1
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Timotievich ED, Shilovskiy IP, Khaitov MR. Cell-Penetrating Peptides as Vehicles for Delivery of Therapeutic Nucleic Acids. Mechanisms and Application in Medicine. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1800-1817. [PMID: 38105200 DOI: 10.1134/s0006297923110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
Collapse
Affiliation(s)
- Ekaterina D Timotievich
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| | - Musa R Khaitov
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
3
|
Magaña AJ, Sklenicka J, Pinilla C, Giulianotti M, Chapagain P, Santos R, Ramirez MS, Tolmasky ME. Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation. RSC Med Chem 2023; 14:1591-1602. [PMID: 37731693 PMCID: PMC10507813 DOI: 10.1039/d3md00226h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 09/22/2023] Open
Abstract
Growing resistance to antimicrobial medicines is a critical health problem that must be urgently addressed. Adding to the increasing number of patients that succumb to infections, there are other consequences to the rise in resistance like the compromise of several medical procedures and dental work that are heavily dependent on infection prevention. Since their introduction in the clinics, aminoglycoside antibiotics have been a critical component of the armamentarium to treat infections. Still, the increase in resistance and their side effects led to a decline in their utilization. However, numerous current factors, like the urgent need for antimicrobials and their favorable properties, led to renewed interest in these drugs. While efforts to design new classes of aminoglycosides refractory to resistance mechanisms and with fewer toxic effects are starting to yield new promising molecules, extending the useful life of those already in use is essential. For this, numerous research projects are underway to counter resistance from different angles, like inhibition of expression or activity of resistance components. This review focuses on selected examples of one aspect of this quest, the design or identification of small molecule inhibitors of resistance caused by enzymatic modification of the aminoglycoside. These compounds could be developed as aminoglycoside adjuvants to overcome resistant infections.
Collapse
Affiliation(s)
- Angel J Magaña
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Jan Sklenicka
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Clemencia Pinilla
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Marc Giulianotti
- Center for Translational Science, Florida International University Port St. Lucie FL 34987 USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami FL 33199 USA
- Biomolecular Sciences Institute, Florida International University Miami FL 33199 USA
| | - Radleigh Santos
- Department of Mathematics, Nova Southeastern University Fort Lauderdale FL 33314 USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton Fullerton CA 92831 USA
| |
Collapse
|
4
|
Tekintaş Y, Temel A. Antisense oligonucleotides: a promising therapeutic option against infectious diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1-39. [PMID: 37395450 DOI: 10.1080/15257770.2023.2228841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Infectious diseases have been one of the biggest health problems of humanity for centuries. Nucleic acid-based therapeutics have received attention in recent years with their effectiveness in the treatment of various infectious diseases and vaccine development studies. This review aims to provide a comprehensive understanding of the basic properties underlying the mechanism of antisense oligonucleotides (ASOs), their applications, and their challenges. The efficient delivery of ASOs is the greatest challenge for their therapeutic success, but this problem is overcome with new-generation antisense molecules developed with chemical modifications. The types, carrier molecules, and gene regions targeted by sequences have been summarized in detail. Research and development of antisense therapy is still in its infancy; however, gene silencing therapies appear to have the potential for faster and longer-lasting activity than conventional treatment strategies. On the other hand, realizing the potential of antisense therapy will require a large initial economic investment to ascertain the pharmacological properties and learn how to optimize them. The ability of ASOs to be rapidly designed and synthesized to target different microbes can reduce drug discovery time from 6 years to 1 year. Since ASOs are not particularly affected by resistance mechanisms, they come to the fore in the fight against antimicrobial resistance. The design-based flexibility of ASOs has enabled it to be used for different types of microorganisms/genes and successful in vitro and in vivo results have been revealed. The current review summarized a comprehensive understanding of ASO therapy in combating bacterial and viral infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
5
|
Ender A, Grafl N, Kolberg T, Findeiß S, Stadler PF, Mörl M. Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes. RNA (NEW YORK, N.Y.) 2022; 28:551-567. [PMID: 35022261 PMCID: PMC8925977 DOI: 10.1261/rna.078814.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Removal of the 5'-leader region is an essential step in the maturation of tRNA molecules in all domains of life. This reaction is catalyzed by various RNase P activities, ranging from ribonucleoproteins with ribozyme activity to protein-only forms. In Escherichia coli, the efficiency of RNase P-mediated cleavage can be controlled by computationally designed riboswitch elements in a ligand-dependent way, where the 5'-leader sequence of a tRNA precursor is either sequestered in a hairpin structure or presented as a single-stranded region accessible for maturation. In the presented work, the regulatory potential of such artificial constructs is tested on different forms of eukaryotic RNase P enzymes-two protein-only RNase P enzymes (PRORP1 and PRORP2) from Arabidopsis thaliana and the ribonucleoprotein of Homo sapiens The PRORP enzymes were analyzed in vitro as well as in vivo in a bacterial RNase P complementation system. We also tested in HEK293T cells whether the riboswitches remain functional with human nuclear RNase P. While the regulatory principle of the synthetic riboswitches applies for all tested RNase P enzymes, the results also show differences in the substrate requirements of the individual enzyme versions. Hence, such designed RNase P riboswitches represent a novel tool to investigate the impact of the structural composition of the 5'-leader on substrate recognition by different types of RNase P enzymes.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Nadine Grafl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Tim Kolberg
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Science, 04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, A-1090 Vienna, Austria
- Santa Fe Institute, Santa Fe, New Mexico 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Ender A, Stadler PF, Mörl M, Findeiß S. RNA Design Principles for Riboswitches that Regulate RNase P-Mediated tRNA Processing. Methods Mol Biol 2022; 2518:179-202. [PMID: 35666446 DOI: 10.1007/978-1-0716-2421-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Riboswitches are an attractive target for the directed design of RNA-based regulators by in silico prediction. These noncoding RNA elements consist of an aptamer platform for the highly selective ligand recognition and an expression platform which controls gene activity typically at the level of transcription or translation. In previous work, we could successfully apply RNA folding prediction to implement a new riboswitch mechanism regulating processing of a tRNA by RNase P. In this contribution, we present detailed information about our pipeline consisting of in silico design combined with the biochemical analysis for the verification of the implemented mechanism. Furthermore, we discuss the applicability of the presented biochemical in vivo and in vitro methods for the characterization of other artificial riboswitches.
Collapse
Affiliation(s)
- Anna Ender
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Science, Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Santa Fe Institute, Santa Fe, NM, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Sven Findeiß
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
7
|
Silencing Antibiotic Resistance with Antisense Oligonucleotides. Biomedicines 2021; 9:biomedicines9040416. [PMID: 33921367 PMCID: PMC8068983 DOI: 10.3390/biomedicines9040416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
Antisense technologies consist of the utilization of oligonucleotides or oligonucleotide analogs to interfere with undesirable biological processes, commonly through inhibition of expression of selected genes. This field holds a lot of promise for the treatment of a very diverse group of diseases including viral and bacterial infections, genetic disorders, and cancer. To date, drugs approved for utilization in clinics or in clinical trials target diseases other than bacterial infections. Although several groups and companies are working on different strategies, the application of antisense technologies to prokaryotes still lags with respect to those that target other human diseases. In those cases where the focus is on bacterial pathogens, a subset of the research is dedicated to produce antisense compounds that silence or reduce expression of antibiotic resistance genes. Therefore, these compounds will be adjuvants administered with the antibiotic to which they reduce resistance levels. A varied group of oligonucleotide analogs like phosphorothioate or phosphorodiamidate morpholino residues, as well as peptide nucleic acids, locked nucleic acids and bridge nucleic acids, the latter two in gapmer configuration, have been utilized to reduce resistance levels. The major mechanisms of inhibition include eliciting cleavage of the target mRNA by the host’s RNase H or RNase P, and steric hindrance. The different approaches targeting resistance to β-lactams include carbapenems, aminoglycosides, chloramphenicol, macrolides, and fluoroquinolones. The purpose of this short review is to summarize the attempts to develop antisense compounds that inhibit expression of resistance to antibiotics.
Collapse
|
8
|
Danilin NA, Matveev AL, Tikunova NV, Venyaminova AG, Novopashina DS. Conjugates of RNase P-Guiding Oligonucleotides with Oligo(N-Methylpyrrole) as Prospective Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
10
|
Danilin NA, Koroleva LS, Novopashina DS, Venyaminova AG. RNase P-Guiding Peptide Conjugates of Oligo(2'-O-methylribonucleotides) as Prospective Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s106816201906013x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Nozawa Y, Hagihara M, Rahman MS, Matsumura S, Ikawa Y. Rational Design of an Orthogonal Pair of Bimolecular RNase P Ribozymes through Heterologous Assembly of Their Modular Domains. BIOLOGY 2019; 8:biology8030065. [PMID: 31480450 PMCID: PMC6783828 DOI: 10.3390/biology8030065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022]
Abstract
The modular structural domains of multidomain RNA enzymes can often be dissected into separate domain RNAs and their noncovalent assembly can often reconstitute active enzymes. These properties are important to understand their basic characteristics and are useful for their application to RNA-based nanostructures. Bimolecular forms of bacterial RNase P ribozymes consisting of S-domain and C-domain RNAs are attractive as platforms for catalytic RNA nanostructures, but their S-domain/C-domain assembly was not optimized for this purpose. Through analysis and engineering of bimolecular forms of the two bacterial RNase P ribozymes, we constructed a chimeric ribozyme with improved catalytic ability and S-domain/C-domain assembly and developed a pair of bimolecular RNase P ribozymes the assembly of which was considerably orthogonal to each other.
Collapse
Affiliation(s)
- Yuri Nozawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Megumi Hagihara
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Md Sohanur Rahman
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Shigeyoshi Matsumura
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Yoshiya Ikawa
- Department of Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
- Graduate School of Innovative Life Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan.
| |
Collapse
|
12
|
Novopashina D, Vorobyeva M, Nazarov A, Davydova A, Danilin N, Koroleva L, Matveev A, Bardasheva A, Tikunova N, Kupryushkin M, Pyshnyi D, Altman S, Venyaminova A. Novel Peptide Conjugates of Modified Oligonucleotides for Inhibition of Bacterial RNase P. Front Pharmacol 2019; 10:813. [PMID: 31379580 PMCID: PMC6658616 DOI: 10.3389/fphar.2019.00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/24/2019] [Indexed: 12/03/2022] Open
Abstract
Novel alternatives to traditional antibiotics are now of great demand for the successful treatment of microbial infections. Here, we present the engineering and properties of new oligonucleotide inhibitors of RNase P, an essential bacterial enzyme. The series of 2’-O-methyl RNA (2’-OMe-RNA) and phosphoryl guanidine oligonucleotides were targeted to the substrate-binding region of M1 RNA subunit of the RNase P. Uniformly modified 2’-OMe RNA and selectively modified phosphoryl guanidine oligonucleotides possessed good stability in biological media and effectively inhibited RNase P. Their conjugates with transporting peptides were shown to penetrate bacterial cells (Escherichia coli and Acinetobacter baumannii) and inhibit bacterial growth.
Collapse
Affiliation(s)
- Darya Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton Nazarov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay Danilin
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Lyudmila Koroleva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alevtina Bardasheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Maxim Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Dmitrii Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Sidney Altman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States.,Division of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alya Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Soler-Bistué A, Zorreguieta A, Tolmasky ME. Bridged Nucleic Acids Reloaded. Molecules 2019; 24:E2297. [PMID: 31234313 PMCID: PMC6630285 DOI: 10.3390/molecules24122297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Oligonucleotides are key compounds widely used for research, diagnostics, and therapeutics. The rapid increase in oligonucleotide-based applications, together with the progress in nucleic acids research, has led to the design of nucleotide analogs that, when part of these oligomers, enhance their efficiency, bioavailability, or stability. One of the most useful nucleotide analogs is the first-generation bridged nucleic acids (BNA), also known as locked nucleic acids (LNA), which were used in combination with ribonucleotides, deoxyribonucleotides, or other analogs to construct oligomers with diverse applications. However, there is still room to improve their efficiency, bioavailability, stability, and, importantly, toxicity. A second-generation BNA, BNANC (2'-O,4'-aminoethylene bridged nucleic acid), has been recently made available. Oligomers containing these analogs not only showed less toxicity when compared to LNA-containing compounds but, in some cases, also exhibited higher specificity. Although there are still few applications where BNANC-containing compounds have been researched, the promising results warrant more effort in incorporating these analogs for other applications. Furthermore, newer BNA compounds will be introduced in the near future, offering great hope to oligonucleotide-based fields of research and applications.
Collapse
Affiliation(s)
- Alfonso Soler-Bistué
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Instituto Tecnológico de Chascomús, CONICET, Universidad Nacional de San Martín, San Martín 1650, Argentina.
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires C1405BWE, Argentina.
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
14
|
Magallon J, Chiem K, Tran T, Ramirez MS, Jimenez V, Tolmasky ME. Restoration of susceptibility to amikacin by 8-hydroxyquinoline analogs complexed to zinc. PLoS One 2019; 14:e0217602. [PMID: 31141575 PMCID: PMC6541283 DOI: 10.1371/journal.pone.0217602] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Gram-negative pathogens resistant to amikacin and other aminoglycosides of clinical relevance usually harbor the 6’-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme that catalyzes inactivation of the antibiotic by acetylation using acetyl-CoA as donor substrate. Inhibition of the acetylating reaction could be a way to induce phenotypic conversion to susceptibility in these bacteria. We have previously observed that Zn2+ acts as an inhibitor of the enzymatic acetylation of aminoglycosides by AAC(6')-Ib, and in complex with ionophores it effectively reduced the levels of resistance in cellulo. We compared the activity of 8-hydroxyquinoline, three halogenated derivatives, and 5-[N-Methyl-N-Propargylaminomethyl]-8-Hydroxyquinoline in complex with Zn2+ to inhibit growth of amikacin-resistant Acinetobacter baumannii in the presence of the antibiotic. Two of the compounds, clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) and 5,7-diiodo-8-hydroxyquinoline, showed robust inhibition of growth of the two A. baumannii clinical isolates that produce AAC(6')-Ib. However, none of the combinations had any activity on another amikacin-resistant A. baumannii strain that possesses a different, still unknown mechanism of resistance. Time-kill assays showed that the combination of clioquinol or 5,7-diiodo-8-hydroxyquinoline with Zn2+ and amikacin was bactericidal. Addition of 8-hydroxyquinoline, clioquinol, or 5,7-diiodo-8-hydroxyquinoline, alone or in combination with Zn2+, and amikacin to HEK293 cells did not result in significant toxicity. These results indicate that ionophores in complex with Zn2+ could be developed into potent adjuvants to be used in combination with aminoglycosides to treat Gram-negative pathogens in which resistance is mediated by AAC(6')-Ib and most probably other related aminoglycoside modifying enzymes.
Collapse
Affiliation(s)
- Jesus Magallon
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Maria S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Veronica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hewel C, Kaiser J, Wierczeiko A, Linke J, Reinhardt C, Endres K, Gerber S. Common miRNA Patterns of Alzheimer's Disease and Parkinson's Disease and Their Putative Impact on Commensal Gut Microbiota. Front Neurosci 2019; 13:113. [PMID: 30890906 PMCID: PMC6411762 DOI: 10.3389/fnins.2019.00113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/30/2019] [Indexed: 12/18/2022] Open
Abstract
With the rise of Next-Generation-Sequencing (NGS) methods, Micro-RNAs (miRNAs) have achieved an important position in the research landscape and have been found to present valuable diagnostic tools in various diseases such as multiple sclerosis or lung cancer. There is also emerging evidence that miRNAs play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD) or Parkinson's disease (PD). Apparently, these diseases come along with changes in miRNA expression patterns which led to attempts from researchers to use these small RNA species from several body fluids for a better diagnosis and in order to observe disease progression. Additionally, it became evident that microbial commensals might play an important role for pathology development and were shown to have a significantly different composition in patients suffering from neurodegeneration compared with healthy controls. As it could recently be shown that secreted miRNAs are able to enter microbial organisms, it is conceivable that the host's miRNA might affect the gut microbial ecosystem. As such, miRNAs may inherit a central role in shaping the "diseased microbiome" and thereby mutually act on the characteristics of these neurodegenerative diseases. We have therefore (1) compiled a list of miRNAs known to be associated with AD and/or PD, (2) performed an in silico target screen for binding sites of these miRNA on human gut metagenome sequences and (3) evaluated the hit list for interesting matches potentially relevant to the etiology of AD and or PD. The examination of protein identifiers connected to bacterial secretion system, lipopolysaccharide biosynthesis and biofilm formation revealed an overlap of 37 bacterial proteins that were targeted by human miRNAs. The identified links of miRNAs to the biological processes of bacteria connected to AD and PD have yet to be validated via in vivo experiments. However, our results show a promising new approach for understanding aspects of these neurodegenerative diseases in light of the regulation of the microbiome.
Collapse
Affiliation(s)
- Charlotte Hewel
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia Kaiser
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anna Wierczeiko
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Linke
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Faculty of Biology, Institute for Developmental Biology and Neurobiology, Center of Computational Sciences Mainz (CSM), Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Parmeciano Di Noto G, Molina MC, Quiroga C. Insights Into Non-coding RNAs as Novel Antimicrobial Drugs. Front Genet 2019; 10:57. [PMID: 30853970 PMCID: PMC6395445 DOI: 10.3389/fgene.2019.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant bacteria are a serious worldwide problem, especially carbapenem-resistant Enterobacteriaceae (such as Klebsiella pneumoniae and Escherichia coli), Acinetobacter baumannii and Pseudomonas aeruginosa. Since the emergence of extensive and pan-drug resistant bacteria there are few antibiotics left to treat patients, thus novel RNA-based strategies are being considered. Here, we examine the current situation of different non-coding RNAs found in bacteria as well as their function and potential application as antimicrobial agents. Furthermore, we discuss the factors that may contribute in the efficient development of RNA-based drugs, the limitations for their implementation and the use of nanocarriers for delivery.
Collapse
Affiliation(s)
- Gisela Parmeciano Di Noto
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - María Carolina Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| | - Cecilia Quiroga
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
17
|
Davies-Sala C, Jani S, Zorreguieta A, Tolmasky ME. Identification of the Acinetobacter baumannii Ribonuclease P Catalytic Subunit: Cleavage of a Target mRNA in the Presence of an External Guide Sequence. Front Microbiol 2018; 9:2408. [PMID: 30349524 PMCID: PMC6186949 DOI: 10.3389/fmicb.2018.02408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/20/2018] [Indexed: 11/17/2022] Open
Abstract
The bacterial ribonuclease P or RNase P holoenzyme is usually composed of a catalytic RNA subunit, M1, and a cofactor protein, C5. This enzyme was first identified for its role in maturation of tRNAs by endonucleolytic cleavage of the pre-tRNA. The RNase P endonucleolytic activity is characterized by having structural but not sequence substrate requirements. This property led to development of EGS technology, which consists of utilizing a short antisense oligonucleotide that when forming a duplex with a target RNA induces its cleavage by RNase P. This technology is being explored for designing therapies that interfere with expression of genes, in the case of bacterial infections EGS technology could be applied to target essential, virulence, or antibiotic resistant genes. Acinetobacter baumannii is a problematic pathogen that is commonly resistant to multiple antibiotics, and EGS technology could be utilized to design alternative therapies. To better understand the A. baumannii RNase P we first identified and characterized the catalytic subunit. We identified a gene coding for an RNA species, M1Ab, with the expected features of the RNase P M1 subunit. A recombinant clone coding for M1Ab complemented the M1 thermosensitive mutant Escherichia coli BL21(DE3) T7A49, which upon transformation was able to grow at the non-permissive temperature. M1Ab showed in vitro catalytic activity in combination with the C5 protein cofactor from E. coli as well as with that from A. baumannii, which was identified, cloned and partially purified. M1Ab was also able to cleave a target mRNA in the presence of an EGS with efficiency comparable to that of the E. coli M1, suggesting that EGS technology could be a viable option for designing therapeutic alternatives to treat multiresistant A. baumannii infections.
Collapse
Affiliation(s)
- Carol Davies-Sala
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
| | - Saumya Jani
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales de la Universidad de Buenos Aires, University of Buenos Aires, Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
18
|
Tran T, Chiem K, Jani S, Arivett BA, Lin DL, Lad R, Jimenez V, Farone MB, Debevec G, Santos R, Giulianotti M, Pinilla C, Tolmasky ME. Identification of a small molecule inhibitor of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] using mixture-based combinatorial libraries. Int J Antimicrob Agents 2018; 51:752-761. [PMID: 29410367 DOI: 10.1016/j.ijantimicag.2018.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 11/28/2022]
Abstract
The aminoglycoside, 6'-N-acetyltransferase type Ib [AAC(6')-Ib] is the most widely distributed enzyme among AAC(6')-I-producing Gram-negative pathogens and confers resistance to clinically relevant aminoglycosides, including amikacin. This enzyme is therefore an ideal target for enzymatic inhibitors that could overcome resistance to aminoglycosides. The search for inhibitors was carried out using mixture-based combinatorial libraries, the scaffold ranking approach, and the positional scanning strategy. A library with high inhibitory activity had pyrrolidine pentamine scaffold and was selected for further analysis. This library contained 738,192 compounds with functionalities derived from 26 different amino acids (R1, R2 and R3) and 42 different carboxylic acids (R4) in four R-group functionalities. The most active compounds all contained S-phenyl (R1 and R3) and S-hydromethyl (R2) functionalities at three locations and differed at the R4 position. The compound containing 3-phenylbutyl at R4 (compound 206) was a robust enzymatic inhibitor in vitro, in combination with amikacin it potentiated the inhibition of growth of three resistant bacteria in culture, and it improved survival when used as treatment of Galleria mellonella infected with aac(6')-Ib-harboring Klebsiella pneumoniae and Acinetobacter baumannii strains.
Collapse
Affiliation(s)
- Tung Tran
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Brock A Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN; Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN
| | - David L Lin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Rupali Lad
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Verónica Jimenez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA
| | - Mary B Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN
| | | | - Radleigh Santos
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL
| | | | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA.
| |
Collapse
|
19
|
Jani S, Jackson A, Davies-Sala C, Chiem K, Soler-Bistué A, Zorreguieta A, Tolmasky ME. Assessment of External Guide Sequences' (EGS) Efficiency as Inducers of RNase P-Mediated Cleavage of mRNA Target Molecules. Methods Mol Biol 2018; 1737:89-98. [PMID: 29484589 DOI: 10.1007/978-1-4939-7634-8_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNase P is a ribozyme consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. It was initially identified as the enzyme that mediates cleavage of precursor tRNAs at the 5'-end termini to generate the mature tRNAs. An important characteristic of RNase P is that its specificity depends on the structure rather than the sequence of the RNA substrate. Any RNA species that interacts with an antisense molecule (called external guide sequence, EGS) and forms the appropriate structure can be cleaved by RNase P. This property is the basis for EGS technology, an antisense methodology for inhibiting gene expression by eliciting RNase P-mediated cleavage of a target mRNA molecule. EGS technology is being developed to design therapies against a large variety of diseases. An essential milestone in developing EGSs as therapies is the assessment of the efficiency of antisense molecules to induce cleavage of the target mRNA and evaluate their effect in vivo. Here, we describe simple protocols to test the ability of EGSs to induce cleavage of a target mRNA in vitro and to induce a phenotypic change in growing cells.
Collapse
Affiliation(s)
- Saumya Jani
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Alexis Jackson
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Carol Davies-Sala
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Kevin Chiem
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Alfonso Soler-Bistué
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
20
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|
21
|
Hegarty JP, Stewart DB. Advances in therapeutic bacterial antisense biotechnology. Appl Microbiol Biotechnol 2017; 102:1055-1065. [PMID: 29209794 DOI: 10.1007/s00253-017-8671-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Antisense therapeutics are a biotechnological form of antibiotic therapy using chemical analogues of short single-stranded nucleic acid sequences modified to form stable oligomers. These molecules are termed antisense oligonucleotides (ASOs) because their sequence is complementary, via Watson-Crick specific base pairing, to their target messenger RNA (mRNA). ASOs modify gene expression in this sequence-dependent manner by binding to its complementary mRNA and inhibiting its translation into protein through steric blockage and/or through RNase degradation of the ASO/RNA duplex. The widespread use of conventional antibiotics has led to the increasing emergence of multiple drug-resistant pathogenic bacteria. There is an urgent need to develop alternative therapeutic strategies to reduce the morbidity and mortality associated with bacterial infections, and until recently, the use of ASOs as therapeutic agents has been essentially limited to eukaryotic cells, with ASOs as antibacterials having been largely unexplored primarily due to the poor uptake efficiency of antisense molecules by bacteria. There are conceptual advantages to bacterial antisense antibiotic therapies, including a sequence-dependent approach that allows for a rational design to multiple specific molecular targets. This review summarizes the current knowledge of antisense bacterial biotechnology and highlights the recent progress and the current obstacles in their development for therapeutic applications.
Collapse
Affiliation(s)
- John P Hegarty
- College of Medicine, Department of Surgery, The Pennsylvania State University, 500 University Drive, H137, P.O. Box 850, Hershey, PA, 17033-0850, USA
| | - David B Stewart
- College of Medicine, Department of Surgery, The Pennsylvania State University, 500 University Drive, H137, P.O. Box 850, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
22
|
Targeted inhibition of WRN helicase, replication stress and cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:42-48. [PMID: 27902925 DOI: 10.1016/j.bbcan.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022]
Abstract
WRN helicase has several roles in genome maintenance, such as replication, base excision repair, recombination, DNA damage response and transcription. These processes are often found upregulated in human cancers, many of which display increased levels of WRN. Therefore, directed inhibition of this RecQ helicase could be beneficial to selective cancer therapy. Inhibition of WRN is feasible by the use of small-molecule inhibitors or application of RNA interference and EGS/RNase P targeting systems. Remarkably, helicase depletion leads to a severe reduction in cell viability due to mitotic catastrophe, which is triggered by replication stress induced by DNA repair failure and fork progression arrest. Moreover, we present new evidence that WRN depletion results in early changes of RNA polymerase III and RNase P activities, thereby implicating chromatin-associated tRNA enzymes in WRN-related stress response. Combined with the recently discovered roles of RecQ helicases in cancer, current data support the targeting prospect of these genome guardians, as a means of developing clinical phases aimed at diminishing adaptive resistance to present targeted therapies.
Collapse
|
23
|
Singh A, Ubaid-Ullah S, Batra JK. Functional role of putative critical residues in Mycobacterium tuberculosis RNase P protein. Int J Biochem Cell Biol 2016; 78:141-148. [PMID: 27417238 DOI: 10.1016/j.biocel.2016.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 12/29/2022]
Abstract
RNase P is involved in processing the 5' end of pre-tRNA molecules. Bacterial RNase P contains a catalytic RNA subunit and a protein subunit. In this study, we have analyzed the residues in RNase P protein of M. tuberculosis that differ from the residues generally conserved in other bacterial RNase Ps. The residues investigated in the current study include the unique residues, Val27, Ala70, Arg72, Ala77, and Asp124, and also Phe23 and Arg93 which have been found to be important in the function of RNase P protein components of other bacteria. The selected residues were individually mutated either to those present in other bacterial RNase P protein components at respective positions or in some cases to alanine. The wild type and mutant M. tuberculosis RNase P proteins were expressed in E. coli, purified, used to reconstitute holoenzymes with wild type RNA component in vitro, and functionally characterized. The Phe23Ala and Arg93Ala mutants showed very poor catalytic activity when reconstituted with the RNA component. The catalytic activity of holoenzyme with Val27Phe, Ala70Lys, Arg72Leu and Arg72Ala was also significantly reduced, whereas with Ala77Phe and Asp124Ser the activity of holoenzyme was similar to that with the wild type protein. Although the mutants did not suffer from any binding defects, Val27Phe, Ala70Lys, Arg72Ala and Asp124Ser were less tolerant towards higher temperatures as compared to the wild type protein. The Km of Val27Phe, Ala70Lys, Arg72Ala and Ala77Phe were >2-fold higher than that of the wild type, indicating the substituted residues to be involved in substrate interaction. The study demonstrates that residues Phe23, Val27 and Ala70 are involved in substrate interaction, while Arg72 and Arg93 interact with other residues within the protein to provide it a functional conformation.
Collapse
Affiliation(s)
- Alla Singh
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shah Ubaid-Ullah
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Janendra K Batra
- Immunochemistry Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Jackson A, Jani S, Sala CD, Soler-Bistué AJC, Zorreguieta A, Tolmasky ME. Assessment of configurations and chemistries of bridged nucleic acids-containing oligomers as external guide sequences: a methodology for inhibition of expression of antibiotic resistance genes. Biol Methods Protoc 2016; 1. [PMID: 27857983 PMCID: PMC5108630 DOI: 10.1093/biomethods/bpw001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
External guide sequences (EGSs) are short antisense oligoribonucleotides that elicit RNase P-mediated cleavage of a target mRNA, which results in inhibition of gene expression. EGS technology is used to inhibit expression of a wide variety of genes, a strategy that may lead to development of novel treatments of numerous diseases, including multidrug-resistant bacterial and viral infections. Successful development of EGS technology depends on finding nucleotide analogs that resist degradation by nucleases present in biological fluids and the environment but still elicit RNase P-mediated degradation when forming a duplex with a target mRNA. Previous results suggested that locked nucleic acids (LNA)/DNA chimeric oligomers have these properties. LNA are now considered the first generation of compounds collectively known as bridged nucleic acids (BNAs) – modified ribonucleotides that contain a bridge at the 2ʹ,4ʹ-position of the ribose. LNA and the second-generation BNA, known as BNANC, differ in the chemical nature of the bridge. Chimeric oligomers containing LNA or BNANC and deoxynucleotide monomers in different configurations are nuclease resistant and could be excellent EGS compounds. However, not all configurations may be equally active as EGSs. RNase P cleavage assays comparing LNA/DNA and BNANC/DNA chimeric oligonucleotides that share identical nucleotide sequence but with different configurations were carried out using as target the amikacin resistance aac(6ʹ)-Ib mRNA. LNA/DNA gapmers with 5 and 3/4 LNA residues at the 5ʹ- and 3ʹ-ends, respectively, were the most efficient EGSs while all BNANC/DNA gapmers showed very poor activity. When the most efficient LNA/DNA gapmer was covalently bound to a cell-penetrating peptide, the hybrid compound conserved the EGS activity as determined by RNase P cleavage assays and reduced the levels of resistance to amikacin when added to Acinetobacter baumannii cells in culture, an indication of cellular uptake and biological activity.
Collapse
Affiliation(s)
- Alexis Jackson
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Saumya Jani
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Carol Davies Sala
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Alfonso J C Soler-Bistué
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA; Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| |
Collapse
|
25
|
Hitrik A, Abboud-Jarrous G, Orlovetskie N, Serruya R, Jarrous N. Targeted inhibition of WRN helicase by external guide sequence and RNase P RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:572-80. [PMID: 26808708 DOI: 10.1016/j.bbagrm.2016.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 01/04/2023]
Abstract
Human WRN, a RecQ helicase encoded by the Werner syndrome gene, is implicated in genome maintenance, including replication, recombination, excision repair and DNA damage response. These genetic processes and expression of WRN are concomitantly upregulated in many types of cancers. Therefore, targeted destruction of this helicase could be useful for elimination of cancer cells. Here, we provide a proof of concept for applying the external guide sequence (EGS) approach in directing an RNase P RNA to efficiently cleave the WRN mRNA in cultured human cell lines, thus abolishing translation and activity of this distinctive 3'-5' DNA helicase-nuclease. Remarkably, EGS-directed knockdown of WRN leads to severe inhibition of cell viability. Hence, further assessment of this targeting system could be beneficial for selective cancer therapies, particularly in the light of the recent improvements introduced into EGSs.
Collapse
Affiliation(s)
- Anna Hitrik
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ghada Abboud-Jarrous
- Institute for Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Natalie Orlovetskie
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Raphael Serruya
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Institute for Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
26
|
Inhibition of AAC(6')-Ib-mediated resistance to amikacin in Acinetobacter baumannii by an antisense peptide-conjugated 2',4'-bridged nucleic acid-NC-DNA hybrid oligomer. Antimicrob Agents Chemother 2015; 59:5798-803. [PMID: 26169414 DOI: 10.1128/aac.01304-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/08/2015] [Indexed: 01/08/2023] Open
Abstract
Multiresistant Acinetobacter baumannii, a common etiologic agent of severe nosocomial infections in compromised hosts, usually harbors aac(6')-Ib. This gene specifies resistance to amikacin and other aminoglycosides, seriously limiting the effectiveness of these antibiotics. An antisense oligodeoxynucleotide (ODN4) that binds to a duplicated sequence on the aac(6')-Ib mRNA, one of the copies overlapping the initiation codon, efficiently inhibited translation in vitro. An isosequential nuclease-resistant hybrid oligomer composed of 2',4'-bridged nucleic acid-NC (BNA(NC)) residues and deoxynucleotides (BNA(NC)-DNA) conjugated to the permeabilizing peptide (RXR)4XB ("X" and "B" stand for 6-aminohexanoic acid and β-alanine, respectively) (CPPBD4) inhibited translation in vitro at the same levels observed in testing ODN4. Furthermore, CPPBD4 in combination with amikacin inhibited growth of a clinical A. baumannii strain harboring aac(6')-Ib in liquid cultures, and when both compounds were used as combination therapy to treat infected Galleria mellonella organisms, survival was comparable to that seen with uninfected controls.
Collapse
|