Hypotheses 2016; 97:22-25. [PMID: 27876123 DOI: 10.1016/j.mehy.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
Neuroblastoma (NB) is the most common extra cranial solid tumor of childhood and often lethal in childhood. Clinical and biologic characteristics that are independently prognostic of outcome in NB are currently used for risk stratification to optimally the therapy. It includes age at diagnosis, International Neuroblastoma Staging System tumor histopathology and MYCN amplification. However, even in patients with theoretically good prognosis, such as localized tumor and non-amplified MYCN, either disease progress or recurrence may occur. Potential genetic determinants of this unfavorable behavior are not yet fully clarified. The presence of elevated expression of AHCY, PKMYT1, and BLM has accompanied poor prognosis MYCN-amplified neuroblastoma patients. Considering the potential implication of these genes on the clinical management of NB, we hypothesize that the identification of genetic variations may have significant impact during development of the recurrent or progressive disease. Using targeted DNA sequencing, we analyzed the mutation profiles of the genes PKMYT1, AHCY, and BLM in tumor samples of five patients with MYCN amplified and 15 MYCN non-amplified NB. In our study, BLM germline variants were detected in two patients with MYCN-non-amplified neuroblastoma. Our data allow us to hypothesize that, regardless of MYCN status, these mutations partially abolish BLM protein activity by impairing its ATPase and helicase activities. BLM mutations are also clinically relevant because BLM plays an important role in DNA damage repair and the maintenance of genomic integrity. We also found a novel variant in our cohort, PKMYT1 mutation localized in the C-terminal domain with effect unknown on NB. We hypothesize that this variant may affect the catalytic activity of PKMYT1 in NB, specifically when CDK1 is complexed to cyclins. The prognostic value of this mutation must be further investigated. Another mutation identified was a nonsynonymous variant in AHCY. This variant may be related to the slow progression of the disease, even in more aggressive cases. It affects the maintenance of the catalytic capacity of AHCY, leading to the consequent functional effects observed in the NB patients studied. In conclusion, our hypothesis may provide that mutations in BLM, AHCY and PKMYT1 genes found in children with MYCN-amplified or MYCN-non amplified neuroblastomas, may be associated with the prognosis of the disease.
Collapse
|
20
|
Pillai V, Dorfman DM. Flow Cytometry of Nonhematopoietic Neoplasms. Acta Cytol 2016; 60:336-343. [PMID: 27578265 DOI: 10.1159/000448371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/12/2016] [Indexed: 12/26/2022]
Abstract
Many epithelial neoplasms can be analyzed by flow cytometry (FC), particularly from serous cavity effusion samples, using EpCAM, a cell adhesion molecule expressed on most normal epithelial cells and expressed at a higher level in most epithelial neoplasms. A simple 3-color flow cytometric panel can provide a high sensitivity and specificity compared to cytomorphology. FC provides more rapid immunophenotyping than conventional immunohistochemical staining, can identify rare malignant cells that could be missed by a cytological exam alone, and can be utilized to evaluate limited samples such as cerebrospinal fluid or fine-needle aspiration samples. Flow cytometric analysis for epithelial antigens can be combined with DNA ploidy analysis or assessment of the nucleus-to-cytoplasm ratio. Panels of flow cytometric markers are useful for the assessment of pediatric nonhematopoietic neoplasms, including neuroblastomas, primitive neuroectodermal tumors, Wilms' tumor, rhabdomyosarcomas, germ cell tumors, and hemangiopericytomas, as well as small-round-blue-cell tumors in adults, including small-cell carcinomas.
Collapse
Affiliation(s)
- Vinodh Pillai
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa., USA
| | | |
Collapse
|
21
|
Morandi F, Pozzi S, Carlini B, Amoroso L, Pistoia V, Corrias MV. Soluble HLA-G and HLA-E Levels in Bone Marrow Plasma Samples Are Related to Disease Stage in Neuroblastoma Patients. J Immunol Res 2016; 2016:7465741. [PMID: 27610393 PMCID: PMC5004009 DOI: 10.1155/2016/7465741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/04/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022] Open
Abstract
The role of nonclassical HLA-class Ib molecules HLA-G and HLA-E in the progression of Neuroblastoma (NB), the most common pediatric extracranial solid tumor, has been characterized in the last years. Since BM infiltration by NB cells is an adverse prognostic factor, we have here analyzed for the first time the concentration of soluble (s)HLA-G and HLA-E in bone marrow (BM) plasma samples from NB patients at diagnosis and healthy donors. sHLA-G and sHLA-E are present in BM plasma samples, and their levels were similar between NB patients and controls, thus suggesting that these molecules are physiologically released by resident or stromal BM cell populations. This hypothesis was supported by the finding that sHLA-G and sHLA-E levels did not correlate with BM infiltration and other adverse prognostic factors (MYCN amplification and age at diagnosis). In contrast, BM plasma levels of both molecules were higher in patients with metastatic disease than in patients with localized NB, thus suggesting that concentration of these molecules might be correlated with disease progression. The prognostic role of sHLA-G and sHLA-E concentration in the BM plasma for NB patients will be evaluated in future studies, by analyzing the clinical outcome of the same NB patients at follow-up.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genoa, Italy
| | - Sarah Pozzi
- Centro Cellule Staminali, IRCCS AOU San Martino-IST, Largo R. Benzi 10, 16132 Genoa, Italy
| | - Barbara Carlini
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genoa, Italy
| | - Loredana Amoroso
- UOC Oncologia, Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genoa, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genoa, Italy
| | - Maria Valeria Corrias
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
22
|
Boyineni J, Tanpure S, Gnanamony M, Antony R, Fernández KS, Lin J, Pinson D, Gondi CS. SPARC overexpression combined with radiation retards angiogenesis by suppressing VEGF-A via miR‑410 in human neuroblastoma cells. Int J Oncol 2016; 49:1394-406. [PMID: 27498840 PMCID: PMC5021251 DOI: 10.3892/ijo.2016.3646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children and despite aggressive therapy survival rates remain low. One of the contributing factors for low survival rates is aggressive tumor angiogenesis, which is known to increase due to radiation, one of the standard therapies for neuroblastoma. Therefore, targeting tumor angiogenesis can be a viable add-on therapy for the treatment of neuroblastomas. In the present study, we demonstrate that overexpression of secreted protein acidic and rich in cysteine (SPARC) suppresses radiation induced angiogenesis in SK-N-BE(2) and NB1691 neuroblastoma cells. We observed that overexpression of SPARC in SK-N-BE(2) and NB1691 cells reduced radiation induced angiogenesis in an in vivo mouse dorsal skin model and an ex vivo chicken CAM (chorioallantoic-membrane) model and also reduced tumor size in subcutaneous mouse tumor models of NB. We also observed that SPARC overexpression reduces VEGF-A expression, in SK-N-BE(2) and NB1691 NB cells via miR-410, a VEGF-A targeting microRNA. SPARC overexpression alone or in combination with miR-410 and radiation was shown to be effective at reducing angiogenesis. Moreover, addition of miR-410 inhibitors reversed SPARC mediated inhibition of VEGF-A in NB1691 cells but not in SK-N-BE(2) NB cells. In conclusion, the present study demonstrates that the over-expression of SPARC in combination with radiation reduced tumor angiogenesis by downregulating VEGF-A via miR-410.
Collapse
Affiliation(s)
- Jerusha Boyineni
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Smita Tanpure
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Manu Gnanamony
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Reuben Antony
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Karen S Fernández
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Julian Lin
- Department of Neurosurgery, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - David Pinson
- Department of Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Christopher S Gondi
- Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA
| |
Collapse
|
23
|
Harreld JH, Bratton EM, Federico SM, Li X, Grover W, Li Y, Kerr NC, Wilson MW, Hoehn ME. Orbital Metastasis Is Associated With Decreased Survival in Stage M Neuroblastoma. Pediatr Blood Cancer 2016; 63:627-33. [PMID: 26599346 PMCID: PMC5127440 DOI: 10.1002/pbc.25847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Approximately 30% of patients with metastatic (stage M) neuroblastoma present with periorbital ecchymosis from orbital osseous disease. Though locoregional disease is staged by imaging, the prognostic significance of metastatic site in stage M disease is unknown. We hypothesize that, compared to nonorbital metastasis, orbital metastasis is associated with decreased survival in patients with stage M neuroblastoma, and that periorbital ecchymosis reflects location and extent of orbital disease. PROCEDURE Medical records and imaging from 222 patients with stage M neuroblastoma seen at St. Jude Children's Research Hospital between January 1995 and May 2009 were reviewed. Thirty-seven patients were <18 months of age at diagnosis and 185 were ≥18 months of age. Overall survival (OS) and 5-year survival (5YS) were compared for patients with and without orbital, calvarial and nonorbital osseous metastasis, and with and without periorbital ecchymosis (log-rank test). Associations of periorbital ecchymosis with orbital metastasis location/extent were explored (Fisher's exact test, t-test). RESULTS In patients ≥18 months of age, only orbital metastasis was associated with decreased 5YS (P = 0.0323) and OS (P = 0.0288). In patients <18 months of age, neither orbital, calvarial, or nonorbital bone metastasis was associated with OS or 5YS. Periorbital ecchymosis was associated with higher number of involved orbital bones (P = 0.0135), but not location or survival. CONCLUSIONS In patients ≥ 18 months of age with stage M neuroblastoma, orbital metastatic disease is associated with decreased 5YS and OS. In future clinical trials, orbital disease may be useful as an imaging-based risk factor for substratification of stage M neuroblastoma.
Collapse
Affiliation(s)
- Julie H. Harreld
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Sara M. Federico
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xingyu Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - William Grover
- Department of Ophthalmology, Medstar Georgetown University Hospital, Washington, DC
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN
| | - Natalie C Kerr
- Department of Ophthalmology, University of TN Hamilton Eye Institute, Memphis, TN; Department of Pediatrics, University of TN College of Medicine, Memphis, TN; Division of Ophthalmology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Matthew W. Wilson
- Department of Ophthalmology, University of TN Hamilton Eye Institute, Memphis, TN; Division of Ophthalmology, St. Jude Children’s Research Hospital, Memphis, TN, Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Mary E. Hoehn
- Department of Ophthalmology, University of TN Hamilton Eye Institute, Memphis, TN; Department of Pediatrics, University of TN College of Medicine, Memphis, TN; Division of Ophthalmology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
24
|
Xu M, Wang HF, Zhang HZ. Expression of RECK and MMPs in Hepatoblastoma and Neuroblastoma and Comparative Analysis on the Tumor Metastasis. Asian Pac J Cancer Prev 2016; 16:4007-11. [PMID: 25987077 DOI: 10.7314/apjcp.2015.16.9.4007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To explore the expression of RECK and relevant matrix metalloproteinases (MMPs) in hepatoblastoma (HB) and neuroblastoma (NB) and their clinical significance in the tumor metastasis. MATERIALS AND METHODS Forty-five wax-stone samples of HB and 43 wax-stone samples of NB removed by surgical resection and confirmed by pathology in Linyi Yishui Central Hospital were selected. According to presence and absence of metastasis, both NB and HB samples were divided into metastatic group and non-metastatic group, namely NB metastatic group (n=28), NB non-metastatic group (n=15), HB metastatic group (n=15) and HB non-metastatic group (n=30). The expression of RECK, membrane type-1 matrix metalloproteinase (MT1-MMP) in HB tissue and RECK, MMP-14 in NB tissue was detected using immunohistochemical method, and the correlation between RECK and MT1-MMP, MMP-14 was analyzed. RESULTS The metastatic rate of NB was dramatically higher than that of HB, with statistical significance (P=0.003). The positive rate of RECK expression in NB group (30.2%) was slightly lower than in HB group (40.0%), but no significant difference was presented (P=0.338). The positive rate of MMPs expression in NB metastatic group was evidently higher than in HB metastatic group (P=0.024). The results of Spearman correlation analysis revealed that the expression of RECK in HB and NB tissues had a significantly-negative correlation with MT1-MMP and MMP-14, respectively (r=-0.499, P=0.012; r=-0.636, P=0.000). CONCLUSIONS In HB and NB tissues, RECK is expressed lowly, while relevant MMPs highly, and RECK inhibits the tumor invasion and metastasis through negative regulation of relevant MMPs.
Collapse
Affiliation(s)
- Meng Xu
- Department of Pediatric Surgery, Linyi Yishui Central Hospital, Linyi, China E-mail :
| | | | | |
Collapse
|
25
|
Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Lett 2015; 370:66-77. [PMID: 26454217 DOI: 10.1016/j.canlet.2015.08.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022]
Abstract
In children, neuroblastomas are the most common and deadly solid tumor. Our previous study showed that honokiol, a small-molecule polyphenol, can traverse the blood-brain barrier and kill neuroblastoma cells. In this study, we further investigated the mechanisms of honokiol-induced insults to neuroblastoma cells. Treatment of neuroblastoma neuro-2a cells with honokiol elevated the levels of microtubule-associated protein light chain 3 (LC3)-II and induced cell autophagy in time- and concentration-dependent manners. Interestingly, pretreatment with 3-methyladenine (3-MA), an inhibitor of autophagy, led to the simultaneous attenuation of honokiol-induced cell autophagy and apoptosis but did not influence cell necrosis. As to the mechanisms, exposure of neuro-2a cells to honokiol time-dependently decreased the amount of phosphatidylinositol 3-kinase (PI3K). Sequentially, honokiol downregulated phosphorylation of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) in neuro-2a cells. Furthermore, honokiol elevated the levels of glucose-regulated protein (GpR)78, an endoplasmic reticular stress (ERS)-associated protein, and amounts of intracellular reactive oxygen species (ROS). In contrast, reducing production of intracellular ROS using N-acetylcysteine, a scavenger of ROS, concurrently suppressed honokiol-induced cellular autophagy. Consequently, honokiol stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2. However, pretreatment of neuro-2a cells with PD98059, an inhibitor of ERK1/2, lowered honokiol-induced autophagy. The effects of honokiol on inducing autophagy and apoptosis of neuroblastoma cells were further confirmed using mouse neuroblastoma NB41A3 cells as our experimental model. Fascinatingly, treatment of neuroblastoma neuro-2a and NB41A3 cells with honokiol for 12 h did not affect cell autophagy or apoptosis but caused significant suppression of cell migration. Taken together, this study showed that honokiol can induce autophagy of neuroblastoma cells and consequent apoptosis through activating the PI3K/Akt/mTOR and ERS/ROS/ERK1/2 signaling pathways and suppressing cell migration. Thus, honokiol has potential for treating neuroblastomas.
Collapse
|